# $\delta$-FREENESS OF A CLASS OF LINEAR SYSTEMS 

Nicolas Petit*, Yann Creff ${ }^{\dagger}$, Pierre Rouchon ${ }^{\ddagger}$

*Centre Automatique et Systèmes, Ecole des Mines de Paris, 60, bd. Saint-Michel, 75272 Paris
Cedex 06, France. Tel: (33) 01405193 29. E-mail: petit@cas.ensmp.fr
${ }^{\dagger}$ ELF ANTAR FRANCE, CRES, BP 2269360 Solaize, France. Tel: 04780264 67. E-mail: yann.creff@s1.elf-antar-france.elf1.fr
${ }^{\ddagger}$ Centre Automatique et Systèmes, Ecole des Mines de Paris, 60, bd. Saint-Michel, 75272 Paris
Cedex 06, France. Tel: 01405191 15. E-mail: rouchon@cas.ensmp.fr

Keywords : linear systems, delay systems, process control.


#### Abstract

Starting from a simple example of linear delayed system (with 2 inputs and 2 outputs) commonly used in process control, we show that, as for flat systems (see [1]), an explicit parametrization of all the trajectories can be found. Once more this leads to an easy motion planning. More generally speaking, we prove that this property, called $\delta$ freeness (see [2, 4]) is general among higher dimensions linear delayed systems.

More theoretically speaking, we use the module framework and consider a linear delayed system as a finitely generated module over the ring $R\left[\frac{d}{d t}, \delta\right]$, where $\delta$ is one or a set of delay operators. We show that this system is $\delta$-free. That is we can find a basis of its corresponding module over the localized ring $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right]$. An applicable way to exhibit such a basis is explicitly described.


## 1 An introductory example to motion planning using $\delta$-freeness

Let us start by considering a simple system with two inputs and two outputs:

$$
y=\left(\begin{array}{cc}
\frac{K_{1}^{1} e^{-\delta_{1}^{1} s}}{1+\tau_{1}^{1} s} & \frac{K_{1}^{2} e^{-\delta_{1}^{2} s}}{1+\tau_{1}^{2} s} \\
\frac{K_{2}^{1} e^{-\delta_{2}^{1} s}}{1+\tau_{2}^{1} s} & \frac{K_{2}^{2} e^{-\delta_{2}^{2} s}}{1+\tau_{2}^{2} s}
\end{array}\right) u
$$

with $s$ the Laplace variable, $i \in\{1,2\}, j \in\{1,2\}, \tau_{i}^{j} \in$ $R^{*+}, K_{i}^{j} \in R^{*}, \delta_{i}^{j} \in R^{+}$.

We want to determine the commands $u$ that will steer the system from the steady state $(\bar{y}, \bar{u})$ to the steady state $(\tilde{y}, \tilde{u})$ within a desired time $T$ that must be well choosen.

Let us introduce $\xi=\left(\xi^{1}, \xi^{2}\right)$, that we call $\delta$-flat outputs:

$$
\begin{aligned}
\xi^{1}(t)= & \frac{\tau_{1}^{1} K_{2}^{1}}{\frac{1}{\tau_{1}^{2}}-\frac{1}{\tau_{1}^{1}}}\left(\dot{y}_{1}\left(t+\delta_{1}^{1}\right)+\frac{y_{1}\left(t+\delta_{1}^{1}\right)}{\tau_{1}^{2}}\right) \\
& -\frac{\tau_{2}^{1} K_{1}^{1}}{\frac{1}{\tau_{2}^{2}}-\frac{1}{\tau_{2}^{1}}}\left(\dot{y}_{2}\left(t+\delta_{2}^{1}\right)+\frac{y_{2}\left(t+\delta_{2}^{1}\right)}{\tau_{2}^{2}}\right) \\
& +\left(\frac{K_{1}^{1} K_{2}^{1}}{\frac{1}{\tau_{2}^{2}}-\frac{1}{\tau_{2}^{1}}}-\frac{K_{1}^{1} K_{2}^{1}}{\frac{1}{\tau_{1}^{2}}-\frac{1}{\tau_{1}^{1}}}\right) u^{1}(t) \\
& -\frac{\tau_{1}^{1} K_{2}^{1} K_{1}^{2}}{1-\frac{\tau_{1}^{1}}{\tau_{1}^{1}}} u^{2}\left(t-\delta_{1}^{2}+\delta_{1}^{1}\right) \\
& +\frac{\tau_{2}^{1} K_{1}^{1} K_{2}^{2}}{1-\frac{\tau_{2}^{2}}{\tau_{2}^{1}}} u^{2}\left(t-\delta_{2}^{2}+\delta_{2}^{1}\right) \\
\xi^{2}(t)= & \frac{\tau_{1}^{2} K_{2}^{2}}{\frac{1}{\tau_{1}^{1}}-\frac{1}{\tau_{1}^{2}}\left(\dot{y}_{1}\left(t+\delta_{1}^{2}\right)+\frac{y_{1}\left(t+\delta_{1}^{2}\right)}{\tau_{1}^{1}}\right)} \\
& -\frac{\tau_{2}^{2} K_{1}^{2}}{\frac{1}{\tau_{2}^{1}}-\frac{1}{\tau_{2}^{2}}}\left(\dot{y}_{2}\left(t+\delta_{2}^{2}\right)+\frac{y_{2}\left(t+\delta_{2}^{2}\right)}{\tau_{2}^{1}}\right) \\
& +\left(\frac{K_{1}^{2} K_{2}^{2}}{\frac{1}{\tau_{2}^{1}}-\frac{1}{\tau_{2}^{2}}}-\frac{K_{1}^{2} K_{2}^{2}}{\left.\frac{1}{\tau_{1}^{1}}-\frac{1}{\tau_{1}^{2}}\right) u^{2}(t)}\right. \\
& -\frac{\tau_{1}^{2} K_{2}^{2} K_{1}^{1}}{1-\frac{\tau_{1}^{1}}{\tau_{1}^{2}}} u^{1}\left(t-\delta_{1}^{1}+\delta_{1}^{2}\right) \\
& +\frac{\tau_{2}^{2} K_{1}^{2} K_{2}^{1}}{1-\frac{\tau_{2}^{1}}{\tau_{2}^{2}}} u^{1}\left(t-\delta_{2}^{1}+\delta_{2}^{2}\right) .
\end{aligned}
$$

One can determine all the quantities of the system from $\xi, \dot{\xi}, \ddot{\xi}$ by linear combinations, provided that the $\tau_{i}^{j}$ are all different. Explicitly:

$$
\begin{aligned}
y_{1}(t)= & \frac{\xi^{1}\left(t-\delta_{1}^{1}\right)+\tau_{2}^{1} \dot{\xi}^{1}\left(t-\delta_{1}^{1}\right)}{\left(\tau_{1}^{1}-\tau_{2}^{1}\right) K_{2}^{1}} \\
& +\frac{\xi^{2}\left(t-\delta_{1}^{2}\right)+\tau_{2}^{2} \dot{\xi}^{2}\left(t-\delta_{1}^{2}\right)}{\left(\tau_{1}^{2}-\tau_{2}^{2}\right) K_{2}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
y_{2}(t)= & \frac{\xi^{1}\left(t-\delta_{2}^{1}\right)+\tau_{1}^{1} \dot{\xi}^{1}\left(t-\delta_{2}^{1}\right)}{\left(\tau_{2}^{1}-\tau_{1}^{1}\right) K_{1}^{1}} \\
& +\frac{\xi^{2}\left(t-\delta_{2}^{2}\right)+\tau_{1}^{2} \dot{\xi}^{2}\left(t-\delta_{2}^{2}\right)}{\left(\tau_{2}^{2}-\tau_{1}^{2}\right) K_{1}^{2}} \\
u^{1}(t)= & \frac{\xi^{1}(t)+\left(\tau_{1}^{1}+\tau_{2}^{1}\right) \dot{\xi}^{1}(t)+\tau_{1}^{1} \tau_{2}^{1} \ddot{\xi}^{1}(t)}{K_{1}^{1} K_{2}^{1}\left(\tau_{1}^{1}-\tau_{2}^{1}\right)} \\
u^{2}(t)= & \frac{\xi^{2}(t)+\left(\tau_{1}^{2}+\tau_{2}^{2}\right) \dot{\xi}^{2}(t)+\tau_{1}^{2} \tau_{2}^{2} \ddot{\xi}^{2}(t)}{K_{1}^{2} K_{2}^{2}\left(\tau_{1}^{2}-\tau_{2}^{2}\right)} .
\end{aligned}
$$

These last relations show the invertible transformation exchanging the trajectories of $\xi$ and those of $(y, u)$. The boundary conditions can be equivalently written for these $\delta$-flat outputs.

$$
\begin{aligned}
& \bar{\xi}^{1}=\frac{\tau_{1}^{1} K_{2}^{1}}{1-\frac{\tau_{1}^{2}}{\tau_{1}^{1}}}\left(\bar{y}_{1}-K_{1}^{2} \bar{u}^{2}\right)-\frac{\tau_{2}^{1} K_{1}^{1}}{1-\frac{\tau_{2}^{2}}{\tau_{2}^{1}}}\left(\bar{y}_{2}-K_{2}^{2} \bar{u}^{2}\right) \\
& +\left(\frac{K_{1}^{1} K_{2}^{1}}{\frac{1}{\tau_{2}^{2}}-\frac{1}{\tau_{2}^{1}}}-\frac{K_{1}^{1} K_{2}^{1}}{\frac{1}{\tau_{1}^{2}}-\frac{1}{\tau_{1}^{1}}}\right) \bar{u}^{1} \\
& \bar{\xi}^{2}=\frac{\tau_{1}^{2} K_{2}^{2}}{1-\frac{\tau_{1}^{1}}{\tau_{1}^{2}}}\left(\bar{y}_{1}-K_{1}^{1} \bar{u}^{1}\right)-\frac{\tau_{2}^{2} K_{1}^{2}}{1-\frac{\tau_{2}^{1}}{\tau_{2}^{2}}}\left(\bar{y}_{2}-K_{2}^{1} \bar{u}^{1}\right) \\
& +\left(\frac{K_{1}^{2} K_{2}^{2}}{\frac{1}{\tau_{2}^{1}}-\frac{1}{\tau_{2}^{2}}}-\frac{K_{1}^{2} K_{2}^{2}}{\frac{1}{\tau_{1}^{1}}-\frac{1}{\tau_{1}^{2}}}\right) \bar{u}^{2} \\
& \tilde{\xi}^{1}=\frac{\tau_{1}^{1} K_{2}^{1}}{1-\frac{\tau_{1}^{2}}{\tau_{1}^{1}}}\left(\tilde{y}_{1}-K_{1}^{2} \tilde{u}^{2}\right)-\frac{\tau_{2}^{1} K_{1}^{1}}{1-\frac{\tau_{2}^{2}}{\tau_{2}^{1}}}\left(\tilde{y}_{2}-K_{2}^{2} \tilde{u}^{2}\right) \\
& +\left(\frac{K_{1}^{1} K_{2}^{1}}{\frac{1}{\tau_{2}^{2}}-\frac{1}{\tau_{2}^{1}}}-\frac{K_{1}^{1} K_{2}^{1}}{\frac{1}{\tau_{1}^{2}}-\frac{1}{\tau_{1}^{1}}}\right) \tilde{u}^{1} \\
& \tilde{\xi}^{2}=\frac{\tau_{1}^{2} K_{2}^{2}}{1-\frac{\tau_{1}^{1}}{\tau_{1}^{2}}}\left(\tilde{y}_{1}-K_{1}^{1} \tilde{u}^{1}\right)-\frac{\tau_{2}^{2} K_{1}^{2}}{1-\frac{\tau_{2}^{1}}{\tau_{2}^{2}}}\left(\tilde{y}_{2}-K_{2}^{1} \tilde{u}^{1}\right) \\
& +\left(\frac{K_{1}^{2} K_{2}^{2}}{\frac{1}{\tau_{2}^{1}}-\frac{1}{\tau_{2}^{2}}}-\frac{K_{1}^{2} K_{2}^{2}}{\frac{1}{\tau_{1}^{1}}-\frac{1}{\tau_{1}^{2}}}\right) \tilde{u}^{2} .
\end{aligned}
$$

Smoothness implies $\dot{\xi}(t \leq 0)=0, \ddot{\xi}(t \leq 0)=0, \dot{\xi}(t \geq$ $\Delta)=0, \ddot{\xi}(t \geq \Delta)=0$ with $\Delta=T-\max _{i, j}\left(\delta_{i}^{j}\right)$, provided that $T>\max _{i, j}\left(\delta_{i}^{j}\right)$. This permits the continuity of the commands.

Any smooth function $[0, \Delta] \ni t \longmapsto \xi(t)$ satisfying the conditions above will provide us a set of commands for the desired motion planning.

For example, one could choose

$$
\xi(t)=\left(1-\pi\left(\frac{t}{\Delta}\right)\right) \bar{\xi}+\pi\left(\frac{t}{\Delta}\right) \tilde{\xi}
$$

where

$$
\pi(\sigma)=\left\{\begin{array}{cc}
0 & \sigma<0 \\
6 \sigma^{5}-15 \sigma^{4}+10 \sigma^{3} & \\
1 & \sigma>1
\end{array}\right.
$$

but many other choices are possible.

Similarly it is possible to steer the system from a past trajectory to a future one. One just have to replace ( $\bar{y}, \bar{u}$ ) and $(\tilde{y}, \tilde{u})$ by $(\bar{y}, \bar{u})(t)$ and $(\tilde{y}, \tilde{u})(t)$, then calculate $\bar{\xi}(t)$ and $\tilde{\xi}(t)$ and use

$$
\xi(t)=\left(1-\pi\left(\frac{t}{\Delta}\right)\right) \bar{\xi}(t)+\pi\left(\frac{t}{\Delta}\right) \tilde{\xi}(t)
$$

This proves that such systems are controllable in the sense of [5] and [7].

We have singled out the fundamental topic, namely the existence of a parametrization of the trajectories. In the following we will exhibit the same property in the general case.

## 2 Main result

From now on, the system under consideration has $p$ outputs and $m$ independent inputs and is called the original system. It is frequently used in process control [6]:

| Inputs <br> Outputs | $u^{1}$ | $\cdots$ | $u^{m}$ |
| ---: | :---: | :---: | :---: | :---: |
| $y_{1}=z_{1}^{1}+\ldots+z_{1}^{m}$ | $z_{1}^{1}$ | $\ldots$ | $z_{1}^{m}$ |
| $\vdots$ | $\vdots$ |  | $\vdots$ |
| $y_{p}=z_{p}^{1}+\ldots+z_{p}^{m}$ | $z_{p}^{1}$ | $\ldots$ | $z_{p}^{m}$ |

where the $z_{i}^{j}$ stand for

$$
z_{i}^{j}=\frac{K_{i}^{j} e^{-\delta_{i}^{j} s}}{1+\tau_{i}^{j} s} u^{j},
$$

with $s$ the Laplace variable, $i \in\{1, \ldots, p\}, j \in\{1, \ldots, m\}$ $\tau_{i}^{j} \in R^{*+}, K_{i}^{j} \in R, \delta_{i}^{j} \in R^{+}$.

Note that $K_{i}^{j}=0$ means that $u^{j}$ does not affect $y_{i}$. Moreover we assume that every input does affect the system, which means that for each column $j$ there exists $i_{j}$ such as $K_{i_{j}}^{j} \neq 0$.

## Definition 1 In

each column $j$, let us denote $\left\{z_{n z_{1}}^{j}, \ldots, z_{n z_{t_{j}}}^{j}\right\}$ the set of partial states $z_{i}^{j}$ whose $K_{i}^{j} \neq 0$ (one could call them the non-zero ( $n z$ ) states). These and only these act upon the outputs. Among these, let $\left\{z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}$ be a maximal set of partial states such as $\tau_{i_{k}}^{j} \neq \tau_{i_{l}}^{j}$ for all $k, l \leq n_{j}$. We call them the essential partial states of the column. One can easily check that there is at least one essential partial state per column.

Main result Let $\delta=\left\{\delta_{i}^{j}, i=1, \ldots, p, j=1, \ldots, m\right\}$. For each column $j$, one can exhibit $\xi^{j}$, a $R\left[\delta^{-1}\right]$ combination of elements of $\left\{z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}$ that is a basis of the $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right]$ module corresponding to $\left\{u^{j}, z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}$. This does not require any rational relation between the $\delta_{i}^{j}$. As a result one gets $\left\{\xi^{1}, \ldots, \xi^{m}\right\}$ which is a basis of the $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right]$ module corresponding to the original system,
that is the module spanned by the essential partial states and the inputs, which is thus $\delta$-free.

### 2.1 Building up $\left\{\xi^{1}, \ldots, \xi^{m}\right\}$

Let us consider any of the $m$ columns, say the $j^{\text {th }}$ column. Denote $\left\{z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}$ the set of its essential partial states. Obviously $n_{j}$, which is the number of partial states of the $j^{t h}$ column, depends on $j$. To streamline notation we now denote $\left\{z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}$ as $\left\{z_{1}, \ldots, z_{q}\right\}$. That means that subsequently we won't keep in mind the number of the column we work in, and that we will use a dedicated reordering of the partial states of the column. Now we are looking for a basis of the $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right]$ module corresponding to $\left\{u^{j}, z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}$. In other words we are looking for a basis of the $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right]$ module corresponding to $\left\{u, z_{1}, \ldots, z_{q}\right\}$. We can try this kind of $R\left[\delta^{-1}\right]$ combination:

$$
\xi=a_{1} z_{1}\left(t+\delta_{1}\right)+\ldots+a_{q} z_{q}\left(t+\delta_{q}\right)
$$

where the appropriate $a_{1}, \ldots, a_{q}$ are to be found. Let us calculate the derivatives of $\xi$. First:

$$
\begin{aligned}
\dot{\xi}= & -\left[\frac{a_{1}}{\tau_{1}} z_{1}\left(t+\delta_{1}\right)+\ldots+\frac{a_{q}}{\tau_{q}} z_{q}\left(t+\delta_{q}\right)\right] \\
& +\left(\frac{a_{1} K_{1}}{\tau_{1}}+\ldots+\frac{a_{q} K_{q}}{\tau_{q}}\right) u(t)
\end{aligned}
$$

since

$$
\dot{z_{k}}\left(t+\delta_{k}\right)=\frac{K_{k} u(t)-z_{k}\left(t+\delta_{k}\right)}{\tau_{k}}
$$

Now we choose to get rid off $u(t)$. In order to do so we make:

$$
\frac{a_{1} K_{1}}{\tau_{1}}+\ldots+\frac{a_{q} K_{q}}{\tau_{q}}=0
$$

Assuming this, the next derivative is:

$$
\begin{aligned}
\ddot{\xi}= & {\left[\frac{a_{1}}{\left(\tau_{1}\right)^{2}} z_{1}\left(t+\delta_{1}\right)+\ldots+\frac{a_{q}}{\left(\tau_{q}\right)^{2}} z_{q}\left(t+\delta_{q}\right)\right] } \\
& +\left(\frac{a_{1} K_{1}}{\left(\tau_{1}\right)^{2}}+\ldots+\frac{a_{q} K_{q}}{\left(\tau_{q}\right)^{2}}\right) u(t)
\end{aligned}
$$

Once more we want to get rid off $u(t)$, which means:

$$
\frac{a_{1} K_{q}}{\left(\tau_{1}\right)^{2}}+\ldots+\frac{a_{q} K_{q}}{\left(\tau_{q}\right)^{2}}=0
$$

We go on successively until the $(q-1)^{t h}$ derivative

$$
\begin{aligned}
(\xi)^{(q-1)}= & {\left[\frac{a_{1}}{\left(\tau_{1}\right)^{(q-1)}} z_{1}\left(t+\delta_{1}\right)+\ldots\right.} \\
& \left.+\frac{a_{q}}{\left(\tau_{q}\right)^{(q-1)}} z_{q}\left(t+\delta_{q}\right)\right](-1)^{(q-1)} \\
& +\left(\frac{a_{1} K_{1}}{\left(\tau_{1}\right)^{(q-1)}}+\ldots+\frac{a_{q} K_{q}}{\left(\tau_{q}\right)^{(q-1)}}\right) u(t)
\end{aligned}
$$

The final condition is:

$$
\frac{a_{1} K_{1}}{\left(\tau_{1}\right)^{(q-1)}}+\ldots+\frac{a_{q} K_{q}}{\left(\tau_{q}\right)^{(q-1)}}=0
$$

In the end, assuming the $q-1$ equations of $C$ over the $q$ variables $a_{i}$ we guarantee $D$ :

$$
C:\left\{\begin{aligned}
\frac{a_{1} K_{1}}{\tau_{1}}+\ldots+\frac{a_{q} K_{q}}{\tau_{q}} & =0 \\
\frac{a_{1} K_{1}}{\left(\tau_{1}\right)^{2}}+\ldots+\frac{a_{q} K_{q}}{\left(\tau_{q}\right)^{2}} & =0 \\
& \vdots \\
\frac{a_{1} K_{1}}{\left(\tau_{1}\right)^{(q-1)}}+\ldots+\frac{a_{q} K_{q}}{\left(\tau_{q}\right)^{(q-1)}} & =0
\end{aligned}\right.
$$

$$
D:\left\{\begin{aligned}
\xi= & a_{1} z_{1}\left(t+\delta_{1}\right)+\ldots+a_{q} z_{q}\left(t+\delta_{q}\right) \\
\dot{\xi}= & -\left(\frac{a_{1}}{\tau_{1}} z_{1}\left(t+\delta_{1}\right)+\ldots+\frac{a_{q}}{\tau_{q}} z_{q}\left(t+\delta_{q}\right)\right. \\
\vdots & \\
(\xi)^{(q-1)}= & (-1)^{(q-1)}\left(\frac{a_{1}}{\left(\tau_{1}\right)^{(q-1)}} z_{1}\left(t+\delta_{1}\right)+\ldots\right. \\
& +\frac{a_{q}}{\left(\tau_{i_{q}}\right)^{(q-1)}} z_{q}\left(t+\delta_{q}\right) .
\end{aligned}\right.
$$

## Some fundamental issues

Proposition 1 The system of equation $C$ is underdetermined. Subjected to an extra condition of normality, say $a_{1}=1$, all the $\left(a_{i}\right)_{i=1 \ldots q}$ are different from 0 .

Proof: By adding the extra condition $a_{1}=1$ we get a square linear system:

$$
\begin{aligned}
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\frac{K_{1}}{\tau_{1}} & \frac{K_{2}}{\tau_{2}} & \cdots & \frac{K_{q}}{\tau_{q}} \\
\frac{K_{1}}{\left(\tau_{1}\right)^{2}} & \frac{K_{2}}{\left(\tau_{2}\right)^{2}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{2}} \\
\frac{K_{1}}{\left(\tau_{1}\right)^{(q-1)}} & \frac{K_{2}}{\left(\tau_{2}\right)^{(q-1)}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{(q-1)}}
\end{array}\right) & \left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{q}
\end{array}\right) \\
& =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

- First we aim at showing that this system is invertible. It is easy to check it by looking at its determinant:

$$
\operatorname{det}=1\left|\begin{array}{ccc}
\frac{K_{2}}{\tau_{2}} & \cdots & \frac{K_{q}}{\tau_{q}} \\
\frac{K_{2}}{\left(\tau_{2}\right)^{2}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{2}} \\
\frac{K_{2}}{\left(\tau_{2}\right)^{(q-1)}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{(q-1)}}
\end{array}\right|
$$

$$
=\frac{K_{2}}{\tau_{2}} \cdots \frac{K_{q}}{\tau_{q}}\left|\begin{array}{ccc}
1 & \cdots & 1 \\
\frac{1}{\left(\tau_{2}\right)} & \cdots & \frac{1}{\left(\tau_{q}\right)} \\
\frac{1}{\left(\tau_{2}\right)^{(q-2)}} & \cdots & \frac{1}{\left(\tau_{q}\right)^{(q-2)}}
\end{array}\right|
$$

Here one can recognize a Vandermonde determinant, then:

$$
\operatorname{det}=\prod_{2 \leq m \leq q} \frac{K_{m}}{\tau_{m}} \prod_{2 \leq k<l \leq q}\left(\frac{1}{\tau_{l}}-\frac{1}{\tau_{k}}\right) .
$$

Since $\left\{z_{1}, \ldots, z_{q}\right\}$ are the essential partial states, we know that:

- for all $m$ such as $2 \leq m \leq n_{j}: K_{m} \neq 0$
- for all $k, l$ such as $2 \leq k<l \leq n_{j}: \tau_{l} \neq \tau_{k}$.

Therefore the determinant of the system is different from 0 which means that the system is invertible.

- Second, let us show that all the $\left(a_{i}\right)_{i=1 \ldots q}$ are different from 0. Using Cramer formulae we can write for each $k \in\{2, \ldots, q\}$ :

$$
\begin{aligned}
& a_{k}=\left\lvert\, \begin{array}{ccccc}
1 & 0 & \cdots & 0 & \cdots \\
\frac{K_{1}}{\tau_{1}} & \frac{K_{2}}{\tau_{2}} & \cdots & \frac{K_{k-1}}{\tau_{k-1}} & \cdots \\
\frac{K_{1}}{\left(\tau_{1}\right)^{2}} & \frac{K_{2}}{\left(\tau_{2}\right)^{2}} & \cdots & \frac{K_{k-1}}{\left(\tau_{k-1}\right)^{2}} & \cdots \\
\frac{K_{1}}{\left(\tau_{1}\right)^{(q-1)}} & \frac{K_{2}}{\left(\tau_{2}\right)^{(q-1)}} & \cdots & \frac{K_{k-1}}{\left(\tau_{k-1}\right)^{(q-1)}} & \cdots
\end{array}\right. \\
& \begin{array}{ccccc}
\ldots & 1 & 0 & \ldots & 0 \\
\ldots & 0 & \frac{K_{k+1}}{\tau_{k+1}} & \ldots & \frac{K_{q}}{\tau_{q}} \\
\ldots & 0 & \frac{K_{k+1}}{\left(\tau_{k+1}\right)^{2}} & \ldots & \frac{K_{q}}{\left(\tau_{q}\right)^{2}}
\end{array} \\
& \ldots \quad 0 \quad \frac{K_{k+1}}{\left(\tau_{k+1}\right)^{(q-1)}} \cdots \cdots \frac{K_{q}}{\left(\tau_{q}\right)^{(q-1)}} \\
& \left\lvert\, \begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\frac{K_{1}}{\tau_{1}} & \frac{K_{2}}{\tau_{2}} & \cdots & \frac{K_{q}}{\tau_{q}} \\
\frac{K_{1}}{\left(\tau_{1}\right)^{2}} & \frac{K_{2}}{\left(\tau_{2}\right)^{2}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{2}} \\
\frac{K_{1}}{\left(\tau_{1}\right)^{(q-1)}} & \frac{K_{2}}{\left(\tau_{2}\right)^{(q-1)}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{(q-1)}}
\end{array} .\right.
\end{aligned}
$$

Then by expanding the numerator we get:

$$
\begin{aligned}
a_{k}= & (-1)^{k}\left(\prod_{l \neq k} \frac{K_{l}}{\tau_{l}}\right) \\
& \left\lvert\, \begin{array}{cccc}
1 & \cdots & 1 & \cdots \\
\frac{1}{\left(\tau_{1}\right)} & \cdots & \frac{1}{\left(\tau_{k-1}\right)} & \cdots \\
\frac{1}{\left(\tau_{1}\right)^{(q-2)}} & \cdots & \frac{1}{\left(\tau_{k-1}\right)^{(q-2)}} & \cdots
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccc}
. . & 1 & \cdots & 1 \\
. . & \frac{1}{\left(\tau_{k+1}\right)} & \cdots & \frac{1}{\left(\tau_{q}\right)}
\end{array} \\
& \cdots \frac{1}{\left(\tau_{k+1}\right)^{(q-2)}} \cdots \frac{1}{\left(\tau_{q}\right)^{(q-2)}} \\
& \text { x } \\
& \left|\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\frac{K_{1}}{\tau_{1}} & \frac{K_{2}}{\tau_{2}} & \cdots & \frac{K_{q}}{\tau_{q}} \\
\frac{K_{1}}{\left(\tau_{1}\right)^{2}} & \frac{K_{2}}{\left(\tau_{2}\right)^{2}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{2}} \\
\frac{K_{1}}{\left(\tau_{1}\right)^{(q-1)}} & \frac{K_{2}}{\left(\tau_{2}\right)^{(q-1)}} & \cdots & \frac{K_{q}}{\left(\tau_{q}\right)^{(q-1)}}
\end{array}\right|^{-1} \\
& =(-1)^{k} \frac{\prod_{l \neq k} \frac{K_{l}}{\tau_{l}}}{\prod_{l=2}^{q} \frac{K_{l}}{\tau_{l}}} \frac{\prod_{l=2, l \neq k}^{l=q}\left(\frac{1}{\tau_{l}}-\frac{1}{\tau_{1}}\right)}{\prod_{l=2, l \neq k}^{l=q}\left(\frac{1}{\eta}-\frac{1}{\tau_{k}}\right)} \\
& =(-1)^{k} \frac{\tau_{k} K_{1}}{\tau_{1} K_{k}} \frac{\prod_{l=2, l \neq k}^{l=q}\left(\frac{1}{\tau_{l}}-\frac{1}{\tau_{1}}\right)}{\prod_{l=2, l \neq k}^{l=q}\left(\frac{1}{\tau_{l}}-\frac{1}{\tau_{k}}\right)} . \\
& \text { Since }\left\{z_{1}, \ldots, z_{q}\right\} \text { are the essential partial states, we can } \\
& \text { conclude that for all } k \in\{2, \ldots, q\}, a_{k} \neq 0 \text {. }
\end{aligned}
$$

Proposition 2 The linear system $D$ is invertible.
Proof: One can write the linear system $D$ that way:

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
\xi \\
\dot{\xi} \\
\vdots \\
\xi^{(q-1)}
\end{array}\right)= & \cdots \\
-(-1)^{(q-1)} \frac{a_{1}}{\tau_{1}} & \cdots \\
\vdots & \\
& \ldots \\
& \ldots \\
\left.\tau_{1}\right)^{(q-1)} & \cdots \\
a_{q} & -\frac{a_{q}}{\tau_{q}} \\
\vdots \\
& \ldots(-1)^{(q-1)} \frac{a_{q}}{\left(\tau_{q}\right)^{(q-1)}}
\end{array}\right) .
$$

Its determinant is:
$\operatorname{det}=(-1)^{\frac{(q-1) q}{2}} \prod_{i=1}^{q} a_{i}\left|\begin{array}{ccc}1 & \cdots & 1 \\ \frac{1}{\tau_{1}} & \cdots & \frac{1}{\tau_{q}} \\ \vdots & & \vdots \\ \frac{1}{\left(\tau_{1}\right)^{(q-1)}} & \cdots & \frac{1}{\left(\tau_{q}\right)^{(q-1)}}\end{array}\right|$.

On the one hand, we know that $\prod_{i=1}^{q} a_{i} \neq 0$ thanks to proposition 1. On the other hand, we have to deal with another Vandermonde determinant. Since $\left\{z_{1}, \ldots, z_{q}\right\}$ is the set of essential partial states, it is different from 0 . Thus the linear system $D$ is invertible.

Proposition $3 \xi$ is a basis of the $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right] \bmod -$ ule corresponding to $\left\{u, z_{1}, \ldots, z_{q}\right\}$ (in other words $\xi^{j}$ is a basis of the $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right]$ module corresponding to $\left.\left\{u^{j}, z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}\right)$.

Proof: Since $D$ is solvable, one can calculate $z_{1}(t+$ $\left.\delta_{1}\right), \ldots z_{q}\left(t+\delta_{q}\right)$ thanks to $\xi(t), \ldots, \xi^{(q-1)}(t)$.

At last, we can use any equation from the dynamics of the essential partial states to calculate the input $u$. Thus:

$$
u(t)=\frac{\tau_{1} \dot{z}_{1}\left(t+\delta_{1}\right)+z_{1}\left(t+\delta_{1}\right)}{K_{1}}
$$

Proposition 4 The set $\left\{\xi^{1}, \ldots, \xi^{m}\right\}$ constructed as shown is a basis of the $R\left[\frac{d}{d t}, \delta\right]$ module spanned by the essential partial states and the inputs of the original system.

Proof: For $j=1, \ldots, m, \xi^{j}$ is a basis of the module corresponding to the essential partial states of the column and its input $\left\{u^{j}, z_{i_{1}}^{j}, \ldots, z_{i_{n_{j}}}^{j}\right\}$. Let us consider the set $\left\{\xi^{1}, \ldots, \xi^{m}\right\}$. This set generates all the essential partial states of the original system. Furthermore this set is free because it generates the $m$ inputs that are independent. We can conclude that it is a basis of the module spanned by the essential partial states and all the inputs of the original system.

Proposition 5 The original system has a $\delta$-free representation.

Proof: We have found a basis $\left\{\xi^{1}, \ldots, \xi^{m}\right\}$ for the $R\left[\frac{d}{d t}, \delta, \delta^{-1}\right]$ module corresponding to a representation of the original system. So this representation is $\delta$-free.

Remark: If we want to, we can calculate those among the $\left\{z_{n z_{1}}^{j}, \ldots, z_{n z_{t_{j}}}^{j}\right\}$ that are not in the set of the essential partial states $\left\{z_{i_{1}}^{j}, \ldots z_{i_{n_{j}}}^{j}\right\}$. Let us denote these non-essential partial states $z_{n e_{1}}^{j}, \ldots, z_{n e_{t n e_{j}}}^{j}$. Obviously $t_{j}=t n e_{j}+n_{j}$, which means that the number of non-zero partial states equals the number of non-essential partial states added to the number of essential partial states. For any $z_{i_{i_{e_{h}}}}^{j}$ one can find an essential partial state $z_{i_{n_{p}}}^{j}$ with $\tau_{i_{n_{p}}}^{j}=\tau_{i_{n e_{h}}}^{j}=\tau$. Thus we can build a torsion element of the module corresponding to $\left\{z_{n z_{1}}^{j}, \ldots, z_{n z_{t_{j}}}^{j}\right\}$ : let

$$
w(t)=\frac{z_{i_{n e_{h}}}^{j}\left(t+\delta_{i_{n e_{h}}}^{j}\right)}{K_{i_{n e_{h}}}^{j}}-\frac{z_{i_{n_{p}}}^{j}\left(t+\delta_{i_{n_{p}}}^{j}\right)}{K_{i_{n_{p}}}^{j}} .
$$

This element is a torsion element since :

$$
\tau \dot{w}(t)=-w(t) .
$$

Thus, up to an initial condition, to know $z_{i_{n_{p}}}^{j}$ is to know $z_{i_{n_{h}}}^{j}$. So to know $z_{i_{1}}^{j}, \ldots z_{i_{n_{j}}}^{j}$ is to know the whole set $\left\{z_{n z_{1}}^{j}, \ldots, z_{n z_{t_{j}}}^{j}\right\}$. In fact the non-essential partial states can be viewed as the non-commandable part of a nonminimal realization.

## 3 Concluding remarks

We have shown that a large class of linear delayed systems, which are commonly used as process control models, are $\delta$-free. This means that, as for flat systems [1], we have an explicit parametrization of the trajectories via a finite set of arbitrary time functions and their derivatives. In forthcoming publications, we will use this property, as in [3], for trajectory generation.

## References

[1] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Flatness and defect of nonlinear systems: introductory theory and examples. Internat. J. Control, 61(6):1327-1361, 1995.
[2] M. Fliess and H. Mounier. Quelques propriétés structurelles des systèmes linéaires à retards constants. C.R. Acad. Sci. Paris, I-319:289-294, 1994.
[3] M. Fliess, H. Mounier, P. Rouchon, and J. Rudolph. Controllability and motion planning for linear delay systems with an application to a flexible rod. In Proc. 34th Conf. Decision Control, New Orleans, p 20462051, 1995.
[4] H. Mounier. Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques. PhD thesis, Université Paris Sud, Orsay, 1995.
[5] P. Rocha, J. Willems. Controllability for delaydifferential systems. In Acts of 33 rd IEEE Conf. Decision Contr., p 2894-2897. Lake Buena Vista, 1994.
[6] G. Stephanopoulos. Chemical Process Control: an Introduction to Theory and Practice. Prentice-Hall, Englewood Cliffs, 1984.
[7] J. Willems. Paradigms and Puzzles in the Theory of Dynamical Systems IEEE Trans. Automat. Control, p 259-294, vol. 36, 1991.

