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Abstract

An e�ective reduction method based on geometric singular perturbation and center

manifold techniques is proposed. This method eliminates the fast and stable dynamics

and gives the equations describing the slow ones. It is coordinate free and extends the

well-known quasi-steady-state method classically used for kinetic scheme reduction. This

yields directly the slow dynamics even if the di�erential equations are not in standard two

time-scale form (Tikhonov form). Application to combustion kinetics including 13 species

and 67 reactions is presented and simulations are given.

1 Introduction

Let us begin with a simple reaction scheme. It involves three chemical species X1, X2 and X3

and three elementary independent reactions :

X1

k1x1
�! X2; X2

k2x2
�! X1; X1 +X2

"kx1x2
�! X2 +X3;

the xi's are compositions of the Xi's; k1, k2 and "k are the kinetic constants. The small positive

parameter " indicates here that the third reaction is slow with respect to the �rst two reactions.

From this reaction scheme, we derive an ordinary di�erential equation system. It cor-

responds to the conservation of each species in a closed homogeneous reactor. The species

balances are:
_x1 = �k1x1 + k2x2 � "kx1x2
_x2 = k1x1 � k2x2
_x3 = "kx1x2:

(1)
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where the dots above the x's indicate di�erentiation with respect to time. Since x3 follows from

the chemical invariant � = x1 + x2 + x3 ( _� = 0), we focus on the �rst two equations of (1).

The quasi-steady-state assumption applied to x2 leads to the following reduced system

_x1 = �k1x1 + k2x2 � "kx1x2
0 = k1x1 � k2x2

(2)

or

_x1 = �"
kk1
a

k2
(x1)

2 (3)

with

x2 =
k1
a

k2
x1: (4)

This system does not yield a correct approximation of the slow dynamics for " small. The

reason is the following. From (1), we have
d(x1 + x2)
a

dt
= �"kx1x2. Thus, if equation (4) was

valid, one would have

(1 + k1=k2) _x1 = �"
kk1
a

k2
(x1)

2:

This stands in contradiction with equation (3).

Here, the quasi-steady-state method cannot be directly applied. A change of coordinates is

required before. Instead of using (x1; x2), consider the coordinates

(� = x1 + x2 ; x2): (5)

The �rst two equations of (1) are transformed to:

_� = �"k(� � x2)x2
_x2 = k1(� � x2)� k2x2:

(6)

Notice that � corresponds to an approximate lumping of x1 and x2 (for more about lumping,

see, e.g. [12, 13, 14]). The application of the quasi-steady-state method to x2 leads then to the

correct approximation,

_� = �"k(� � x2)x2; 0 = k1(� � x2)� k2x2;

that reads, in the original coordinates (x1; x2), 
1 +

k1
a

k2

!
_x1 = �"

kk1
a

k2
(x1)

2 with x2 =
k1
a

k2
x1: (7)

The di�erence with (2) lies only in the coe�cient (1 + k1=k2) multiplying the derivative of

x1. The algebraic equation, giving x2 with respect to x1 remains unchanged. For this simple

system, the \good coordinates" (�; x2) are easy to �nd. In [3, 4], it is explained how to �nd

such linear change of coordinates when the reactions can be separated into fast and slow ones.

For more complex systems, such as the combustion system of section 5, this is no more the case:

there is no clear decomposition into slow and fast reactions and thus the change of coordinates

is probably nonlinear.
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In this paper, we propose a reduction method that overcomes the di�culty of �nding the

coordinate change. The obtained reduced model (equations (8) and (9) of section 2) is directly

given in the modeling variables.

A deeper analysis yields the following explanations. The quasi-steady-state method is not

coordinate free: it can be applied only to systems written with special coordinates, called

Tikhonov coordinates in the sequel (see �gure 1 and system (11)). Our extension provides

a coordinate free reduction method. This means that no change of coordinates is required.

This extension admits a clear and rigorous justi�cation within the theory of perturbations of

dynamical systems [1, 10]. More precisely, we use here the theory of singular perturbations

[18], its geometric setting due to Fenichel [9], and a special version of the center manifold

approximation lemma [5] (see, also, [7, 8], for application of center manifold techniques to

reduction of chemical kinetic schemes, in a slightly di�erent context). Another approach to

model reduction is proposed in [16]. When the system admits two time-scales, one can prove

that this method is equivalent to ours.

The content is the following. In section 2, we describe the practical aspect of our method.

The mathematical framework is the object of section 3: we recall the classical Tikhonov form of

singularly perturbed systems; we explain the geometric de�nition of slow/fast systems [9]; the

system reduction via invariant manifold techniques is derived on the basis of an approximation

lemma that can be found in [5]. Section 4 is devoted to a special class of chemical systems

where the two time-scales are due to fast and slow reactions. In section 5, the application of

our reduction method to a combustion scheme considered in [16] is presented. For this system,

the quasi-steady-state method yields a rather poor approximation.

A preliminary version of this work can be found in [6, 17].

2 The reduction method

For readers not interested in technical developments, we just present here the formulae that

are required for applying our reduction method to a dynamical system of the form

_x = v(x) with x = (x1; : : : ; xn); v = (v1; : : : ; vn);

n being the dimension of x.

Assume that this system admits two time-scales:

� a slow time-scale that can be described by ns < n variables.

� a fast and (hyperbolically) stable time-scale that can be described by nf = n�ns variables.

The integer ns will be the number of di�erential equations of the reduced slow system. The

integer nf corresponds to the number of derivatives that are set to 0 in the quasi-steady-state

method, i.e., the number of algebraic equations that must be solved.

As in the quasi-steady-state method, we decompose the state x 2 IR
n into two sets of

components, x = (xs; xf) of dimension ns for xs and nf for xf . Similarly, the system is
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decomposed into two part

_xs = vs(xs; xf); _xf = vf (xs; xf)

with v = (vs; vf). This decomposition is up to the choice of the user. We give below some

guidelines to make this choice. In particular, the eigenvalue structure of the Jacobian matrix 
@vi
a

@xj

!
provides an estimation of nf .

Then, the reduced system is as follows:

8>>>>><
>>>>>:

_xs = C(xs; h0) � vs(xs; h0)

0 = vf(xs; h0)

xf = h0 �

2
64
0
@
 
@vf
a

@xf

!2
+

@vf
a

@xs

�
@vs
a

@xf

1
A
�1

@vf
a

@xs

3
75 � vs(xs; h0)

(8)

where the matrix C(xs; h0) is given by

C =

0
@1ns + @vs

a

@xf

 
@vf
a

@xf

!
�2

@vf
a

@xs

1
A
�1

(9)

with 1ns the identity matrix of order ns. All the partial derivatives are computed at x =

(xs; h0). Some algebraic manipulations provide another equivalent expression for C that might

by preferable in practice:

C = 1ns �
@vs
a

@xf

0
@
 
@vf
a

@xf

!2
+

@vf
a

@xs

@vs
a

@xf

1
A
�1

@vf
a

@xs

:

Notice that formulae (8), applied to (1) with xs = (x1; x3) and xf = x2, leads to the correct

approximation, the correction factor (1+k1=k2) of (7) corresponding then to the matrix C�1 (up

to terms of order 1 in "). In fact, the only di�erence between (8) and the equation resulting from

the quasi-steady-state method lies only in the correction matrix C. For systems with vs = "~vs,

such as system (6) with xs = �, then the matrix C is close to 1ns up to terms of order 1 in ".

In this case, our method coincides, up to terms of order 2 in ", with the quasi-steady-state one.

In order to avoid the computation and the inversion of the jacobian matrices contained in (8)

and (9), it may be useful to approximate (8) via the following di�erential-algebraic system:

8>>><
>>>:

dxs
a

dt
= vs(xs; xf)

0 = vf(xs; h0)

0 = vf(xs + �vs(xs; xf); h0 + �vf(xs; xf ))

(10)

where � is a very small parameter and (xs; h0; xf) are the unknown
1. Such di�erential-algebraic

systems of index 1 can be easily solved numerically via Gear-like schemes and standard codes

of public domain, such as DASSL or LSODE/LSODI (see, e.g., [2]).
a

1Some elementary computation show that if � ( 6= 0) is of order 2 in " at least then the variable xf in (10)
satis�es (14) for p = 1.

4



As far as we know, formulae (8) and its approximation (10) are new and have never been

introduced elsewhere in a so simple formulation.

Remark that, for the computation of the reduced slow dynamics, it is not required to exhibit

" as a function of the model parameters. We just need to know that the system admits two

time-scales, that the dimension of the fast part is nf , and that it is asymptotically stable. This

point and the simplicity of the formulae constitute the major interest of the method proposed

here.

In practice, we have to de�ne nf (or equivalently ns = n�nf). Since our reduction method

amounts to eliminating fast and stable time scales, we may be guided by two criteria:

1. what is the fastest time scale that cannot be eliminated?

2. the time scales of the reduced model (slow time scales) must be signi�cantly slower than

those that have been eliminated.

The answer to the �rst question is given by the following considerations:

� the kinetic model may be part of a bigger model including for example transport. In

this last case, one must keep in the reduced model the time scales that are of the same

order of magnitude as those of transport phenomena (and of course the slower ones). We

denote by � this typical time constant.

� the time of evolution of the system, T , may be a priori known. In this case, one eliminates

those time scales that are signi�cantly faster than T , i.e., time-scales less than or equal

to � with 0 � �� T .

The characteristic times of the system, (�i)i=1;:::;n may be estimated with the help of the

eigenvalues of the jacobian
@v
a

@x
, (�i)i=1;:::;n:

�i �
1
a

jRe(�i)j
:

To satisfy the second criterion, one computes the eigenvalues along di�erent trajectories of the

system. Then one tries to separate the characteristic times into two groups, (�1; �2; : : : ; �nf )

and (�nf+1; : : : ; �n), such that:

�1 � �2 � : : : � �nf � � � �nf+1 � : : : � �n:

The eigenvalues relative to the �rst group have a large, negative real part: they correspond to

fast and stable phenomena. The eigenvalues of the second group correspond to the slow part

of the system and thus are close to zero.

After having determined nf , one has to parametrize the reduced model, i.e. choose a

decomposition of x into (xs; xf). In view of the algebraic equations of (8), it seems reasonable

to choose the xf variables among those that are at or near quasi-steady-state. A species is in

5



quasi-steady-state when its creation rate is (almost) equal to its destruction rate. This may be

evaluated by the ratio:
jcreation � destructionj
a

creation + destruction
:

The species for which this ratio is small (compared to 1) may be considered as being in quasi-

steady-state. This ratio can be numerically calculated along the trajectories of the system. We

choose the xf variables among those for which this ratio is small.

Other procedures for de�ning ns and (xs; xf) can be used. We just have sketched here a

simple one that gives, for the combustion system of section 5, an e�cient reduced model of

dimension 1. Let us now explain how we have obtained (8) and (9).

3 Geometric singular perturbations

3.1 Model reduction

The following question underlies this paper: what is model reduction ? A possible and reason-

able answer to this question for dynamical systems of the form, _x = v(x), x 2 IR
n, is displayed

on �gure 2. Reduction can be de�ned via an attractive invariant manifold �. A sub-manifold �

is invariant with respect to the vector �eld v, if v is tangent to �: if a trajectory starts on �, it

remains on � for all time. � is called (locally) attractive if any trajectory t! x(t) of _x = v(x)

(starting near �) tends to � as t tends to +1. In this case, the reduced system corresponds

to the restriction of the vector �eld v to �. This restriction is meaningful since � is invariant.

It seems then natural to approximate trajectories of the complete system _x = v(x) by

trajectories on �. In fact, such an approximation is proved to be valid when, roughly speaking,

the dynamics transverse to � (the dynamics that are neglected) are faster than the dynamics

on � (see [1] and [11] for more details on normally hyperbolic invariant manifolds).

Reduction means then restriction of the dynamics to an invariant attractive manifold �. In

practice the equations de�ning � are not known. Only the vector �eld, v, is explicitly available.

The main di�culty is thus to obtain the equations of � or, at least, good approximations of

them.

3.2 Tikhonov normal form of slow/fast dynamical system

We restrict here the study to a special class of dynamical systems, depending of a small pa-

rameter " and having an attractive invariant manifold �". Such systems are characterized by

dynamics transverse to �" which is much faster than the dynamics on �". This corresponds to

systems having two time-scales: an asymptotically stable and fast one and a slow one (stable

or unstable). A �rst kind of such systems are singularly perturbed systems of the form, called

Tikhonov form,
dxs
a

dt
= " vs(xs; xf ; ");

dxf
a

dt
= vf(xs; xf ; ") (11)
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where 0 < "� 1. Very often, such systems are written with the time-scale � = "t:

dxs
a

d�
= vs(xs; xf ; "); "

dxf
a

d�
= vf(xs; xf ; "):

The terminology \singular perturbations" comes from the fact that the small parameter "

multiplies the highest derivative (here dxf=d� ). More details on this classical standpoint can

be found, e.g., in [18].

In the sequel we always consider the time-scale t and approximations of trajectories for

t 2 [0; 1="] and with " > 0 but close to 0.

Assume that the fast part is hyperbolically stable, i.e., that the sub-system _xf = vf(xs; xf ; ")

with xs �xed, admits (locally) an equilibrium with characteristic exponents (eigenvalues of
@vf
a

@xf

at this equilibrium) having a strictly negative real part. Then the slow approximation is

obtained by the quasi-steady-state method [18]:

(
_xs = "vs(xs; xf ; ")

0 = vf (xs; xf ; "):

The algebraic equations, vf = 0, correspond here to an approximation up to terms of order 1

in ", of �" equations. These coordinates (xs; xf) where the quasi-steady-state method applies,

and where the vector �eld v is quasi-vertical (see �gure 1) are clearly very speci�c.

3.3 Geometric setting

Since we are interested in developing a reduction method that avoids changing coordinates, we

need a coordinate-free point of view. The geometric de�nition of singularly perturbed systems

due to Fenichel [9] is as follows.

Consider the dynamical system

_x = v(x; "); x 2 IR
n
; 0 � "� 1: (12)

This system is said to have two time-scales, a fast and asymptotically stable one and a slow

one, if, and only if, the following two assumptions are satis�ed [9]:

A1 for " = 0, (12) admits an equilibrium manifold of dimension ns, 0 < ns < n, denoted by

�0.

A2 for all x0 2 �0, the Jacobian matrix,
@v
a

@x

�����
(x0;0)

admits nf = n � ns eigenvalues with a

strictly negative real part (the eigenvalues are counted with their multiplicities).

This de�nition is illustrated in �gure 3. Assumption A1 implies that the velocity v(x; ") is

large everywhere excepted for x in a neighborhood of �0 where v is small and of order 1 in ".

7



A1 and A2 imply that, for x0 2 �0, the kernel, Ec

0(x0), of the linear operator
@v
a

@x

�����
(x0;0)

coincides with the tangent space of �0 at x0. The linear space E
s

0(x0) corresponding to the

eigenvalues with real negative part satis�es:

E
s

0(x0)� E
c

0(x0) = IR
n
:

The trajectories of the perturbed system are captured by a trapping region around �0 and

enter with a direction nearly parallel to Es

0(x0).

In [9][part of theorem 9.1], Fenichel proves the following result. It asserts, for " small enough,

the existence of a slow invariant attractive manifold �" for the perturbed system (12).

Theorem 1 (Fenichel (1979)) Consider (12) satisfying A1 and A2. Then, for every open

and bounded subset 
0 of �0, there exists an open neighborhood V0 of 
0 in IR
n, such that,

for " positive and small enough, the perturbed system (12) admits an attractive invariant sub-

manifold �" contained in V0 and close to �0.

We are interested in approximations, up to terms of order 1 in ", of slow trajectories for

t 2 [0; 1="]. Thus we need an approximation up to terms of order 2 for the slow dynamics

("2 � (1=") = "). This means that an approximation, up to terms of order 2 in ", of �"

equations is needed.

3.4 Approximation of �"

Proposition 1 Consider (12) satisfying A1 and A2. Take x0 2 �0. Then locally around

x0, there exists a partition of the state x into two groups of components, x = (xs; xf), with

dim(xs) = ns and dim(xf) = nf , such that the projection of �" on the xs-coordinates is a

local di�eomorphism around x0. The equations de�ning �" around x0 admits the following

approximation:

xf = h0(xs; ") +O(")

xf = h0(xs; ")

�

2
664
0
@
 
@vf
a

@xf

!2

+
@vf
a

@xs

�
@vs
a

@xf

1
A
�1

@vf
a

@xs

�������
(x1 ;h0(xs;");")

3
775 � vs(xs; h0(xs; "); ") +O("2)

(13)

where h0 is solution of vf (xs; h0(xs; "); ") = 0.

In some generic sense, that can be easily de�ned, almost every partition of x in (xs; xf) is
admissible for (13). But in practice, the coordinates xs must be chosen such that the projection

of �" onto the xs-space is as well conditioned as possible.
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Proof By the approximation lemma of invariant manifold, and its version for two-time scale

systems [5, theorem 5, page 32], the equation xf = hp(xs; ") is an approximation up to term of
order p + 1 in " of �" equations, if they satis�ed the following equation stating the invariance
of �":

vf(xs; hp(xs; "); ") =
@hp
a

@xs

�����
(xs;")

vs(xs; hp(xs; "); ") +O("p+1): (14)

Since vf (xs; h0(xs; "); ") = 0 and vs(xs; h0(xs; "); ") = O("), xf = h0(xs; ") is an approximation
up to terms of order 1 in ".

Set h1 = h0 + "p1 where p1 is a smooth function of xs that will be adjusted in order to
verify (14) with p = 1. We have

vf (xs; h0(xs; ") + "p1; ") = "
@vf
a

@xf

�����
(xs;h0(xs;");")

p1 +O("2)

since vf(xs; h0(xs; "); ") = 0. We also have

@(h0 + "p1)
a

@xs

�����
(xs;")

vs(xs; h0(xs; ") + "p1; ") =
@h0
a

@xs

�����
(xs;")

vs(xs; h0(xs; ") + "p1; ") +O("2)

with

vs(xs; h0(xs; ") + "p1; ") = vs(xs; h0(xs; "); ") + "
@vs
a

@xf

�����
(xs;h0(xs;");")

p1 +O("2):

Using

@h0
a

@xs
= �

 
@vf
a

@xf

!
�1

@vf
a

@xs
;

we obtain (13). The matrix  
@vf
a

@xf

!2

+
@vf
a

@xs

�

@vs
a

@xf

is invertible: this results from A1, A2 and from some elementary calculations. a

The reduced slow model (8) comes from (13) and

vs(xs; h0 + "p1; ") = vs(xs; h0; ") +
@vs
a

@xf

�����
(xs;h0 ;")

"p1 +O("2):

Notice that approximation (8) applied to a system already in Tikhonov normal form yields an
approximation of the dynamics on �", up to terms of order 3 in " (use (13) and replace vs
in (13) by "vs for systems like (11)).

4 Chemical systems with slow and fast reactions

In this section we consider the case of kinetic systems where the reactions can be split into
one group of slow reactions and one group of fast reactions. The reduction of such systems has
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been studied in [3, 4]. We show here that the reduced models deduced from their calculations

and the reduced model obtained from (8) coincide, up to terms of order 2 in ".

Consider the reaction system
_x = Av(x; ") (15)

where x is the vector of concentrations, A is the stoichiometric matrix, v(x) is the vector of
the chemical rates and " is a small number (0 < " � 1). Assume that v can be split into
v = ("~vs; ~vf), where "~vs (resp. ~vf ) is the vector of the chemical rates of the slow (resp. fast)
reactions. System (15) can be rewritten as

_x = As "~vs(x) +Af ~vf(x): (16)

Let Aff be a square sub-matrix of Af such that its rank is equal to the rank of Af . Let

Af =

 
Asf

Aff

!

and

As =

 
Ass

Afs

!
:

Then (15) reads
_xs = Ass "~vs(xs; xf) +Asf ~vf(xs; xf)
_xf = Afs "~vs(xs; xf) +Aff ~vf (xs; xf)

(17)

The change of coordinates

(xs; xf) 7! (� = xs �Asf(Aff)
�1
xf ; xf ):

leads to a quasi-vertical vector �eld. It yields the following Tikhonov form:

_� = (Ass �Asf(Aff)
�1
Afs) "~vs

_xf = Afs"~vs +Aff~vf :

Assuming that eigenvalues of Aff

@~vf
a

@xf

have strictly negative real parts, then the quasi-steady-

state method can be applied and leads to the following slow system

_� = (Ass �Asf(Aff)
�1
Afs) "~vs

0 = Afs "~vs +Aff ~vf :

Pulling back into the original coordinates (xs; xf) yields:

_xs =

2
41ns �Ass(Aff)

�1

 
@vf
a

@xf

!
�1

@vf
a

@xs

3
5 (Ass �Asf(Aff)

�1
Afs) "~vs

0 = Afs "~vs(xs; xf) +Aff ~vf(xs; xf):

This approximation di�ers from (8) only via terms of order 2 in ": at order 1 in " both
approximations coincide.
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The main feature of (8) in this case relies on the following point: one does not need to know

precisely the decomposition between slow and fast kinetics. This can be an advantage if one is
only interested in the slow dynamics. Notice that, even if the two time-scale structure is not
due to fast and slow kinetics, formulae (8) are still valid.

If, as displayed on �gure 4, we are also interested by the fast dynamics, the situation is

di�erent. In this case, we would like to describe how and where trajectories starting far from
the slow attractive manifold �" are catched by �". The quantity � = xs �Asf(Aff)

�1
xf plays

an important role here: it is a quasi-invariant during the fast transient, before arriving near �".
As displayed on �gure 4, the trajectory of (17) with initial condition (x0

s
; x

0
f
), becomes close,

after a time interval of length of order 1, to the trajectory of the slow system (8) starting at

the same time 0 with initial conditions (�x0
s
; �x0

f
) solution of

�x0
s
�Asf (Aff)

�1�x0
f
= x

0
s
�Asf (Aff)

�1
x
0
f
; vf(�x

0
s
; �x0

f
; ") = 0:

The above formulae give the initial conditions (�x0
s
; �x0

f
) of the slow sub-system from the ones of

the complete system (x0
s
; x

0
f
).

5 Case-study

In this section, we apply the above reduction method to the CO/H2/air combustion system also
considered in [16]. 13 chemical species are present: N2, CO, H2, O2, H2O, CO2, OH, H, O, HO2,

CHO, H2O2, CH2O. 67 reactions are taken into account. Their list is given in table 1. Notice
that N2 is inert. The system will be supposed closed, isobaric and adiabatic. It is modelized
by a system of di�erential equations whose dimension is 9 (the system is isobaric, adiabatic,
and four atomic invariants are present: C, H, N and O).

The determination of nf and of the partition (xs; xf) is based on a sample trajectory starting
at t = 0 from the initial conditions given in table 2. This corresponds to the beginning of the
explosive phase that lasts about T = 10�2 s.

The eigenvalues at di�erent times along this trajectory are given in table 3 (they have been
sorted in increasing order). All eigenvalues, except one at the beginning of the trajectory, are
real and negative. For the reduction purpose, one may notice that the eighth and the ninth
eigenvalues are well separated for t > � (where � � 2 10�4 � T ): the ratio of the latter to the
former (when both are negative) ranges from 2 to more than 200 for t 2 [�; T ]. This indicates

that we should be able to build a 1-dimensional reduced model. Thus nf = 8 and ns = 1.

The ratios
jcreation � destructionj
a

creation + destruction
:

at di�erent times along this trajectory are given in table 4 (they have been sorted in increasing
order). The ratio for N2 is not given since this species is neither created nor destructed. Since
the largest ratios corresponds to CO2 (or CO), we can set xs to the mass fraction of CO2 (or

CO as well).

The simulations of �gures 5, 6, 7, 8, 9, 10 compare three models
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1. the complete model of dimension 9 (solid line).

2. the 1-dimensional reduced slow model resulting from formulae (8), with ns = 1 and
xs =CO2.

3. the 1-dimensional quasi-steady-state model

_xs = vs(xs; xf) (18)

0 = vf(xs; xf) (19)

with ns = 1 and xs =CO2.

In these simulations, the starting value of xs =CO2 remains unchanged between the three
models. For xs =CO2, we take as initial value, 0:16, corresponding to the point of the sample
trajectory reached at t = � = 2 10�4 s.

For the reduced models, the initial conditions are entirely speci�ed by xs =CO2, the re-
maining variables xf result from algebraic equations. Since these equations are di�erent for
the two reduced models, the starting value for xf may be di�erent even if the initial value of
xs =CO2 is the same (see tables 5 and 6).

For �gures 5, 6, 7 (resp. �gures 8, 9, 10), the initial condition (xs; xf) of the complete model
coincides with the starting values of the reduced slow model (resp. quasi-steady-state model)
given in table 5 (resp. table 6). These choices of initial conditions for the complete model

admit the following explanation: reduction is a restriction to an attractive invariant manifold.
So the comparison between the reduced models and the complete one is meaningful only for
trajectories starting near this manifold.

When the initial condition of the complete model coincides with those of the reduced slow
one, the trajectories remain very close. This is no more true for the quasi-steady-state model.

Concluding remarks

The reduction method presented here can be applied to any dynamical system having two
time-scales (a slow one and a fast asymptotically stable one). As described in [15], this method

can be adapted for deriving slow control models where time derivatives of the control appear
in the slow equation even if they are not present in the modeling equations. Notice that the
explicit value of " is not required for computing the reduced slow system (8). This tends to
indicate that such approximation techniques can be extended to more general systems than two
time-scales ones, and, in particular, to systems admitting a normally hyperbolic and attractive

invariant manifold [11].
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a

k0 � Ea
a

O2 + H �! OH + O 2.00 1014 0.00 16791.
OH + O �! O2 + H 1.47 1013 0.00 502.

H2 + O �! OH + H 5.06 104 2.67 6282.
OH + H �! H2 + O 2.24 104 2.67 4395.
H2 + OH �! H2O + H 1.00 108 1.60 3296.
H2O + H �! H2 + OH 4.46 108 1.60 18415.
OH + OH �! H2O + O 1.50 109 1.14 96.

H2O + O �! OH + OH 1.51 1010 1.14 17101.
H + H + M �! H2 + M 1.80 1018 �1.00 0.

H2 + M �! H + H + M 6.98 1018 �1.00 104137.
H + OH + M �! H2O + M 2.20 1022 �2.00 0.

H2O + M �! H + OH + M 3.80 1023 �2.00 119280.

O + O + M �! O2 + M 2.90 1017 �1.00 0.
O2 + M �! O + O + M 6.78 1018 �1.00 118563.

H + O2 + M �! HO2 + M 2.30 1018 �0.80 0.
HO2 + M �! H + O2 + M 2.66 1018 �0.80 49250.
HO2 + H �! OH + OH 1.50 1014 0.00 1003.
OH + OH �! HO2 + H 1.63 1013 0.00 37738.

HO2 + H �! H2 + O2 2.50 1013 0.00 693.
H2 + O2 �! HO2 + H 8.39 1013 0.00 55603.
HO2 + H �! H2O + O 3.00 1013 0.00 1720.
H2O + O �! HO2 + H 3.29 1013 0.00 55460.
HO2 + O �! OH + O2 1.80 1013 0.00 �406.

OH + O2 �! HO2 + O 2.67 1013 0.00 52618.
HO2 + OH �! H2O + O2 6.00 1013 0.00 0.
H2O + O2 �! HO2 + OH 8.97 1014 0.00 70030.

HO2 + HO2 �! H2O2 + O2 2.50 1011 0.00 �1242.
OH + OH + M �! H2O2 + M 3.25 1022 �2.00 0.

H2O2 + M �! OH + OH + M 2.11 1024 �2.00 49393.
H2O2 + H �! H2 + HO2 1.70 1012 0.00 3750.
H2 + HO2 �! H2O2 + H 9.35 1011 0.00 21783.
H2O2 + H �! H2O + OH 1.00 1013 0.00 3583.
H2O + OH �! H2O2 + H 2.66 1012 0.00 73469.

H2O2 + O �! OH + HO2 2.80 1013 0.00 6401.
OH + HO2 �! H2O2 + O 6.80 1012 0.00 22547.
H2O2 + OH �! H2O + HO2 5.40 1012 0.00 1003.
H2O + HO2 �! H2O2 + OH 1.32 1013 0.00 34155.
a

Table 1: reaction list (mass action law and kinetics constant given by k = k0T
� exp(�Ea=RT )).
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a

k0 � Ea
a

CO + OH �! CO2 + H 4.40 106 1.50 �740.
CO2 + H �! CO + OH 6.12 108 1.50 22475.

CO + HO2 �! CO2 + OH 1.50 1014 0.00 23574.
CO2 + OH �! CO + HO2 2.27 1015 0.00 83524.

CO + O + M �! CO2 + M 7.10 1013 0.00 �4538.

CO2 + M �! CO + O + M 1.69 1016 0.00 120952.
CO + O2 �! CO2 + O 2.50 1012 0.00 47769.
CO2 + O �! CO + O2 2.55 1013 0.00 54696.
HCO + M �! CO + H + M 7.10 1014 0.00 16791.

CO + H + M �! HCO + M 1.07 1015 0.00 2054.

HCO + H �! CO + H2 2.00 1014 0.00 0.
CO + H2 �! HCO + H 1.17 1015 0.00 89424.
HCO + O �! CO + OH 3.00 1013 0.00 0.
CO + OH �! HCO + O 7.72 1013 0.00 87537.
HCO + O �! CO2 + H 3.00 1013 0.00 0.

CO2 + H �! HCO + O 1.07 1016 0.00 110753.
HCO + OH �! CO + H2O 1.00 1014 0.00 0.
CO + H2O �! HCO + OH 2.60 1015 0.00 104543.
HCO + O2 �! CO + HO2 3.00 1012 0.00 0.
CO + HO2 �! HCO + O2 5.21 1012 0.00 34513.
CH2O + M �! HCO + H + M 1.40 1017 0.00 76431.

HCO + H + M �! CH2O + M 2.62 1015 0.00 �13566.
CH2O + H �! HCO + H2 2.50 1013 0.00 3989.
HCO + H2 �! CH2O + H 1.82 1012 0.00 18152.
CH2O + O �! HCO + OH 3.50 1013 0.00 3487.
HCO + OH �! CH2O + O 1.12 1012 0.00 15764.

CH2O + OH �! HCO + H2O 3.00 1013 0.00 1194.
HCO + H2O �! CH2O + OH 9.71 1012 0.00 30477.
CH2O + HO2 �! HCO + H2O2 1.00 1012 0.00 8001.
HCO + H2O2 �! CH2O + HO2 1.32 1011 0.00 4132.
a

Table 1: reaction list (mass action law and kinetics constant given by k = k0T
� exp(�Ea=RT ))

(continued).
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a

a a CO a 0.21 a a CO2 a 0.11 a a CH2O a 1.4 10
�7

a a N2 a 0.55 a a
a a H2 a 4.9 10

�4
a a OH a 3.7 10

�5
a a H a 6.0 10

�6
a a temp a 1076K a a

a a O2 a 0.12 a a HO2 a 5.9 10
�5

a a O a 1.4 10
�4

a a a a a
a a H2O a 4.5 10

�3
a a H2O2 a 7.5 10

�6
a a HCO a 2.3 10

�7
a a a a a
a

Table 2: initial conditions of the complete system for the sample trajectory (mass fractions,
temperature).

a a a t = 0 s a t = 10�4 s a t = 210�4 s a a t = 310�4 s a t = 510�4 s a t = 10�3 s a t = 10�2 s a
a 1 a a �7:0 10

6
a �9:6 10

6
a �1:9 107 a a �4:4 107 a �6:1 107 a �7:3 10

7
a �9:8 10

7
a

a 2 a a �9:1 10
5

a �1:2 10
6

a �4:1 106 a a �1:2 107 a �8:4 106 a �1:9 10
7

a �5:4 10
7

a
a 3 a a �4:2 10

5
a �1:2 10

6
a �1:7 106 a a �3:0 106 a �8:0 106 a �4:6 10

6
a �2:4 10

6
a

a 4 a a �1:2 10
5

a �1:5 10
5

a �6:8 105 a a �2:1 106 a �3:0 106 a �2:6 10
6

a �2:3 10
6

a
a 5 a a �3:9 10

4
a �1:4 10

5
a �2:6 105 a a �1:6 106 a �1:9 106 a �1:2 10

6
a �8:8 10

5
a

a 6 a a �1:2 10
4

a �4:7 10
4

a �1:6 105 a a �5:5 105 a �1:0 106 a �1:1 10
6

a �5:4 10
5

a
a 7 a a �8:8 10

3
a �1:8 10

4
a �5:4 104 a a �2:2 105 a �4:3 105 a �4:3 10

5
a �2:6 10

5
a

a 8 a a �1:2 10
3

a �6:3 10
3

a �2:7 104 a a �2:6 104 a �6:0 104 a �7:4 10
4

a �6:8 10
4

a
a 9 a a 1:3 104 a 1:5 104 a 1:1 104 a a �5:6 103 a �4:7 103 a �1:6 10

3
a �2:5 10

2
a

Table 3: eigenvalues of the CO/H2/air system at di�erent times along the sample trajectory.

a a a t = 0 s a t = 10�4 s a t = 210�4 s a a t = 310�4 s a t = 510�4 s a t = 10�3 s a t = 10�2 s a
a a a
a HCO a a 0.00 a 0.00 a 0.00 a a 0.00 a 0.00 a 0.00 a 0.00 a
a HO2 a a 0.00 a 0.00 a 0.00 a a 0.00 a 0.00 a 0.00 a 0.00 a
a OH a a 0.00 a 0.00 a 0.00 a a 0.00 a 0.00 a 0.00 a 0.00 a
a H2O2 a a 0.51 a 0.00 a 0.00 a a 0.01 a 0.78 a 0.00 a 0.00 a
a CH2O a a 0.08 a 0.00 a 0.00 a a 0.00 a 0.01 a 0.00 a 0.00 a
a H a a 0.01 a 0.02 a 0.01 a a 0.00 a 0.00 a 0.00 a 0.00 a
a H2O a a 0.93 a 0.82 a 0.01 a a 0.05 a 0.00 a 0.00 a 0.00 a
a O a a 0.08 a 0.09 a 0.05 a a 0.01 a 0.00 a 0.00 a 0.00 a
a H2 a a 0.74 a 0.70 a 0.16 a a 0.00 a 0.00 a 0.00 a 0.00 a
a O2 a a 0.58 a 0.45 a 0.18 a a 0.04 a 0.00 a 0.00 a 0.00 a
a CO a a 0.91 a 0.91 a 0.87 a a 0.44 a 0.03 a 0.01 a 0.00 a
a CO2 a a 0.99 a 0.99 a 0.93 a a 0.46 a 0.03 a 0.01 a 0.00 a
a a a

Table 4: creation/destruction ratios of the CO/H2/air system at di�erent times along the
sample trajectory.
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a

a a CO a 0.18 a a CO2 a 0.16 a a CH2O a 2.6 10
�8

a a N2 a 0.55 a a
a a H2 a 1.6 10

�5
a a OH a 2.7 10

�4
a a H a 3.3 10

�5
a a temp a 1297K a a

a a O2 a 0.10 a a HO2 a 2.4 10
�5

a a O a 1.9 10
�5

a a a a a
a a H2O a 8.4 10

�3
a a H2O2 a 1.6 10

�6
a a HCO a 3.7 10

�7
a a a a a
a

Table 5: initial conditions for the reduced slow model (mass fractions, temperature).

a

a a CO a 0.18 a a CO2 a 0.16 a a CH2O a 1.2 10
�7

a a N2 a 0.55 a a
a a H2 a 4.2 10

�5
a a OH a 4.5 10

�4
a a H a 1.0 10

�4
a a temp a 1297K a a

a a O2 a 0.10 a a HO2 a 3.0 10
�5

a a O a 3.8 10
�3

a a a a a
a a H2O a 7.5 10

�3
a a H2O2 a 3.3 10

�6
a a HCO a 9.2 10

�7
a a a a a
a

Table 6: initial conditions for the quasi-steady-state model (mass fractions, temperature).
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Figure 1: the velocity �eld is quasi-vertical for systems in Tikhonov normal form (11).

Figure 2: an attractive invariant manifold � for _x = v(x).
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Figure 3: the geometric de�nition of singularly perturbed systems due to Fenichel [9].

Figure 4: for system (17), fast transients are along xs �Asf(Aff)
�1
xs =constant.
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Figure 5: mass fraction of CO2 calculated by the complete model and the 1-dimensional reduced
models (the initial condition of the complete model is the same as that of the reduced model).
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Figure 6: mass fraction of H2O calculated by the complete model and the 1-dimensional reduced
models (the initial condition of the complete model is the same as that of the reduced model).

24



complete
reduced 
QSS     

0 0.2 0.4 0.6 0.8 1

x 10
-3

0

0.002

0.004

0.006

0.008

0.01

0.012

time (s)

m
as

s 
fr

ac
tio

n

O

Figure 7: mass fraction of O calculated by the complete model and the 1-dimensional reduced
models (the initial condition of the complete model is the same as that of the reduced model).
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Figure 8: mass fraction of CO2 calculated by the complete model and the 1-dimensional reduced
models (the initial condition of the complete model is the same as that of the quasi-steady-state
model).
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Figure 9: mass fraction of H2O calculated by the complete model and the 1-dimensional reduced
models (the initial condition of the complete model is the same as that of the quasi-steady-state
model).
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Figure 10: mass fraction of O calculated by the complete model and the 1-dimensional reduced
models (the initial condition of the complete model is the same as that of the quasi-steady-state
model).
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