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Abstract

Forces oscillations introduced in the input flow rate of non flat contin-
uous stirred-tank reactors (CSTR with 3 independent species) are shown
to result in an averaged flat system with linearizing output independent
of the special form of the kinetics laws.

1 Introduction

In [4, 3] the stabilization of a chemical reactor around an unstable operating
point is investigated: open-loop oscillations of the input flow rate yields a stable
averaged behavior. In [5, 6], experimental results demonstrate the practical
interest of such control techniques.

For mechanical system, these stabilization techniques are well known since
the work of Kapitsa [10]: the unstable position of an inverted pendulum is
stabilized via fast oscillations of its suspension point (see also [2] for closely
computations). In [7], we have shown how such oscillatory control can be fully
exploited for the Kapitsa pendulum: this non flat system is approximated by an
averaged flat one for which standard motion planning and exponential tracking
techniques can be used.

In this paper, we propose similar results for a class of non flat chemical
reactors involving three independents species and one control (the input flow
rate). This class is more complex that the one considered in [5, 6] (two species
and one control). We show here that the averaged flat output admits a clear
physical interpretation and is independent of the precise form of the kinetics an
thermodynamics laws.
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2 Reactor model

The mass and energy balances of a continuous stirred tank reactor, with constant
volume and pressure, involving three independent species (components A and
B, h the enthalpy), admit the following structure:

d

dt




cA

cB

h


 = D




cAin
− cA

cBin − cB

hin − h


 +




r1(h, cA, cB)
r2(h, cA, cB)
r3(h, cA, cB)


 (1)

where D, the control, is the dilution rate, cAin , cBin and hin are the feed com-
positions and enthalpy (perturbations), the ri’s are smooth functions of their
arguments depending on the kinetics and thermodynamics models. The state
(cA, cB , h) corresponds to the concentration of A, B and to the volume en-
thalpy in the reactor. When enthalpies depend linearly on the temperature T ,
we recover the standard equations.

It is clear that, in general, this model is not differentially flat: it admits
one control; thus flatness is equivalent to static feedback linearization and the
necessary and sufficient conditions [9] give to a negative answer, in general.

3 Pulse control of D

Consider, as in [5, 6], a pulse control for D

D = D0 +
D1

ε
σ(t/ε) (2)

where ε is a small positive parameter, D0 and D1 are new controls and σ is
a 1-periodic function, not necessary smooth but bounded and integrable with∫ 1

0
σ(s)ds = 0. Thus σ can be seen as the derivative of a periodic function, Σ:

σ = Σ′; Σ can be always chosen such that
∫ 1

0
Σ(s)ds = 0.

Set

ξ =




cAin − cA

cBin − cB

hin − h


 , ξin =




cAin

cBin

hin


 .

With (2), the reactor equations (1) become

ξ̇ = ξ̇in −
(

D0 +
D1

ε
σ(t/ε)

)
ξ −R(ξ)

where R = (r1, r2, r3)′.
In these coordinates, the system is not in standard form for averaging [8, 14,

1] (terms involving 1/ε). A change of variables, depending on t/ε, is required.



As shown in [4, 3], this corresponds to straighten the vector fields ξ 7→ −ξ. The
goal is to cancel the terms depending on 1/ε. We have

ξ̇ +
d

dt
(D1Σ(t/ε)) ξ = ξ̇in −D0ξ + Ḋ1Σ(t/ε) ξ −R(ξ).

Set ξ = exp(−D1Σ(t/ε)) ζ. Then

ξ̇ = − d

dt
(D1Σ(t/ε)) ξ + exp(−D1Σ(t/ε)) ζ̇.

Thus the ζ-coordinates remove the terms in 1/ε:

ζ̇ = exp(D1Σ(t/ε)) ξ̇in − (D0 − Ḋ1Σ(t/ε)) ζ
− exp(D1Σ(t/ε)) R(exp(−D1Σ(t/ε))ζ).

Now the system is in standard form: the averaged system is then

˙̄ζ = exp(D1Σ(t/ε)) ξ̇in − (D0 − Ḋ1Σ) ζ̄

−exp(D1Σ(t/ε)) R(exp(−D1Σ(t/ε))ζ)

where H(t/ε, ζ) =
∫ 1

0
H(s, ζ)ds for any function H. But Σ = 0. Pulling back

into the original coordinates ξ̄ = exp(−D1Σ) ζ̄, we obtain finally the following
averaged system

˙̄ξ = E(D1) ξ̇in −D0 ξ̄ − F (D1, ξ̄)

with
E(D1) =(∫ 1

0
exp(−D1Σ(s)) ds

)(∫ 1

0
exp(D1Σ(s)) ds

)

and

F (D1, ξ̄) =
∫ 1

0

(
exp(D1Σ(s)) R

(
exp(−D1Σ(s)) ξ̄

exp(−D1Σ)

))
ds.

4 The averaged system is flat

The above computations prove that the averaged concentrations c̄A, c̄B and
enthalpy h̄ obey (at a first order in ε) the following dynamics with two controls
D0 and D1:

d

dt




c̄A

c̄B

h̄


 = D0




cAin − c̄A

cBin − c̄B

hin − h̄




+(1− E(D1))
d

dt




cAin

cBin

hin




+




ρ1(D1, h̄, c̄A, c̄B)
ρ2(D1, h̄, c̄A, c̄B)
ρ3(D1, h̄, c̄A, c̄B)




(3)



where

ρi(D1, h̄, c̄A, c̄B) =∫ 1

0

(exp(D1Σ(s)) . . . ...

ri

(
exp(−D1Σ(s)) h̄,

exp(−D1Σ)
, exp(−D1Σ(s)) c̄A,

exp(−D1Σ)
, exp(−D1Σ(s)) c̄B ,

exp(−D1Σ)
,
))

ds

with exp(−D1Σ) =
∫ 1

0
exp(−D1Σ(s)) ds.

Proposition For generic functions ri and Σ, the averaged system (3), is flat
with

y1 =
cAin − c̄A

hin − h̄
and y2 =

cBin − c̄B

hin − h̄

as flat output.
A simple computation shows that ẏ1 and ẏ2 do not depend on D0. Thus,

generically, the averaged state and the control D1 are functions of y = (y1, y2)
and ẏ. An additional derivation yields D0 has a function of (y, ẏ, ÿ).

It is interesting to notice that, as in [13] ,the flat output is independent of
the special form of the kinetics and thermodynamics laws.

5 Conclusion

In future publications, simulations will be performed. They will correspond to
the reaction scheme of [11, 12] taking place in an adiabatic vessel. This will
show that the use of such control technic can eliminate the cooling system and
consequently could yield to substantial savings in energy.
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