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Abstract

A very simple classi�cation of PfaÆan systems of dimension 2 in 5 variables is

given. It is used to show that any controllable driftless system with 3 inputs and 5

states is 0-at and can be put into multi-input chained form by dynamic feedback

and coordinate change.
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1 Introduction

In this paper, driftless systems with 3 inputs and 5 states

_x = u
1
f1(x) + u

2
f2(x) + u

3
f3(x); x 2 X � R

5
;

are investigated. Driftless systems often appear in engineering as kinematics of mechanical

systems subjected to nonholonomic constraints, and for that reason have recently received

considerable attention in control theory (see e.g. [14, 10] and the bibliography therein). We

show here that driftless systems with 3 inputs and 5 states are particularly simple: they

are at [6, 11, 7], and even 0-at, as soon as they are controllable, which means that their

di�erential behavior is summarized in a map depending only on the state x. Moreover,

around a regular point, they can be converted by dynamic feedback and coordinate change

into the "multi-input chained form" [14, 19]

_x1 = u
1
; _x2 = x

3
u
1
; _x3 = u

2
; _x4 = x

5
u
1
; _x5 = x

6
u
1
; _x6 = u

3
:
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The proof uses the language of di�erential forms and PfaÆan systems, which is increas-

ingly popular in control theory (see e.g. [8, 17, 15, 13, 12, 18]). More precisely we show,

and then interpret in control terms, that any totally nonholonomic PfaÆan system of di-

mension 2 in 5 variables is absolutely equivalent [4] to a very simple one. It is interesting

to compare this simple result with the much �ner (and complicated) classi�cation up to a

coordinate change obtained by Cartan in his famous 1910 paper [3].

The paper is organized as follows: section 2 shortly discusses atness and its links with

driftless, PfaÆan and chained systems. The heart of the paper is section 3, where PfaÆan

systems of dimension 2 in 5 variables are shown to have a very simple structure. The result

is then rephrased for driftless systems in section 4.

2 Flatness and driftless, chained and PfaÆan systems

Let � be a (smooth) control system, _x = f(x; u), de�ned on an open subset X � U of

R
n � R

m . The prolongation of a (smooth) map, y := h(x; u; _u; �u; : : : ; u(k)), depending on x

and �nitely many derivatives of u is the map

_y := @xh(x; u; _u; �u; : : : ; u(k)):f(x; u) +

kX

i=0

@u(i)h(x; u; _u; �u; : : : ; u(k)):u(i+1):

As we will deal only with a �nite number of maps and prolongations, we consider them as

maps of X � U � U1 � : : :� Ur for some \large" integer r, where the Ui's are open subsets

of Rm . We use the short-hand notations u := (u; _u; �u; : : : ; u(r)), U := U � U1 � : : : � Ur,

etc. We can now de�ne the concept of atness [6, 11, 7]:

De�nition 1. We say � is at at (x0; u0) if there exist (smooth) maps y := h(x; u) de�ned

around (x0; u0) and '; � de�ned around y0 := h(x0; u0) such that x = '(y) and u = �(y)

hold around (x0; u0). We say � is at if it is at at every point of a dense open subset

of X � U .

In other words every choice of a map y(t) leads to an allowable trajectory (x(t); u(t))

only via di�erentiation. No integration is needed.

The map y := h(x; u) in the de�nition is called a at (or linearizing) output. We say

the system is k-at if it has a at output depending on derivatives of u of order at most

k � 1. Hence a 0-at system has a at output depending only on the state x.

Flatness is an important structural property: for instance, the knowledge of a at output

gives a simple answer to the motion planning problem [16] and allows to transform the

system into a linear one by (dynamic) feedback [11]. Moreover, many engineering systems

(or at least \idealized" systems) happen to be at.

Checking that a system is at is a challenging and widely open problem. Checking k-

atness for a given k amounts to studying the integrability of a system of partial di�erentials

equations, which is in theory doable though extremely tedious. Yet, the main conceptual

problem is that it is not known whether k may be a priori bounded.

Things look a little simpler for driftless systems _x =
P

m

i=1 u
i
fi(x); which frequently

arise in nonholonomic mechanics. The problem is solved for 2-input systems [12], and
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in that case atness is equivalent to 0-atness. No similar result is known for general 2-

input systems (and in particular atness does not imply 0-atness). A reason for the lesser

complexity is that time plays no role in a driftless system: solutions are invariant by a time

reparametrization. A driftless system is nothing but a (time-independent) PfaÆan system;

the machinery of exterior di�erential systems directly applies, whereas in the general case

time must be carefully handled [8, 17].

Of course, a at driftless system is never at at an equilibrium point (x0; 0), which is

often a point of interest, and thus cannot be feedback linearized around that point (the

linear tangent approximation is not controllable [5]). Hence, a further question is to �nd

a simple local model in which the system could be converted by feedback and coordinate

change, provided the point of interest is \regular" in some sense to be de�ned. For the

2-input case, a natural candidate is the so-called \chained form" [14]

_x1 = u
1
; _x2 = x

3
u1 : : : ; _xn�1 = x

n

u
1
; _xn = u

2
:

Combining results of [12, 13], a at 2-input driftless system can be converted around a

\regular" point into chained form by static feedback and coordinate change. Generalizing

to driftless systems with more than 2 inputs raises new problems, and conversion into an

adequate simple local model may require not only static, but also dynamic feedback [19],

which is not completely surprising.

We �nally recall some facts about PfaÆan systems (see [2, chapter 2] for a modern

introduction). Let X be an open subset of Rn and C
1(X) the ring of smooth functions

on X. A PfaÆan system on X is a C
1(X)-module1 of smooth di�erential 1-forms on X.

Some important properties of a PfaÆan system I can be characterized by its derived ag,

i.e. the descending chain of PfaÆan systems I0 := I � I
1 � : : : de�ned by

I
k+1 := f� 2 I

k

; d� � 0 mod Ikg:

We say I is totally nonholonomic if Ik = 0 for k large enough. We then de�ne a point-wise

notion of regularity by considering the real vector spaces2 ~I0
x
:= (I0)x and

~Ik+1
x

:= f�(x); � 2 I
k

; d�(x) � 0 mod (Ik)xg:

Clearly (Ik)x � ~Ik
x
. We say x0 2 X is a weakly regular point if ~Ik

x
has constant dimension

in a neighborhood of x0 for k � 0, in which case dim(Ik)x = dim ~Ik
x
= dim I

k in that

neighborhood. Weakly regular points form a dense open subset of X.

To a driftless control system D : _x =
P

m

i=1 u
i
fi(x), with f1; : : : ; fm independent vector

�elds on X, is naturally associated a PfaÆan system I := ff1; : : : ; fmg
? of dimension n�m.

I represents the kinematic constraints obtained by eliminating the controls in D. Notice D

is controllable if and only if I is totally nonholonomic. We say x0 is a weakly regular point

of D if it is a weakly regular point of I.

Notice that weak regularity is equivalent for PfaÆan systems of dimension 2 to the

stronger property considered in [13], but may in general hide subtler singularities [9].

1To discard irrelevant non-local problems, we always assume that a C1(X)-module has the same di-

mension as its restrictions to any open subset of X.
2We denote Sx := f�(x); � 2 Sg the real vector space induced at a point x 2 X by a C1(X)-module S.
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3 PfaÆan systems of dimension 2 in 5 variables

We now turn to the study of driftless systems with 3 inputs and 5 states, or equivalently

PfaÆan systems of dimension 2 in 5 variables. If I is such a PfaÆan system, the rank

structure of its derived ag splits into four cases:

1. dim I
1 = 2

2. dim I
1 = 1; dim I

2 = 1

3. dim I
1 = 1; dim I

2 = 0

4. dim I
1 = 0.

The �rst three cases are not very diÆcult, and we refer the reader to the beginning of

Cartan's paper [3] (see also [9] for a more careful treatment regarding regularity problems).

The �rst two cases correspond to non controllable, hence non-at control systems [7]. In

suitable local coordinates, we have respectively I = fdx1; dx2g and I = fdx1; dx2�x
3
dx

4g.

The third case is more interesting:

Theorem 1. Let I be a PfaÆan system of dimension 2 and x0 be a weakly regular point.

Assume dim I
1 = 1 and dim I

2 = 0. Then I = fdx1 � x
2
dx

4
; dx

2 � x
3
dx

4g in suitable

coordinates de�ned around x0.

The idea of the proof is to show that the system depends in fact on only 4 variables and

to apply Engel's theorem [2, chapter 2].

The fourth case (which is the generic situation) is the heart of Cartan's paper, and its

�ne study up to a coordinate change is quite intricate. We will show that it can nonetheless

be reduced to a unique normal form when considering a larger class of transformations.

Before stating the result, we prove a useful lemma:

Lemma 1. Let I be a totally nonholonomic PfaÆan system of dimension 2 in 5 variables

and x0 be a weakly regular point. Then I contains a form ! such that, around x0,

(i) d! ^ d! ^ ! = 0 and (ii) d! ^ ! 6= 0:

A form ! satisfying (i) and (ii) is said to have rank 1 at x0, and a classical result asserts

that, in suitable coordinates de�ned around x0, ! is colinear to dx
1 + x

2
dx

3 [2, chapter 2].

Proof. If dim I
1 = 1 and dim I

2 = 0, the assertion stems from theorem 1. We thus assume

dim I
1 = 0; now (ii) is satis�ed for any form in I, otherwise dim ~I1

x0
> 0. Let !1

; !
2 span I

around x0; we want to �nd a function � de�ned around x0 such that ! := !
1+�!

2 satis�es

(i). Notice that (d!)2 ^ ! is colinear to dx
1 ^ dx

2 ^ dx
3 ^ dx

4 ^ dx
5 (it is a form a degree 5

in a space of dimension 5) and that

(d!)2 ^ ! = (d!1)2 ^ !
1 + �(2d!1 ^ d!

2 ^ !
1 + (d!1)2 ^ !

2)

+ �
2(2d!1 ^ d!

2 ^ !
2 + (d!2)2 ^ !

1) + �
3(d!2)2 ^ !

2

+ 2d� ^ (d!1 ^ !
2 ^ !

1 + �d!
2 ^ !

2 ^ !
1):
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Hence (d!)2 ^ ! = 0 reduces to the �rst-order quasilinear partial di�erential equation

d�(x):(f(x) + �(x)g(x)) = a(x; �(x)); (1)

where the two vectors �elds f; g and the function a are known expressions. Moreover since

dim ~I1
x
= 0 around x0, d!

1 ^ !
2 ^ !

1 and d!
2 ^ !

2 ^ !
1, thus f and g, are independent

at x0. Hence f(x0) + �(x0)g(x0) 6= 0 whatever �(x0), and it is well-known [1, chapter 2]

that equation (1) then admits solutions � de�ned around x0.

Theorem 2. Let I be a totally nonholonomic PfaÆan system of dimension 2 in 5 variables

and x0 be a weakly regular point. Then, in suitable coordinates de�ned around x0, I takes

one of the two following normal forms:

� I = fdx1 � x
2
dx

4
; dx

2 � x
3
dx

4g if dim I
1 = 1 and dim I

2 = 0

� I = fdx1 � a(x)dx3 � x
5
dx

4
; dx

2 � x
3
dx

4g if dim I
1 = 0,

where a is some function. Moreover I can be prolonged around x0 into

J := fdz
1
� z

5
dz

4
; dz

2
� z

3
dz

4
; dz

3
� z

6
dz

4
g:

Using Cartan's terminology [4], this result asserts that any totally nonholonomic sys-

tems of dimension 2 in 5 variables is absolutely equivalent to a \contact" system whose

general solution depends on two arbitrary functions of one argument.

Proof. We �rst prove the second claim. If I is in the �rst normal form, prolong it into

J := I + fdx5 � x
6
dx

4g and perform the coordinate change z := (x5; x1; x2; x4; x6; x3). If

I is in the second normal form, prolong it into J := I + fdx3 � x
6
dx

4g and perform the

coordinate change z := (x1; x2; x3; x4; x5 + x
6
a(x); x6), which is well-de�ned as soon as x6

is small enough. In the new coordinates, J is obviously in the requested form.

We now turn to the �rst claim. By lemma 1, I contains a form of rank 1 around x0 and,

up to a coordinate change, is spanned by the forms

!
1 := �dx

1 + �dx
3 + dx

4 + Ædx
5 and !

2 := dx
2
� x

3
dx

4
;

for some functions �; �; ; Æ. Since dim ~I0
x0
= 2, one of these four functions must be di�erent

from 0 at x0.

If �(x0) = Æ(x0) = 0, we may assume �(x0) 6= 0 and without loss of generality �(x) = �1

around x0 (if �(x0) = 0 but (x0) 6= 0, we exchange the roles of � and  with the coordinate

change z := (x1; x2 � x
3
x
4
;�x4; x3; x5)). Hence

d!
2 = dx

4
^ dx

3 = dx
4
^ (�dx1 + dx

4 + Ædx
5
� !

1) � �dx
4
^ dx

1 + Ædx
4
^ dx

5 mod I;

which implies dim ~I1
x0
� 1. But dim ~I1

x
must have non-zero constant dimension around x0,

thus � and Æ equal 0 in a neighborhood of x0. We conclude that, around x0, dim ~I1
x
has

constant rank 1 and dim ~I2
x
constant rank 0, and we may use theorem 1.

Otherwise �(x0) 6= 0 (up to a renumbering of x), and the system is spanned by

!
1 := dx

1
� �dx

3
� dx

4
� Ædx

5 and !
2 := dx

2
� x

3
dx

4
:
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Perform now the coordinate change z1 := g(x), zi := x
i, i = 2; : : : ; 5, where g is a function

such that g1(x0) 6= 0 and is yet to be determined3. It follows

dz
1 = g1(!

1 + �dx
3 + dx

4 + Ædx
5) + g2(!

2 + x
3
dx

4) + g3dx
3 + g4dx

4 + g5dx
5

= (�g1 + g3)dx
3 + (g1 + x

3
g2 + g4)dx

4 + (Æg1 + g5)dx
5 + g1!

1 + g2!
2
:

If g is a solution of the �rst-order linear partial di�erential equation Æg1+ g5 = 0 such that

g1(x0) 6= 0 (such a solution always exists [1, chapter 2]), I is clearly spanned by

�
1 := dz

1
� a(z)dz3 � b(z)dz4 and �

2 := dz
2
� z

3
dz

4
;

where a; b follow from the expression of dz1. Computing the exterior derivative, we get

d�
1
� cdz

3
^ dz

4 + a5dz
3
^ dz

5 + b5dz
4
^ dz

5 mod I; d�
2 = �dz

3
^ dz

4
;

where c is some function involving a; b and their partial derivatives.

If a5(z0) = b5(z0) = 0, then dim ~I1
x0

= 1. But dim ~I1
x
must have constant dimension 1

around z0, thus a5 and b5 equal 0 in a neighborhood of z0, i.e. the system does not depend

on z5. Once again we conclude by theorem 1.

Otherwise we may assume b5(z0) 6= 0 and without loss of generality b(z) = z
5 around z0

(if b5(z0) = 0 but a5(z0) 6= 0, we can exchange the roles of a and b by the coordinate change

x := (z1; z2 � z
3
z
4
;�z4; z3; z5)). This shows I is spanned by dz

1 � a(z)dz3 � z
5
dz

4 and

dz
2 � z

3
dz

4.

4 Application to driftless systems

We now interpret theorem 2 in terms of driftless systems:

Corollary 1. Let D : _x = u
1
f1(x) + u

2
f2(x) + u

3
f3(x) be a driftless system with 3 inputs

and 5 states. The following three statements are equivalent:

(i) D is 0-at; (ii) D is at; (iii) D is controllable:

If D satis�es these conditions then, around any weakly regular point, it can be put by

dynamic feedback and coordinate change into the multi-input chained form

_z1 = v
1
; _z2 = z

3
v
1
; _z3 = v

2
; _z4 = z

5
v
1
; _z5 = z

6
v
1
; _z6 = v

3
:

Proof. Clearly (i))(ii))(iii), and we only have to prove (iii))(i). SupposeD is controllable

and x0 is a weakly regular point. By the previous theorem, the PfaÆan system I :=

ff1; f2; f2g
? can be assumed in normal form around x0.

If dim I
1 = 0 then, up to invertible static feedback and coordinate change, D reads

_x1 = a(x)u1 + x
5
u
2
; _x2 = x

3
u
2
; _x3 = u

1
; _x4 = u

2
; _x5 = u

3
:

3If h is some function of x, we denote by hi the partial derivative
@h

@xi
, i = 1; : : : ; 5.
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We claim y := (x1; x2; x4) is a at output. Indeed, simple computations give

x
1 = y

1
; x

2 = y
2
; x

3 =
_y2

_y3
; x

4 = y
3
; u

1 =
�y2 _y3 � �y3 _y2

( _y3)2
; u

2 = _y3

and x
5 is obtained by solving the equation

_y1 = a(y1; y2;
_y2

_y3
; y

2
; x

5)
�y2 _y3 � �y3 _y2

( _y3)2
+ x

5 _y3;

the expression for u
3 follows by di�erentiation. The system is thus at at every point

(x0; u0) such that x0 is weakly regular, u20 6= 0 and a5(x0)u
1
0 + u

2
0 6= 0 (where as usual

ai :=
@a

@x
i ). These points clearly form a dense open subset of X � U .

Apply now the dynamic feedback

_x6 = v
3
; u

1 = x
6
v
1
; u

2 = v
1
;

u
3 =

v
2 � [(x5 + x

6
a(x))a1(x) + x

3
a2(x) + x

6
a3(x) + a4(x)]x

6
v
1 � a(x)v3

1 + x6a5(x)

and the coordinate change z := (x4; x1; x5 + x
6
a(x); x2; x3; x6), which are well-de�ned as

soon as x6 is small enough, to put the system into multi-input chained form. The dynamic

feedback is the counterpart of the prolongation in theorem 2.

If dim I
1 = 1 and dim I

2 = 0, the system reads

_x1 = x
2
u
2
; _x2 = x

3
u
2
; _x3 = u

1
; _x4 = u

2
; _x5 = u

3
;

and y := (x1; x4; x5) is a at output. Details are left to the reader.

The dynamic feedback in the proof respects the driftless structure of the system. It is

also endogenous [11], i.e. built only from x and derivatives of u.

Performing a dynamic feedback (or prolonging the PfaÆan system) when dim I
1 = 1

and dim I
2 = 0 has little practical interest, since the system is already in a very simple

form.
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