
INDEX OF AN IMPLICIT TIME-VARYING
LINEAR DIFFERENTIAL EQUATION: A

NONCOMMUTATIVE LINEAR ALGEBRAIC
APPROACH.∗

Michel Fliess† Jean Lévine‡ Pierre Rouchon§
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1 Introduction

Integrating implicit differential equations raises severe difficulties, even in the linear case.
A rather abundant literature has been devoted to this subject, which recently culminated
in three books [1, 8, 9].

A major ingredient for understanding such implicit equations is their index, which is
familiar among numerical analysts and engineers. It measures the number of times the
equations have to be differentiated in order to set the system explicitly, or, equivalently,
the number of times the entries or sources have to be differentiated.

A clear-cut definition of the index has only been given in the case of linear differential
equations with constant coefficients by means of Kronecker canonical form of regular
matrix pencil (see [15], e.g.). Our main contribution is a definition of the index for linear
equations with time-varying coefficients which bypasses some problems related to the
existence of the flow and to some computational procedures. It employs linear algebra
over the noncommutative principal ideal ring of non-constant linear differential operators
(see [10, 3], e.g.). It is perhaps worthwhile to recall here that this kind of algebra was
introduced a long time ago partly in order to provide the appropriate setting for linear
differential systems with non constant coefficients (see [14], e.g.).

As often done, we interpret the index problem within the control theoretic framework
of input-output differential systems: the inputs are the exogeneous variables, called entries
or sources, and the outputs are the unknown variables. The index can then be defined in
two ways:

– a noncommutative extension of transfer functions, which was already achieved for
other control purposes by some authors (see [11], e.g.);

– a state-variable representation via module theory (see [5]) which proves that there
exists an integration procedure where the derivatives of the entries, even if they play
a role, do not need to be integrated.

The paper is organized as follows. Section 2 gives the necessary algebraic background
on matrices and modules over the noncommutative principal ideal ring of non-constant
linear differential operators. Section 3 sets up the linear implicit differential equation. The
index is defined in sections 4 and 5 respectively via the noncommutative transfer func-
tion and the state variable representation. Section 6 shows the equivalence of those two
viewpoints and demonstrates their accordance with the existing work on linear systems
with constant coefficients.

A preliminary version of this work was presented in [6]. A nonlinear extension is
sketched in [7] and will be developed elsewhere.
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2 Algebraic background

2.1 Denote by k a given differential field (see [12]), i.e., a commutative field k equipped

with a derivation
d

dt
=“˙”, which satisfies the following rules:

∀a ∈ k,
da

dt
∈ k,

∀a, b ∈ k,
d

dt
(a + b) =

da

dt
+

db

dt
, and

d

dt
(ab) =

da

dt
b + a

db

dt
.

A constant is an element c ∈ k such that
dc

dt
= 0. A field of constants is a differential field

which only contains constants.

2.2 Examples
(i) The fields Q, R and C of rational, real and complex numbers are trivial examples

of differential fields of constants.

(ii) The field R(t) of real rational functions is a differential field with respect to
d

dt
.

(iii) The set of meromorphic functions in the variable t over an open connected domain

of R or C is a differential field with respect to
d

dt
.

2.3 Assumption Throughout the rest of the paper, we assume that k is a differential
field of meromorphic time functions from an open connected subset of R into R. There
would be no problem of dropping this assumption by an extensive use of the formalism
of differential algebra [12].

2.4 Denote by k
[

d
dt

]
the set of linear operators

∑

finite

aµ
dµ

dtµ
(aµ ∈ k).

Provided with the usual addition and the multiplication defined as composition of op-
erators, k

[
d
dt

]
becomes an entire ring, i.e., without zero divisors. If k is a field of con-

stants, k
[

d
dt

]
is, as well known, a commutative principal ideal ring.

Clearly, if k is not a field of constants, i.e., there exists a ∈ k such that
da

dt
6= 0, then

k
[

d
dt

]
is not commutative:

d

dt

(
a

d

dt

)
= ȧ

d

dt
+ a

d2

dt2
6= a

d

dt

(
d

dt

)
= a

d2

dt2
.

However, k
[

d
dt

]
still is a principal ideal ring (see [10, 2], e.g.).
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2.5 Even in the noncommutative case, k
[

d
dt

]
can be embedded into a skew, i.e., non-

commutative, field, or division ring, of fractions Q
(
k

[
d
dt

])
, as it satisfies the so called Ore

property (see [2]) which implies that any element of Q
(
k

[
d
dt

])
can be written as u−1v,

where u and v belong to k
[

d
dt

]
.

In order to be in accordance with the classical Laplace transform techniques (see

section 4), set s =
d

dt
. A series of the form

∑
ν≥ν0

aνs
−ν where ν0 ∈ Z, aν ∈ k,

is called a Laurent series. Every element of k
[

d
dt

]
corresponds to a Laurent series with a

finite number of nonzero terms. From the Ore property, every element of Q
(
k

[
d
dt

])
can

be developed into a Laurent series. The set of all the Laurent series corresponding to
elements of Q

(
k

[
d
dt

])
will be denoted by k(s−1).

2.6 Take a p × q matrix A over k
[

d
dt

]
. Even in the noncommutative case (see [2]),

there exist matrices P ∈ GLp

(
k

[
d
dt

])
and Q ∈ GLq

(
k

[
d
dt

])
1 such that PAQ−1 is a p× q

matrix with main diagonal of the form (ε1, . . . , εr, 0, . . . , 0) and 0 elsewhere, where the
invariant factors ε1, . . . , εr are such that

– ε1, . . . , εr 6= 0

– εi is a total divisor of εj for i ≤ j, i.e., ∃δij ∈ k
[

d
dt

]
with εj = δijεi.

Clearly, the interger r, which is less than or equal to min(p, q), is the rank of A.
Two p × q matrices A and B are equivalent if, and only if, there exist matrices P ∈

GLp

(
k

[
d
dt

])
and Q ∈ GLq

(
k

[
d
dt

])
such that A = PBQ−1.

If A is square (p = q) and if r = p, then A is said to be full. It is equivalent saying
that there exists a p× p matrix A−1 over k(s−1) such that AA−1 = A−1A = 1.

2.7 Remark Solutions ξ of an equation Aξ = 0, where A is a p× q matrix over k
[

d
dt

]
,

are understood as meromorphic time functions.

2.8 Left (or right) modules over k
[

d
dt

]
behave in much the same manner as modules

over commutative principal ideal rings (see [2]). Let M be a finitely generated left k
[

d
dt

]
-

module. An element m ∈ M is said to be torsion if, and only if, there exists π ∈ k
[

d
dt

]
,

π 6= 0, such that πm = 0. For instance, sin t, which satisfies

(
d2

dt2
+ 1

)
sin t = 0, is

1GLp

(
k

[
d
dt

])
is the set of p × p matrices P over k

[
d
dt

]
such that there exists a p × p matrix P−1

over k
[

d
dt

]
, satisfying PP−1 = P−1P = 1. Matrices in GLp

(
k

[
d
dt

])
are called unimodular.
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torsion. A module is said to be torsion if, and only if, all its elements are torsion. The
set of all torsion elements of M is called the torsion submodule of M . If this torsion
submodule is trivial, i.e., equal to {0}, M is said to be free2. The next two results, which
will play a crucial role, can be found in [2]:

Theorem 1 For a finitely generated left k
[

d
dt

]
-module M , the next two conditions are

equivalent:

(i) M is torsion;

(ii) M is finite dimensional as a k-vector space.

Theorem 2 Let M be the left k
[

d
dt

]
-module spanned by the solutions ξ of Aξ = 0,

where A is a p× p matrix over k
[

d
dt

]
. Then M is torsion if, and only if, A is full.

3 The linear differential implicit equation

3.1 Consider the differential equation

Aαy(α) + . . . + A1ẏ + A0y = e (1)

where

– y = (y1, . . . , yp)
T is a set of p unknowns,

– e = (e1, . . . , ep)
T is a set of p independent entries or sources,

– A0, A1, . . . , Aα are p× p matrices over a given differential ground field k.

When writing

A = Aα
dα

dtα
+ . . . + A1

d

dt
+ A0,

(1) becomes
Ay = e. (2)

It follows directly from section 2.6 that (2) is solvable in an algebraic sense for any choice
of e if, and only if, A is full: for any meromorphic entries e = (e1, . . . , ep)

T , there exist p
meromorphic functions y = (y1, . . . , yp)

T satisfying (2). We are therefore lead to the
following definition

Definition 1 System (1)-(2) is called solvable if, and only if, the matrix A is full.

We will make this assumption from now on.

2This is not the usual definition of free module, but a characterization which holds for finitely generated
modules over principal ideal rings [2].
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3.2 Example. It is borrowed from [9] and confirms the necessity of employing non-
commutative algebra. Take k = R(t), α = 1, p = 2 and

A0 =

(
0 0
1 t

)
, A1 =

(
1 t
0 0

)
.

The matrix A1λ + A0 is singular for all λ in any commutative overfield of k. By setting

y =

(
t 1
−1 0

)
ỹ,

the equation (2) becomes
(

0 1
0 0

)
dỹ

dt
+

(
1 0
0 1

)
ỹ = e.

This linear differential equation with constant coefficients is obviously solvable: the matrix

Ã =

(
0 1
0 0

)
d

dt
+

(
1 0
0 1

)

over R
[

d

dt

]
is invertible, with inverse being

(
1 −s
0 1

)
.

Thus A = A1
d

dt
+ A0 is full as a matrix over k

[
d
dt

]
. Notice that the operator A is

equivalent to Ã in the sense of 2.6. This apparent contradiction with the singularity
of A1λ + A0 can be traced back to the noncommutativity of k

[
d
dt

]
. Notice furthermore

that noncommutative determinants have been introduced by Dieudonné [4] (see [3] for a
more up to date presentation).

4 The transfer matrix approach to the index

4.1 The inverse matrix A−1, which is over k(s−1), can be written as a matrix Laurent
series

A−1 =
∑

ν ≥ ν0

ν0 ∈ Z

Γνs
−ν , (3)

where the Γν ’s are p × p matrices over k: (3) is the noncommutative transfer matrix
of (1)-(2). Noncommutativity here means that s−1 and coefficients in k do not commute.
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4.2 As the index measures the number of the times one needs to differentiate e in order
to get the solutions, the following is natural.

Definition 2 Assume that Γν0 6= 0. The index of (1)-(2) is max(0, 1− ν0).

4.3 Remark When k is a field of meromorphic functions in the variable t, singularities
might happen such that for some values of t, Γν0 is not defined or zero. This is related to
the difficult analysis of singularities of time-varying linear systems (see [13], e.g.).

5 The state variable approach to the index

5.1 Take the free left k
[

d
dt

]
-module [e+, y+] spanned by e+ = (e+

1 , . . . , e+
p )T and y+ =

(y+
1 , . . . , y+

p )T . The components of e+ and y+ are here arbitary algebraic quantities, as
often done in the algebraic setup [2, 12]. In our context they can be viewed as arbitrary
meromorphic time functions. Denote by d+ = (d+

1 , . . . , d+
p )T a set of elements in [e+, y+]

such that
d+ = Ay+ − e+

where A comes for (2). Denote by [d+] the submodule of [e+, y+] spanned by d+. Denote
by e = (e1, . . . , ep)

T , y = (y1, . . . , yp)
T the residues, i.e., the canonical images of e+

and y+ in the quotient module [e+, y+]/[d+]. By construction e and y satisfy (2). From
Theorem 2, we know that the quotient module [y] = [e, y]/[e], where y = (y

1
, . . . , y

p
) is

the residue of y, is torsion as Ay = 0 and A is full.

Following [5], we thus have associated to (1)-(2) a left k
[

d
dt

]
-module [e, y] such that

the quotient module [e, y]/[e] is torsion.

5.2 The dimension as a k-vector space of the finitely generated torsion module [e, y]/[e]
is finite, say n (Theorem 1). Take η = (η1, . . . , ηn)T in [e, y] such that its residue η =

(η
1
, . . . , η

n
)T in [e, y]/[e] is a basis of the latter vector space. The components of

dη

dt
and

of y are k-linearly dependent on η. This yields





dη

dt
= F+η

y = H+η

(4)
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where F+ and H+ are respectively n × n and p × n matrices over k. Pulling back (4)
to [e, y] gives 




dη

dt
= F+η +

τ∑
µ=0

G+
µ e(µ)

y = H+η +
τ ′∑

µ′=0

J+
µ′e

(µ′)

(5)

where the G+
µ ’s and J+

µ′ ’s are respectively n× p and p× p matrices over k.

Take another set η̃ = (η̃1, . . . , η̃n)T in [e, y] such that its residue η̃ in [e, y]/[e] is a basis.
Then

η = T η̃

where T is invertible over k. Thus

η = T η̃ +
∑

finite

Sje
(j)

where the Sj’s are n× p matrices over k.
If derivatives of e occur in (5) in the dynamics of η, i.e., if τ ≥ 1, set

η = η̃ + G+
τ e(τ−1).

It yields

dη̃

dt
= F+η̃ +

τ−1∑
µ=0

G++
µ e(µ)

where the highest derivative of e now is less than or equal to τ − 1. By this elimination
procedure we obtain in a finite number of steps





dx

dt
= Fx + Ge

y = Hx +

ν1∑
ν=0

Jνe
(ν)

(6)

where

– all the matrices are of appropriate sizes over k;

– the dynamics of x is Kalman [5], i.e., does not contain any derivatives of e.

(6) is the Kalman state variable representation of (1)-(2).
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5.3 The degree of the impulsive polynomial I =
∑ν1

ν=0Jνe
(ν) is

deg I =

{
+∞ if I = 0
ν1 if I 6= 0 and Jν1 6= 0.

Definition 3 The index of the solvable system (1)-(2) is equal to max(0, 1 + deg I)

The previous remark about possible singularities also applies here.

6 Main results

6.1 We first verify the equivalence between our two definitions of the index.

Proposition 1 The definitions 2 and 3 of the index of (1)- (2) coincide.

Proof The transfer matrix of (6) is

H(s− F )−1G +

ν1∑
ν=0

Jνs
ν . (7)

It is equal to (3). The parts corresponding to non negative powers of s in (3) and in (7)
coincide:

ν1∑
ν=0

Jνs
ν =

−ν0∑
ν=0

Γνs
ν .

Therefore ν0 = −ν1.

6.2 The main advantage of the state variable representation (6) can be summarized as
follows.

Proposition 2 The linear differential equation (1)-(2) can be integrated via (6) where
the derivatives of e do not appear in the dynamics of x but act “instantaneously”3 on y.

6.3 We now proceed to the equivalence of our index with the one already given for
constant linear differential equations. Assume that k is a field of constants, R for in-
stance, and, for simplicity’s sake, that α = 1 in (1). Definition 1 means that the matrix
pencil A1λ + A0 is regular. Its Kronecker canonical form is determined by

BA0C
−1 =

(
R 0
0 1

)

BA1C
−1 =

(
1 0
0 N

)

3This terminology, which is usual in engineering, just means that derivatives of e are not needed in
any integration procedures.
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where

– B, C are invertible p× p matrices over k;

– R is a ρ× ρ matrix over k;

– N is a nilpotent (p− ρ)× (p− ρ) matrix over k.

Sincovec et al. [15] define the index of (1) as being the nilpotency index of N , i.e., the least
non-negative integer ı such that N ı = 0. It is straightforward to verify that the highest
non-negative power of s in the Laurent expansion of (A1s + A0)

−1 is ν1 = −ν0 = ı− 1.
We have demonstrated the following property:

Proposition 3 The index of (1), where k is a field of constants and α = 1, is the index
of nilpotency of N .

6.4 Suppose that instead of y, we calculate z = (z1, . . . , zp)
T = Uy, where U is an

invertible p× p matrix over k. The quantity z also satisfies a type (1)-(2) equation. The
transfer matrix of z is UA−1, which implies the following property:

Proposition 4 The indices of Ay = 0 and AU−1z = 0 are the same.

Otherwise stated, the index is invariant under linear changes of the unknown variables.

7 Conclusion

The index of more general implicit linear differential equations can be defined in a com-
pletely analogous manner. Take, for instance, the square system

Aαy(α) + . . . + A1ẏ + A0y = Be

where e and y do not have necessarily the same dimension : y = (y1, . . . , yp)
T is a set of p

unknowns; e = (e1, . . . , eq)
T is a set of q independant entries; A0, A1, . . . , Aα are p × p

matrices over a differential field k; B is a p× q matrix over k.
Calculations with respect to the noncommutative principal ideal ring k

[
d
dt

]
are not

much more complicated than in the classic commutative, i.e., constant coefficients, case,
since there also exists a very similar division algorithm (see [2]). We therefore feel that
our approach could be made quite effective from a computer algebraic standpoint.
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