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A robust nonlinear control law is designed to reject unknown feed 
composition disturbances with overall stability. Implementation to real 
columns as well as comparisons with classical control strategies, show the 
robustness and flexibility improvements of the method. 
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Almtracq--Using singular perturbation techniques on a 
physical model of distillation column, an aggregated model is 
proposed for control purposes. Nonlinear perturbation 
rejection techniques via static feedback are then applied to 
this model to reject the feed composition disturbances: 
around every slowly varying reference trajectory, the 
existence of such a control law and the stability of the overall 
closed-loop system are proven. Moreover, the obtained 
control law can be synthesized with measurements commonly 
available on distillation columns: the product compositions 
and two inner temperatures. An industrial implementation 
on a refinery depropanizer of 42 trays is presented. 
Simulation comparisons with linear and nonlinear geometric 
control laws, both using the physical model of high 
dimension, show the robustness and flexibility improvements 
provided by our method. 

Nota t ion  

f = (fi)~=l n: state function of the physical model (1). 
f = ~)j=ti~,i~,n: state function of the reduced model (18). 
fj: function defmed by (2) for j = 1 , . . . ,  n and corresponding 

to the physical model, or function defined by (19) for j = 1, 
r, jp s, n and corresponding to the reduced model. 

F: mole flow of the feed. 
F: steady-state value of F. 
Hj: fiquid holdup of tray j. 
Hi: liquid holdup of tray j for the compartment of m trays. 

m 

/~= X Hi. 
1 

J~ 
/~" = ~2/'/j: the liquid holdup of the rectifying compartment. 

/~j~ = i'~11H/: the liquid holdup of the feed compartment. 
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n -1  
/~, = ~ P/j: the liquid holdup of the stripping compartment. 

h 

/~n = Hn. 
j: tray index. 
Ja: index of the aggregation tray relative to the compartment 

of m trays. 
jr: index of the feed tray. 
j,: defines the rectifying compartment (2 < j ,  <Jl)" 
Js: defines the stripping compartment (jr < j ,  < n - 1). 
k: the equilibrium function. 
k(i,,+l): mole composition of the vapor entering the 

compartment of m trays. 
k(xj): vapor mole fraction on tray j. 
L: reflux flow. 
L: steady state value of L. 
L: liquid flow in the compartment of m trays. 
m: number of trays of the compartment. 
n: number of trays of the column. 
r: index of the aggregation tray relative to the rectifying 

compartment. 
s: index of the aggregation tray relative to the stripping 

compartment. 
t: the time. 
Tj = O(xj): temperature of tray j as a function of the liquid 

composition. 
v = (vi, u2): the new control vector defined in Theorem 5. 
V: reboiler vapor outflow. 
I7": steady state value of V. 
V: vapor flow in the compartment of m trays. 
x = (xj)j= 1 ...... : state vector of the physical model (1). 

= (xj)j=x,,,&,.n: state vector of the reduced model (18). 
Xs: slow part of the state vector. 
xF: fast part of the state vector. 
xj: liquid mole fraction on tray j for j =  1 . . . . .  n (a 

component of the physical state vector), or a component of 
the reduced state vector for j = 1, r, Jr, s, n [see (18)]. 

ij: steady state value of xj.  
x0: mole composition of the liquid entering the compartment 

of m trays. 
X " :  function defined by Lemma 1. 
Yl = xl: the quality of the top product. 
Y2 = xn: the quality of the bottom product. 
Yl: steady state value of Yl- 
Y2: steady state value of Y2. 
Y=:  function defined by Lemma 1. 
zf:  feed composition. 
£f: steady state value of zf. 

e: small positive scalar. 
O: real function that defines the tray temperature with 

respect to the tray liquid composition (bubble tempera- 
ture). 
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¢P1: function defined in Theorem 5. 
92: function defined in Theorem 5. 

-f: relative to the feed. 
.s: relative to slow dynamics. 
.r: relative to fast dynamics. 
-': relative to the compartment  of m trays. 
=: relative to the steady-state. 

1. INTRODUCTION 

COMPOSrrION CONTROL of distillation columns has 
been studied extensively. The purpose is to 
maintain the product qualities at their setpoints, 
even if the feed flowrate and composition vary 
(generally, the feed composition is not 
measured). However, very few industrial columns 
maintain dual composition control. The main 
reason lies certainly in the difficulties attached to 
this problem [see for example Fuentes and 
Luyben (1983)]: strongly nonlinear and interac- 
tive system, very sluggish responses, deadtime in 
the composition measurements and large 
dimension. 

In the literature relative to distillation 
dynamics and control, two generally separate 
streams can be identified: several papers 
emphasize modeling without strong influence on 
the control design, whereas several other papers 
concentrate on control without discussing the 
model. 

In the "modeling stream", many physical 
models are proposed for simulation purposes 
[see Gallun and Holland (1982) for example]. 
Since the early study of Rosenbrock (1962), who 
established most of the qualitative results 
concerning such models, little theoretical pro- 
gress has been observed. Other modeling ideas 
have been developed, for example by Espafia 
and Landau (1978) and more recently by 
Benallou et al. (1986). They propose com- 
partmental approximation techniques to obtain a 
simpler model of reduced order. 

In the "control stream", many papers have 
been published and the field can be divided into 
many parts, in particular: linear predictive 
control [see for example Morari (1988) and 
Georgiou et al. (1988)]; adaptive control [see for 
example Agarwal and Seborg (1987)]; linear 
geometric control [see the pioneering work, 
using Wonham's (1974) approach, of Takamatsu 
et al. (1979) and more recently Kummel and 
Andersen (1987)]; and the nonlinear geometric 
approach [see Gauthier et al. (1983) and LEvine 
and Rouchon (1986)] applying the methods of 
Hirschorn (1981) and Isidori et al. (1981); see 
also the nonlinear control approach of Alsop and 
Edgar (1987) based on the approaches of 
Jakubczyk and Respondek (1980), Hunt et al. 

(1983) and Krener (1984). Another related 
approach on extensive variable control can be 
found in Georgakis (1986). 

To summarize, one can observe that firstly, 
distillation processes are carefully modeled and 
their dynamical properties are well established; 
secondly, recent developments of nonlinear 
control theory are able to provide efficient tools 
to incorporate the nonlinear aspect of this 
problem into the control design. In this 
perspective, our contribution is the following: 
firstly, we construct a simplified model where the 
nonlinear and qualitative properties of physical 
models are preserved (steady-state gains, 
molar fraction in [0,1], global asymptotic 
stability . . . .  ); secondly, we compute a nonlinear 
control law, rejecting the feed composition 
perturbations, simple and robust enough to be 
implemented on a refinery depropanizer. 

More precisely, we show that the classical 
distillation model studied by Rosenbrock (1962) 
can be approximated, via singular perturbation 
techniques [see Kokotovic (1984) for example], 
by a reduced-order model including only the 
slow transients but having the global asymptotic 
properties of the original model. This aggregated 
model proves very useful for control: we apply 
nonlinear perturbation rejection techniques [see 
Isidori (1989)] and obtain, around every slowly 
varying reference trajectory, a feedback law 
without singularity, producing asymptotically 
stable closed-loop dynamics, that can be 
synthesized via output feedback when tempera- 
ture measurements are available. Though com- 
puted from a simplified model, this control law 
appears to be extremely robust when facing, in 
an industrial environment, delayed measure- 
ments and modeling errors. It is currently being 
used on a refinery depropanizer, providing, 
moreover, energy savings and increases in 
productivity and flexibility. 

In the first section, a classical nonlinear 
physical model of binary distillation columns is 
recalled. The time-scale aggregation technique is 
presented and the qualitative properties of the 
resulting model are analyzed. In the second 
section, the existence of the control law, 
rejecting the feed composition perturbations on 
the aggregated model, and the closed-loop 
stability are proven. A robust control synthesis 
via output feedback is proposed and its 
implementation on a refinery depropanizer is 
presented. The last section is devoted to 
simulation comparisons between the obtained 
control law, the linear geometric one [Taka- 
matsu et al. (1979)] and the nonlinear geometric 
one [inspired by Gauthier et al. (1983) and 
derived from the physical model of this paper]. 
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2. THE CONTROL MODEL 
After stating classical modeling assumptions, 

we recall the associated physical model which 
is reduced in Section 2.3 by time-scale con- 
siderations. For clarity's sake, the reduction is 
presented firstly on an arbitrary section of trays 
(compartment) and then extended to the overall 
column. In the whole section, the major tool for 
analyzing stability and convergence of our 
reduction method, is the global stability result of 
Rosenbrock (1962) that is recalled in Appendix 
A. 

2.1. Modeling assumptions 
A general description of distillation processes 

can be found in the book of Van Winkle (1967). 
The process studied is a classical binary 
distillation column [see for example Espafia and 
Landau (1978)] as displayed in Fig. 1. The 
following assumptions are introduced: 

1. On each tray, liquid and vapor phases are 
perfectly mixed and are at thermodynamic 
equilibrium. 

2. The liquid molar holdup on each tray is 
constant. The pressure is constant and 
uniform. The vapor molar holdup on each 
tray is negligible. 

3. The liquid molar inflow is equal to the liquid 
molar outflow on each tray. The vapor molar 
inflow is equal to the vapor molar outflow on 

feed 
F, z! 

r e b o i l e r  

tray 2 

i V, y ~ total condenser 

~ tray 1 

~ , reflux distillate 

T ~  F L, xl V - L ,  xa 

:~-1 Y~ 

El 
Hj tray j 

4 t  
Hi1 tray j !  

T - f  

tray n -- 1 

L+FI lv 

I bottom product 
B 

L + F - V ,  x .  

FIG. 1. Schematic diagram of a binary distillation column. 

each tray (with the exception of extreme trays 
1 and n). The feed is a saturated liquid. 

Assumption 1 means that the time constants of 
the mass transfer between liquid and vapor are 
much shorter than the resident time of each 
tray. Assumption 2 states that hydrodynamics, 
pressure and level dynamics are stable and fast 
enough to be neglected. This implies prefect 
level and pressure control. Generally, the tray's 
geometry, the pressure and level control loops 
are designed such that 1 and 2 are satisfied for 
smooth enough inputs F, L and V, respectively 
the feed flow, the reflux flow and the reboiler 
vapor outflow. The last assumption, 3, is more 
restrictive and corresponds to the Lewis 
hypothesis [see Van Winkle (1967, p. 225)]. The 
control techniques which are used in this paper 
can be extended to more general models where 
energy balances are considered. Such an 
extension can be done only on a formal ground: 
the analysis of asymptotic stability of more 
complex models remains an open problem, even 
if simulations never display instabilities for 
reasonable operating conditions. Nevertheless, 
for several industrial columns--such as de- 
propanizer, deethanizer . . . .  --assumption 3 pro- 
vides a good approximation of the inner flow 
profiles. 

Remark 1. For clarity's sake, uniform pressure 
and saturated liquid feed are considered. 
However, all the results of this paper remain 
valid if pressure drops corresponding to a given 
pressure profile and feed vapor fraction are 
introduced in the model: Rosenbrock's stability 
result applies and the closed-loop stability 
property (Theorem 5) can be extended to this 
case. It suffices to consider in place of the 
function k, introduced in Section 2.2, a 
collection of functions kj where j denotes the tray 
index, kj enjoys the same properties as ks but 
takes into account the pressure on tray j, 
j = 2  . . . . .  n. Also, denoting Vfrac the vapor 
fraction of the feed which is assumed to be 
measured or estimated, the liquid and vapor 
flows in the rectifying and stripping sections must 
be modified as follows: L and V must be 
replaced by L and V + l)fracF for the rectifying 
section; L + F  and V must be replaced by 
L + (1 - Vfrac)F and V for the stripping section. 

We now proceed as follows. Firstly, a physical 
model is obtained from assumptions 1, 2 and 3 
as in Espafia and Landau (1978). For most 
industrial columns, this model is far too large for 
control purposes, but it can be used directly for 
simulation and comparisons. Secondly, this 
model is reduced by time-scale considerations to 
produce a satisfactory model for control. 
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2.2. A classical physical model 
Under assumptions 1, 2 and 3, the dynamic 

model of a binary column as displayed in Fig. 1 
is derived from the balance equation on each 
tray for one component 

" Hlicl = Vk(x2) - Vxl 

I-Ijc] = t x j_  1 + Vk(xj+l) - -  Lx i - Vk(xj),  

j = 2 , . . .  , j r - 1  

Hjfxj /= LXjf_ 1 "[- Vk(xj /+ 1) -- (L + f ) x #  
(1) 

- V k ( x j , )  + Fzr  

~.Ycj = (L + F)x~_, + Vk(xj+,) - (L  + F)xj 

- V k ( x j ) ,  j = j l  + 1 . . . . .  n - 1  

,H,,ic,, = (L + F)x,,_, - (L  + F -  V)x,, - Vk(x,,), 

where: 

/ denotes the tray index, 1 -< j - n; 
j = 1 corresponds to the reflux drum, j = Jr to the 
feed tray and j = n  to the bottom (3-</'¢-< 
n - l ) ;  
(/-/j)(~_<j___n) are the liquid holdups (constant); 
x = (xj)o<_j< m are the liquid molar fractions; 
k(xj) is the vapor molar fraction; k corresponds 
to the thermodynamic equilibrium point of the 
binary mixture [see Prausnitz et al. (1980)]. We 
will call k the equilibrium function; 
F and z r are the feed flow and composition, the 
perturbation variables; F is measured whereas z r 
is not; 
L and V are the reflux flow and the reboiler 
vapor outflow, the control variables. 

System (1) is rewritten :~ = f ( x ,  L, V, F, zr) with 

f ( x ,  L, V, F, zl) = (fj(x, L, V, F, Z r ) ) j =  1 . . . . . .  

where 

fl(x, L, V, F, zr) = 

fj(x, L, V, F, zr) 

Vk(x2) - Vxl 

14, 

for j = 2  . . . .  , j r - l :  

_ L x , _ ,  + V k ( x j + O  - L x j  - V k ( x j )  

f~(x, L, V, F, zr) 

=txj l ._  1 "~ V k ( x j / + I ) - ( L  + F ) x j , -  Vk(xb ) - F z  r 

for j = b + 1 . . . . .  n - 1: (2) 

h(x, L, V, F, zr) 
= (L + F)Xj_l + Vk(xj+l) - (L  + F)xj - Vk(xj)  

L(x, L, V, F, zr) 
(L + F)x,,_l - (L  + F - V)x,, - Vk(x,,) 

/4. 

Notice that f is linear with respect to L, V, F and 
Fz I, and that f is smooth if the equilibrium 
function k is. We assume once and for all that: 

Assumption 1. The inputs L, V, F and z r are 
continuous time functions from [0, +oo[to]0, +oo[ 
such that for all t • [0, +o0[, L(t)  < V( t )  < L(t)  + 
F(t)  and zi(t  ) • ]0, 1[; 

Assumption 2. The equilibrium function k and 
its derivative are continuous functions from [0, 1] 

dk 
to [0, 1], ~ (x) > 0 for all x • [0, 1], k(0) = 0 and 

k(1) = 1 (see Fig. 2). 

Remark 2. Assumption 1 means that the flow of 
the top and the bottom products is positive. 
Assumption 2 is satisfied for all binary systems: 
Malesinski (1965) derives from the second 
thermodynamic principle that the function k is 
always an increasing function of x. For more 
general situations, see the analysis of Kwaalen et 
al. (1985). In practice, the equilibrium function k 
is obtained by solving the algebraic nonlinear 
equations of the thermodynamic equilibrium. 
These equations depend on the particular choice 
of the thermodynamic model and are generally 
solved numerically. In the depropanizer applica- 
tion below the model of Soave (1972) is used. 

The physical model considered is simpler than 
the model of Rosenbrock (1962) where vapor 
holdups and vapor Murphree efficiencies are 
considered whereas tray hydraulic effects are not 
taken into account. Our model can be seen as a 
particular case of Rosenbrock's, which contains 
twice the number of equations, by neglecting 
vapor holdups and assuming 100% tray effi- 
ciencies. For simplicity reasons, we demonstrate 
directly, for (1), the Rosenbrock open-loop 
results (and complete them with a spectrum 
property) by using the theorem of Appendix A. 

Theorem 1. Assuming that Assumptions 1 and 2 
hold, we have: 

(i) For each initial condition x ° in the closed 

k(x) 

0 0 x 

FIG. 2. The equilibrium function k(x). 
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subset [0, 1]", the maximal solution of 

--f(x, L, V, F, zf) 

is defined for every t e l0 ,  +o0[ and satisfies 
x(t) ~ [0, 11" for all t ~ [0, +o0[; 

(ii) For each L, V, F and zf, there exists a 
unique steady-state ~ in ]0, 1[", namely a unique 
solution of f($, L, V, F, zf) = 0; moreover, if k 
satisfies k(x) > x for all x e ]0, 1[, then ~ satisfies 

1 > £ 1 > x 2 > .  • " > x . - l > ~ .  > 0 ;  

(iii) If L, V, F and z~, are constant and if 
x°e  [0, 1]", then the system is Lyapunov-stable 
[see Arnold (1974, p. 155)] and its solution 
converges to the unique steady state associated 
to L, V, F and zf; moreover, for every 
x ¢ [0, 1]", the Jacobian matrix af/ax has real, 
distinct and negative eigenvalues. 

Proof of (i). It is sufficient to prove that the 
vector field f is oriented inwards on the 
boundary aD of D = [0, 1] ". aD is made of the 
points (xl . . . . .  x,) e [0, 1] n for which there 
exists j e {1 . . . .  , n } such that x /=  0 or x /=  1. 
At such points, it suffices to prove that ~/>-0 if 
xj = 0 and kj.-< 0 if xj = 1. This directly results 
from formula (2). [] 

Proof of (ii) and (iii). We will prove simul- 
taneously the existence and uniqueness of the 
steady-state, and the global asymptotic stability 
by applying Rosenbrock's theorem. 

In our case, p = n ,  ~k=HkXk for k =  

1 . . . .  ,n,  Q =  11 [0, Hk] and system (1) is 
k = l  

rewritten ~ =  t~(~) where ~ is continuously 
differentiable. The dependence of ~ with respect 
to L, V, F and zf is omitted since they are 
assumed to be constant. The preceding proof of 
(i) implies that assertion (i) of Rosenbrock's 
theorem is satisfied. From (1) we see that for 

V - L  
i = 2 . . . . .  n - 1, ~)i  = 0 ,  ~ 1  = - -  and ap, = 
L + F - V  1"11 

with ~p,- defined by (30). Assumption 1 H. 
implies that assertion (ii) of Rosenbrock's 
theorem is satisfied. 

The Jacobian matrix odp/a~ is the matrix J of 
Lemma 2 in Appendix A with p -- n, 

a = , . . . .  n j f _  1 /-/jr 

L + F  L + F - V )  
n . _ , '  n~ 

and 

) ' n 2 d x  . . . .  n .  ( x . ) .  

Assumptions 1 and 2 imply that the vectors a 
and b have positive components. Consequently, 
assertion (iii) of Rosenbrock's theorem is 
satisfied. Moreover, Lemma 2 implies that the 
eigenvalues of adp/a~ are distinct, real and 
negative. Since ¢(~) = Hf(H-I~, L, V, F, zf) 
with H = diag [ H 1 , . . . ,  Hn], the eigenvalues of 
af/ax have the same property. Assertion (iv) of 
Rosenbrock's theorem results from the tridia- 
gonal structure of the system. 

It remains necessary to prove ~ e ]0, 1[" and 
the inequalities of (ii). We know that ~ e [0, 1]" 
satisfies f($, L, V, F, zf) = 0. This is equivalent 
to 

Fz I = (V - L)$I + (L + F - V)$. (3) 

k(~÷,)  = - ~ j  + 1 ~,, j = 1 , . . . ,  b - 1 

(4) 

$j_l=L~k(~j)+(  1 V ~ - - ~ ) ~ . ,  

]=J r  + 1 , . . . ,  n, (5) 

where (3) is obtained by summing all the 
equations of (1), (4) corresponds to the sum of 
the j first equations and (5) to the sum of the 
n - j + l  last equations. If £1=0,  then by 
induction on j in (4) we have ~/f = 0. Using (5) 
with j = j l  +1,  we have xn=0.  This is in 
contradiction with assumption 1 and (3). 
Similarly, we obtain that £1~1,  ~ ,4 :0  and 
£n 4: 1. Consequently xl, x, ~ ]0, 1[. By induction 
on j in (4) and (5), we have £ ~ ]0, 1[ ~. If we 
suppose additionally that k(x )>x  for all 
x e]0, 1[, then relations (4) and (5) give the 
desired inequalities. [] 

2.3. The reduced control model 
For industrial columns, the dimension of the 

above dynamic model is generally large (for a 
refinery depropanizer n = 40). It can be reduced 
by time-scale considerations. The standard form 
of a two-scale system is [see Kokotovic (1984) or 
Marino and Kokotovic (1988) for example] 

/c s = fS(xS, x ~, u, w, ~) 

g¢~ = f ~ ( x  s, x ~, u, w, ~)'  (6) 

where (x s, x e) is the state vector, the superscript 
S (resp. F) standing for slow (resp. fast), u is the 
control vector, w the perturbation vector and e a 
small positive scalar. Under suitable assump- 
tions, such a system can be reduced to its slow 
dynamics [by application of Tikhonov's theorem 
(Tikhonov et al., 1980) recalled in Appendix B)] 

{~ s =fS(xS ' x ~, u, w, O) 

o = f ~ ( x  s, x ~, u, w, 0) ' (7) 

corresponding to e = 0. 
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The model (1) is not in standard form (6). 
Nevertheless for physical reasons (the behavior 
of each tray is similar to that of any other, the 
resident time in one tray is much shorter than 
the resident in a "large" section of trays), we 
propose a choice of e and a diffeomorphic 
change of variables to express system (1) in 
standard form. More precisely, this can be done 
by splitting the column into a given number of 
sections of consecutive trays (called compart- 
ments), and by aggregation of each section 
separately. We now present the aggregation 
method on a given section of trays which gives 
an alternative model to the compartmental 
models of Benallou et al. (1986) or of Espafia 
and Landau (1978). 

2.3•1. The reduced model o f  a section o f  m 
trays. 

Preliminary results. Consider the section of m 
trays displayed in Fig. 3. Its dynamic model is 

( ' /~ lX l  =/--].~o -I- TiT"k(.~2) - L-,~I - Vk ( .~ l )  
/42& = £& + 9k( 3) - L &  - 9k (&)  

(8) 
~-Im--l-~m--1 = L X m - 2  dr" ~-'gk(.~rn) - ~ 'm- -1  

- 

,I:l. m = L e m _ ,  + - - -  

where: 

(/-lj)o<_m,,) are the liquid holdups; 
~j)j=l,..~,, are the liquid compositions; 
L and V are the liquid and vapor flows entering 
the section; 
xo and k($m+0 are the compositions of the 
liquid and of the vapor entering the section 
(k is the previously defined equilibrium 
function). 

The above system is denoted 

where $ = (J~)/=l ..... m and f denotes the right 

'io 

v?/7' 

k(~+~) L~j 

t 1 
FIG. 3. A compartment of m trays. 

hand side of (8)• Similarly to the overall column, 
we have the following open-loop behavior. 

Theorem 2. Assume assumption 2 and that the 
inputs L, V, .fo and ) ~ m + l  a r e  continuous-time 
functions such that for all t e [0, +~[, £(t), 
17"(0 • ]0, +oo[, ~fo(t) • [0, 1] and ~?,,+~(t) • [0, a]. 
Then the following assertions hold true: 

(i) For each initial condition .fo in [0, 11% the 
maximal solution of (8) is defined on [0, +~o[ and 
for all t • [0, +oo[, $(t) remains in [0, 1]m; 

(ii) For each L, 17", .fo and -fm+~ there exists a 
unique 2 = (2j)~=a ...... in [0, 1] m such that 

f(.e, £, 9, = o; 

(iii) If the functions /_], 17, .fo and $m+l are 
constant and if the initial condition .fo lies in 
[0, 1] m, then the system is Lyapunov-stable and 

lim Y(t) = $ 

where f (2 ,  £,  9, Xo, J?m+l) = 0 defines the 
steady-state 2. 

The proof is a straightforward adaptation of the 
proof of Theorem 1 and left to the reader. [] 

In the sequel we will use the following lemma 
relative to the steady-state $ of (8). 

Lemma 1. Assume assumption 2 and that 
L > 0 ,  17" > 0  and 0-<$o, "fm+l- 1. Consider the 
unique steady-state (Theorem 2) $ E [0, 1] m of 
(8). Then k($l) and im are continuously 
differentiable functions of L/17', $o, ~,,+1 
denoted respectively Ym([ . /9 ,  .fo, .f,,+~) and 
xm(£ / (" ,$O,  Ym+l). They are related by the 
equation 

£xm(['/"( ' ,  ~o, ~,.+1) + V Y " ( L / ( / ,  "fo, "~m+l) 

= /_].% + l?k(Y,,+,) (9) 

and satisfy 

O__<ym__<l O ~ X m ~ l  

OY "~ L OX m 
0 < - - < =  0 < - - < 1  

a.fo V a.fo 

aY" __~ 
0 < O.~m+l < (Xm+l) 0 < o x m  

O'~m + 1 

~'dk 

(lO) 

Moreover, if ,f satisfies £o > £1 ~> " " • > £r :> £m+l, 
then 

aY" aX m 
0 £ / 9 > 0  and 8/~/------~>0. (11) 
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Proof. Notice that (9) results from the sum of all 
the equations of (8) at the steady state. It 
remains to prove (10) and (11). The proof is 
similar for X "  and Y' .  Details are only given for 
Y~. We will proceed by induction on m, the 
number of trays, to prove (10) and (11) for Y' .  

Let us prove that the result is true for m = 1 
and Y~. $~ is given by (8): 

/~ XI 31- k('l~l) /~ = ~ -to + k(~2); 

since k is a continously differentiable bijection 
from [0, 1] to [0, 1], ~1 exists, is unique and 
belongs to [0, 1]; k(gl) is a regular function Y1 of 
£/17, x0 and x2. The inequalities relative to Y~ 
result from the derivation of the previous 
equation. 

Assume that the result holds for m - 1 -> 1 and 
ym-1. Consider ~ = (~j)~=~ ..... .1 the steady-state 
of (8). Then (;2 . . . . .  :~m) is the steady-state of 
the section made of trays 2 to m corresponding 
to the m - 1  last equation of (8). By the 
induction assumption, we have 

k(gz) = Ym-'(f-./9, ~,, .f,,.,+l), 

where ym-1 is continuously differentiable and 
satisfies 

O <_ y,,,-l <<_ l 

OY m-~ L 
O< < '=  

Og~ V 
aym-1 ~ 

0 < O.l~m+ 1 < ('~m+l)" 

Moreover, if ~ > ~2 > • • • > ~, > £,,+a, we have 

Oy,--1 
- - > 0 .  
a£19 

~ is then given by 

£ 0 [" ^ + k ( . ~ , )  - r m - , ( [ , / ( , , ,  .~, ,  "~m+,) - - - ~ ' ~ 0  = , -~ Xl 

(12) 

the equation of (8) corresponding to the tray 1. 
The left hand side of the above equation is an 
increasing continuously differentiable function of 
;~ (use inequality concerning the derivatives of 
ym-~ with respect to ~ ) ,  nonpositive for ,~ = 0 
and non-negative for ~ = 1. Consequently, this 
function has a unique ze ro  x1 ~ [0, 1]. k(.~l) is a 
continuously differentiable function, ym, de- 
pending on /~/9, ,fo and ~m+l with values in 
[0, 1]. The derivatives with respect to ~o, :rm+~ 
and /~/17 of (12) immediately give the desired 
inequalities concerning the derivatives of ym. [] 

Time-scale reduction. We suppose that the trays 

are comparable and that l<<m. Denote 

/4 = ~ ~ the section holdup• Consider the tray 
1 

numbered fl, j~ ~ { 1 , . . . ,  m}, called the ag- 
gregation tray. For each j ~f l ,  we se t /~  = eag/~ 
with 0 < e << 1 and tr~ -~ 1. We have /-/~, = / 4  

(1 - ~ ea~). Consider the following change of 
k j=Aja / 

state coordinate associated to j= 

\ z .  

xF-I=Xja-I~ 

.~m=.~, / 
I 

(13) 

where the composition of each tray j #:ja remains 
unchanged and where the composition on the 
tray jo is replaced by the weighted sum of the 
compositions on the m trays of the section. The 
state equations become 

r , ~ l ~  = L~0 + 9 k ( ~  - £ , ~ -  9 k ( ~ O  

[ ,,,,.e;\ 
- "  - - - ' ;  + gkl ---J'J°-- I 

- ~  - 9 k ( ~ 7 . - , )  - L Y j . - 1  

(14) 

- - "  = L /  - -  J * " -  / Efl~'/ '+IH~+I ~ l - e ~ ,  oc, ] 

+ ¢k(~+;) - L~j.+," - ~  - ¢k(~+1) 

r ~ / ~  = - - ~  Li,,,_, + Vk(xm+l) - - / - ~ F m  ~'~k(x F) 

and are in the standard form (6)• The slow and 
fast subsystems are thus described respectively 
by 

' /-Ix$ = / ~ 0  + ]'~k(xm +1) - /-~m--- -F ],~,k(~l F) 

0 = L~0 + 9 k ( ~  - L ~ -  9 k ( ~ 0  

0 -- [-.X~-2 + ~'Zk(~s) - ] - ~ - 1  - V k ( . ~ - l )  

0 = L~ ~ + ¢ k ( ~ + 2 )  - £~7.+, - ' ~ k ( ~ + , )  

~ , ~ -  9k(~m) 0 = /~Fm--1 "~" ~'k(.~m+l) - -~F 

(15) 
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and 

_ 

a'lH" " T + P) -/-T,3?F -- 

O,( ja _ l I~I d ~  jPa - I = IL.~ F _  2 "F ¢-r k (.~ s ) dT 
--/_~F_, -- 17"k (.~F_ 1 ) 

d£ F 
aJa+ll-I d----~ ° 

- -  L~,..~a+ l - -  l ~ ' k ( , j ~ + l  ) 

d . f  v - m - - F  ( =  + 

- - 

with t = t ie in (16). We denote .~F = (.~bj=#ja. 

(16) 

Theorem 3. We assume that the equilibrium 
function satisfies Assumption 2 and that £, 17", £o 
and £m+1 are continuous time functions such that 
for all t ~ [0, +oo[, l~(t), l?(t) e ]0, +oo[, £o(t) 
[0, 1] and £,,+1(t)~[0, 1] for all t - O .  If the 
initial conditions of (14), (x s'°, xF'O), and of (15), 
x s'°, have their components in [0, 1], then (14) 
and (15) admit continuous solutions on [0, +oo[, 
denoted respectively (£s(t, e), £r(t, e)) and 
(£s(t), £~o(t)), satisfying 

(£s(t, e)) (£s(t)] 
li~mo+ ~fF(t, e) = ~ ( t ) / '  

uniformly on every interval of the form [re, T] 
with 0 < tr < T. 

Proof. Let us verify that all the assertions of the 
Tikhonov's theorem (Tikhonov et al., 1980) (see 
Appendix B) are satisfied: 

• Existence of the solution of the perturbed 
system (14): Theorem 2 proves that (14) ad- 
mits a solution (£s(t, e), £r(t, e)) on [0, +~[; 

• Existence and stability of the fast subsystem 
(16): in (16) L, V, £0, £m+1 and £s are 
constant parameters; consequently, (16) is 
made of two decoupled section of trays, the 
first one corresponding to the trays 1 to ja - 1, 
the second one to the trays j a + l  to m; 
Theorem 2 implies that if £ s e  [0, 1], system 
(16) admits a unique steady state, and if the 
initial condition lies in [0, 1] ' '-1, then (16) is 
globally asymptotically stable; moreover, its 
Jacobian matrix has distinct, real and negative 
eigenvalues; 

• Existence of the solution of the slow 
subsystem (15): if £0 s e  [0, 1], the algebraic 
equations of (15) has a unique solution, £0 r, 

corresponding to the steady state of (16); 
using Lemma 1, (15) becomes 

/_~s _/~X0 + ¢'k(-I~m+l) - ¢zy, o-'(£/¢', £o, £~) 

- L x " - J o ( £ / 9 ,  x, .+ l ) ;  

the proof of the existence of the solution for 
t ~ [0, +oo[ and remaining in [0, 1] is similar to 
the proof of (i) in Theorem 1 [use (10) of 
Lemma 1] and is left to the reader. [] 

Remark 3. Expressed in a less mathematical 
form, the result of Theorem 3 becomes very 
simple. The dynamics of the whole section can 
be approximated by the dynamics of a section 
where the holdup profile is modified as follows: 
the trays j q:Ja have no holdup (0--)/-Ij), the tray 

section  o,dup 

that the global holdup remains unchanged. 
2.3.2. The reduced model of  the column. 

Consider now the overall column. The choice of 
the compartments (sections of consecutive trays) 
has to take into account several considerations 
concerning the holdups. For most columns, the 
holdup profile is as follows: 

• The holdups on external trays 1 and n (reflux 
drum and bottom) are much more important 
than the holdups on any other tray (trays 
2 , . . .  , n -  1); 

• The holdups on external trays are comparable 
to the global holdup of all other trays; 

• The holdups on trays 2 to n - 1  are 
comparable. 

The aggregated model should simultaneously 
have a small dimension and represent correctly 
the column dynamics. 

We can consider that the two external trays 
have their own slow dynamics. For the trays 2 to 
n -  1, the number of compartments constitutes 
a degree of freedom. In the case of the 
depropanizer described in the discussion below, 
open-loop trajectory comparisons between the 
physical model and different aggregated models 
(aggregated models of orders 3, 4 and 5, 
corresponding to aggregations of trays 2 to n - 1 
in respectively 1, 2 and 3 compartments), are 
displayed in Fig. 4. They correspond to 
variations of the feed composition slightly more 
severe than what is usually observed in practice. 
They show that a good tradeoff between 
accuracy and dimension can be obtained with an 
aggregated model of order 5. 

In the sequel, we consider a 5-compartment 
aggregated model as displayed in Fig. 5: 

• The two external trays remain unchanged; 
• The other trays are decomposed into 3 similar 
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I-Y1 

0,4 

0,3 

0,2 

0,1 

0 

order 3 

order 5 ~ //~.~.~ order 4 

~ ~ c a ]  mo, dd. c rd, r 42 , 

20 40 60 80 I00 120 
TIME (~N) 

0,005 

0,004 

0,003 
Y2 

0,002 

0,001 

0 

physical model, order 42 

' ~ " - ~  order 5 

~ ~ 0 r d e r  4 

order 

20 40 60 80 100 120 
TIME (MN) 

FIG. 4. Simulated open-loop responses to a step change in 
the feed composition corresponding to several aggregated 

models of a depropanizer. 

sections: the rectifying section (trays 2 to L) 
with its aggregation tray r; the feed section 
(trays j,  + 1 to L - 1) with its aggregation tray 
b ;  the stripping section (trays L to n - 1) with 

tray 2 F 

rectifying 

L Xr 
compartment 

tray j, 

feed x j/ 
F, z 1 

tray jo I 
stripping 

xs 
compartment 

tray n - 1 

reboiler 

V 

t total condenser 

~ tray 1 

reflux distillate 
) 

L Yl = xl 

l tray j, + 1 

feed 

tray n 
bottom product 

) 

Y2 = Xn 
FIG. 5. Tile aggregation in 5 compartments. 

its aggregation tray s (2 < r < j ,  < b < L < s < 
n). 

According to Theorem 3 (see also Remark 3), 
the reduced model is described by the 
differential-algebraic system 

171t~1 = Vk(x2) - Vxl 

0 = Lx j_ ,  + Vk(xi+ 0 - Lxj  - Vk(x j ) ,  

j = 2  . . . . .  r - 1  

l~Irf~ r = Lx,_x + Vk(x ,+, )  - L x ,  - Vk(x~) 

0 = Lxj_~ + Vk(x j+,)  - Lxj  - Vk(x j ) ,  

j - - r + 1  . . . . .  j r - 1  

I'TIjcr h = Lxjr-x + Vk(xh+a ) - ( L  + F ) x  h 

- V k ( x # )  - Fzf  (17) 

o = (L + e )x j_ ,  + Vk(x j÷,)  - (L  + e )x j  

- V k ( x j ) ,  j = / ~  + 1 . . . . .  s - 1  

f l ,  i~ = (L  + F)X~_l + Vk(x~+l) - ( L  + F)x ,  

- V k ( x 3  

0 = (L  + V)Xj_l + Vk(x j+,)  - ( L  + F)x j  

- Vk(x j ) ,  j = s + a, . . . , n - 1  

I7-I,£, = ( L  + F ) x , _ ,  - (L  + F -  V ) x ,  - V k ( x . ) ,  

where 

& = H .  
Jr is--1 

a.= 2 H,, &= 2 H,, 
2 jr+l 

n-x 
&= E H,, &=H.. 

The substitution of the algebraic equations into 
the 5 differential equations preserves the tri- 
diagonal structure of the original system (1) and 
gives the aggregated model 

" Yq = f l ( x l ,  Xr, L ,  V )  

~, =f,(Xl, x,, x~,, L, v) 
.~, = f h ( x ,  xj,, x, ,  L ,  V, F, zl) 

£, =f , (x  h, xs, x, ,  L, V, F)  (18) 

~. =L(xs ,  x . ,  L,  v ,  F) 

Yl = x l  

Y2 = Xn. 

It results that x s = (x~, x, ,  xit, x , ,  x , ) ,  and x F 
corresponds to the liquid compositions of the 
remaining trays. (18) is called the control model 
and: 

Yx and Y2 are the outputs; 
L and V are the control variables; 
zf is the perturbation; 
F is a measured input; 
The vector f ield f can be defined only with the 
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functions ym of Lemma 1, 

• ISllf l(X1, Xr, L ,  V )  

= - ( V  - L)Xl + v y r - 2 ( L / V ,  x1, Xr) -- Lx 1 

fI, fr(X,, X,, Xj~, L, V) 
= L x 1  -- V y ' - 2 ( L / V ,  x1 ,  x , )  

+ VYi I - r - I (L /V ,  x,, xb) - Lx,  

R~fj~(Xr, Xj,, X,, L, V, F, zr) 
= Lx,  - V Y # - ' - I ( L / V ,  x,, x#) 

+ VYS-J ' - ' ( (L  + F) /V ,  xj,, x~) (19) 

- (L  + F)xj., 

ITtff~(x#,x~,x,,, L,  V, F ) = ( L  + F)xi, 

- VY~-h-~((L + F) /V ,  x#, xs) 

+ VY"-~-~((L + F) /V ,  x~, x,,) 

- (L  + F)xs 

ft,,f.(x~, x . ,  L,  V, F) = (L  + F)x.  

-- V y n - s - I ( ( L  -t- F) /V ,  x~, x,,) 

- ( L  + F - V ) x , , .  

From now on, we shall only work with this 
control model. For obvious notational reasons, x 
and f, previously used for the physical model, 
remain unchanged since no ambiguity is 
possible: x : X S ~" (Xl ,  Xr, Xjf, Xs ,  Xn)  and f = 

(fl, fr, fb, f~, f,,)" 
The proposed reduction preserves the open- 

loop behavior of the physical model. 

Theorem 4. Assume that Assumptions 1 and 2 
hold. Then we have the following assertions: 

(i) For each initial condition x ° in the open 
subset [0, 1] 5, the maximal solution of (18) is 
defined on [0, +o0[ and remains in [0, 1] 5. 

(ii) For each L, V, F and zr, there exists a 
unique steady state £ in ]0, 1[ 5 of system (18). 
Moreover, if k ( x ) > x  for all x e ]0, 1[ then £ 
satisfies 

1 >2~ >£r >£# >£s >2.  >0. 

(iii) If the functions L, V, F and z r are 
constant and if x ° lies in [0, 1] 5, then (18) is 
Lyapunov-stable and its solution converges to 
the unique steady-state associated to L, V, F and 
zl; moreover, for every x e [0, 1] 5, the Jacobian 
matrix a f / a x  has real, distinct and negative 
eigenvalues. 

The proof is a straightforward adaptation of that 
of Theorem 1 using Lemma 1. [] 

Remark 4. Our method is of the same spirit as 
Benallou et al. (1986) or as Espafia and Landau 
(1978) since it produces a reduced model of the 

column where dynamics of trays are replaced by 
dynamics of sections of trays. 

However, if we assume piecewise constant 
equilibrium, our model is not a special case of 
Benallou et al. (1986) compartmental model. Let 
us recall the Benallou et al. compartmentation 
assumption: "The dynamic behavior of a section 
of stages, or a compartment, can be represented 
by that of a single stage having the same holdup 
as the total compartment holdup and the 
composition of the compartment sensitive 
stage". The dynamic behavior of our aggregation 
tray does not satisfy this assumption since, even 
if steady state coincide with the ones of the 
compartment sensitive stage, transients may 
differ. More precisely, if we apply the reduction 
technique of Benallou et al. (1986) to the 5 
compartments case as displayed on Fig. 5, we 
obtain a reduced model whose structure does not 
remain tridiagonal whereas our aggregated 
model does. This results from the application of 
the equations (24) to (32) in Benallou et al. 
(1986). One can verify that the differential 
equation corresponding to the feed compartment 
depends, in Benallou et al. (1986), on x~ and x, ,  
the product compositions, whereas, in our 
aggregated model (18) it does not. On the other 
hand, as in Benallou et al. (1986), the steady 
states of the outputs y~ =xl  and y2=Xn are 
preserved whatever the inputs L, V, F and zf 
are. 

Contrary to Espafia and Landau (1978), we do 
not use bilinear approximations of (1) for which 
the calculated molar fractions do not necessarily 
remain in [0, 1]. Moreover, no identification of 
compartmental parameters is needed here. 

Note also that the qualitative dynamic 
behavior of our aggregated model is deduced 
from the stability analysis of Rosenbrock (1962) 
whereas, for the reduced models of Benallou et 
al. (1986) and Espafia and Landau (1978), this 
analysis remains to be done. 

Remark 5. We can enrich our model by 
including hydraulic effects due to the liquid 
flowing down from tray to tray. These dynamics 
that have been neglected in the physical model 
(1), are, for most industrial columns, much 
faster that the slowest part of the dynamics of 
the compositions and include time constants 
similar to those of the fast part of the 
composition dynamics. Moreover, the applica- 
tion of the Tikhonov theorem to a physical 
model including such hydraulic effects will 
produce the same aggregated model (18) since 
for the slow hydraulic model the liquid holdups 
remain constant. This is why we presented the 
analysis without such hydraulic effects. To fix 
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ideas, the time constants on the depropanizer 
which is considered below, are around 5 mn for 
hydraulics and more than 30mn for the 
compositions. 

3. T H E  N O N L I N E A R  C O N T R O L  L A W  

This section is devoted to the application of 
nonlinear perturbation rejection techniques on 
the control model (18). In most of the 
theoretical results that have been developed for 
nonlinear systems, the controls and the pertur- 
bations appear linearly (see Hirschorn, 1981; 
Isidori et al., 1981; Isidori, 1989). However, the 
extension of these results to our problem, where 
this dependence is nonlinear, does not present 
major difficulties. 

Firstly, we establish, on the control model 
(18), a local constructive existence result of a 
feedback law rejecting feed composition distur- 
bances with stability. Then, we show how such a 
control law can be synthesized as output 
feedback when temperature measurements are 
considered. Finally, the implementation on a 
refinery depropanizer is presented. 

3.1. Nonlinear disturbance rejection with stability 

Theorem 5. Assume that assumption 2 holds 
and additionally that for all x • ]0, 1[, k (x )>x .  
Consider the dynamic system (18) and a 
steady-state, i ,  corresponding to L, 9, P and 2 r 
satisfying assumption 1. The associated steady- 
state values of the outputs are denoted )71 and Y2. 
Then locally around i ,  the following assertions 
hold true: 

(i) There exists a unique control law (L, V), 
solution of the nonlinear algebraic system 
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the Routh-Hurwitz  criterion [see Gantmacher 
(1966) for example] on the linear tangent 
approximation at the steady state. 

According to (i), the unique static feedback is 
locally given by 

L = .~'~.l(Xl, Xr, Xs, Xn, F, ~)l(Xl,  Vi) , Cl~2(Xn, 1./2) ) 

V = Ez(X,, Xr, Xs, X., F, ~pi(X,, Vl), q~2(X., V2)), 

where E1 and E2 are continuously differentiable 
functions. The closed-loop dynamics are thus 

"i, = q , , (x , ,  v , )  

i ,  =fAx,, xr, xs~, 
~'~1(Xl, Xr, Xs, Xn, F, dPi(x,, v,), (Pz(x., vz)), 
Ez(X,, xr, xs, x.,  F, qh(xi, v,), q)z(x., v2))) 

ij~ =/,~(x,, xs~, Xs, Z , ( x , ,  x,,  Xs, x,,, F, 

~ I ( X l ,  Vl) ,  ~)2(Xn, V2)), 

Ez(Xl, x., xs, x.,  F, (23) 

cpi(xl, v,), qgz(x., v2)), F, zs) 

i s ~'fs(Xjl. , Xs, Xn, Z1(Xl ,  Xr, Xs, Xn, F, dpi(xl, v,), 
q~2(x., v2)), Ze(x,, x,, x~, x.,  F, dpi(x,, vl), 

q~2(x., v2)), F) 

i .  = q,2(x., v2). 

The dynamics of xl and x. are decoupled and 
stable by assumption. Consequently, the sta- 
bility, around the steady-state 2, is ensured if 
the zero dynamics, obtained by setting qh to 0, 
q~2 to 0, xl to )71 and x. to )72 in (23), is 
asymptotically stable. That is, if 

i .  = fr(f,, x., Xs,, Z,(f , ,  x., x~, Yz, F, O, 0), 

~'~2Q~l, Xr, Xs, Y2, F, O, 0)) 
i j f  ~'fjf(Xr, Xjy, Xs, Z l ( Y l , X r ,  Xs, Y2 , F, O, 0),  

E2071, x,, x~, )72, F, 0, 0), F, zs) 

.'is = f~(xi~, x~, )72, E1071, x., xs, )72, F, 0, 0), 

E2071, x~, x~, )72, F, 0, 0), F) (24) 

is asymptotically stable. 
In the remaining part of this proof, all 

functions are evaluated at the steady-state. For 
OL 

simplicity's sake, we also denote ~x~ in place of 

- - ,  and the same for V. The equations (22) 
OXr 
defining the control law become 

¢- 

L + F  _ ( L + F  
~'~-- Xs V 1) )72 

- y " - ~ - l {  L+F\---~-, xs, )72) = 0 

when ~)1 = ( ]12=0.  The inequalities (11) imply 
that 

V 3L 3V OL/V 
- - < 0 ,  - - < 0 ,  

L + F Ox. 3x~ 3xr 

a(L + F) /V  
-- 0, 

OX~ 

(25) 

aL/V=o,  aL L aV O(L + F) /V  
. . . . .  >0 ,  <0.  

Ox. Ox~ VOx. ax. 
(26) 

Using (19), the closed-loop system (24) can be 
rewritten as follows: 

/~rir  = - -g l  + gr 

I7tj~js = Fzf - gr - g, (27) 

I:I,i, = - g .  + g,, 

where gl, g,, g~ and g, are the following 
functions of (xr, xjl, xs) 

g,(x, ,  x ,)  = (V(x,, x,)  - L,(xr, x,))y, 

gr(Xr, Xjt, Xs) = V(xr, xs)Yll-r- l(g(Xr),Xr,  Xjt ) 

- I ~ ( x , , x , ) x .  

g~(x. x#, x~) = (L(x., x~) + F)xjt 

- V (x,., xs)Y=-Sr-x( ~-~-~ (xs), xD, x,,) 

g.(xr, x.) = ( L (x .  x.) + F -  V (x., x.)):2. 

Let us now compute the tangent linearization to 
(27). (26) and g r - g ~  = 0 at the steady-state 

0 
imply that - -  (gr - g~) = 0. Symmetrically, we 

0 Oxs 
have ~x~ (gs - g") = 0. Consequently the matrix 

A corresponding to the tangent model of the 
zero dynamics (27) has the form 

A = 

where: 

/ a_, _+ ~ aj 
Hr H, 0 

• a 2  +_bE a3 + b3 a4 + b4 

b3 bl  + b4 

a 1 - 

b l = - - -  

3gl Og, agr 3g~ 
~ - -  ~ ~ a 4  ~ OX r , a2 OX r , a3 Ox# Ox s 

•g$ Ogn b2 =Ogs b3 =Ogs b4 = - - .  
axe '  ax. ' ax,, ' ax. 
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The eigenvalues ~. of A are solution of 

al + a2 a3 
/ ' Ir  /~ ~rr 

az  + b2 a3 + b3 
& 

or equivalently of 

al + a2 -/-Ir~ 

a~ - b2 -- Br~, 

0 

a4 + 34 

b3 bl + b4 

g, as 

a3 0 I -O~X b, - a , -  BsX 

b3 b~ + b4 /-I,~ 

=0,  

=0.  

We have 

ax + a2 

_ a(L - v) Y, + 
•X r 

L + F - V  
L + F Yl-~x,+ L + F 

v[OY/r-r-I~ OL/V OY/:-r-1 + 
OL/V : ~ + V Sx------~- 

F(~I - x,) OL V ['Ovj/-r-1"~l - /  OL/V 

>0 <0 ;~0 < 0 

ay/:- , -1 
+ V - -  L, 

OXr 
~o 

a(VY/,-'-I - Lx~) 

ax, 

aL VY  #-~-1 - (L + F)x, aL 

•X r 

L 

(use gl = g, at the steady-state, (25), (10) with 
m = j y - r - 1  and x, playing the role of Xo, 
Yl >x~). Consequently al + a2 < 0. Similar com- 
putations give 

a3>0,  a l - b 2 < 0 ,  b l - a 4 < 0 ,  

b3>0,  bl + b 4 < 0 .  

Denote 

0( 1 = 

and 

al  + a2 a l  - b2 a3 
, 0 :2=  /_~, ' 0~3=.--=2-, 

n j, 

f l l  = b l  + b4 b l  - a4 b3 

aq, ~2, e3, ill, f12 and f13 are positive. The 
characteristic polynomial of A is then 

~3 + (Or. 1 "Jr" fll  + if3 + ~3)/~2 

+ (1~'1~ 1 -~- O~3tl' 2 

+ a~0c3/31 + 3d33al. 
We have 

f f l + f l l  + Or'3 "Jr" ~3 > 0 

u131 + u3~2 + u331 + P332 + 33ul > 0 

0~2~'3~ 1 @ ~ 2 ~ 3 a l  > 0 

+ ~30(1) > 0(2ti(3~ 1 "Jr" ~2~3~'1 . 

The desired stability result follows from the 
Routh-Hurwitz criterion. [] 

Remark 7. The preceding result is only a local 
stability result. Simulations show that stronger 
stability properties should be expected, but we 
have no proof of them. On the other hand, it 
should be noticed that, in (i) of Theorem 5, tPl 
and t# 2 can be chosen in order to follow an 
arbitrary slow reference model. It results that 
set-point changes are easily handled by such a 
control technique. An integral action can be 
added through vl and v2 in order to remove 
static offsets between the control model and the 
real column. 

Remark 8. Equation (20) shows that x# is not 
required to compute the control law. This results 
from the special tridiagonal structure of the 
reduced model (18) and from the disturbance 
rejection method. More precisely, one can show, 
using the results of Isidori (1989), that the 
characteristic numbers of the outputs Yl and Y2 
with respect to the control are zero which means 
that the control variables affect the first time 
derivatives of Yl and Y2. The perturbation 
rejection method consists in making unobser- 
vable all the state variables which are affected by 
the perturbations and which need a larger 
number of derivations to affect Yl and Y2. 
Indeed, otherwise they would reintroduce the 
effects of the perturbations in the outputs. This 
explains why the feedback makes Xr, Xjf and xs 
unobservable through Yl and Y2 and why x#, 
which affects the outputs after 2 time deriva- 
tions, does not appear in the control law. Note 
that the same results would hold true with more 
compartments and that the feedback scheme 
would remain the same. Namely, this would 
produce only an increase of the number of 
unobservable state variables by a feedback law 
still depending on 4 state variables. 

Remark 9. The closed-loop analysis has been 
done under the condition that k ( x ) > x  for all 
x ~ ]0, 1[. Azeotropic mixtures [see Prausnitz et 
al. (1980) for example] do not satisfy such 
conditions. Nevertheless, the same result can in 
fact be proven by assuming that k ( x ) > x ,  
Vx~]0, a[ and k ( x )< x ,  V x ~ ] a , l [  where 
a ~ ]0, 1[ is the azeotropic composition (k(a)= 
a). The reason is that the steady-state composi- 
tions are all on the same side of a if z r ~: a. 

3.2. Synthesis by output feedback 
The control law of Theorem 5 depends on 

(xt, xr, xs, xn, F) and on the reference model 
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(21). In practice, the product compositions 
(Xl, x ,)  and the feed flow F are measured. But 
the average compositions (Xr, X~) in the rectifying 
and stripping compartments are not measured. 
Nevertheless, (Xr, Xs) can be estimated by means 
of well placed temperatures which leads to a 
reasonable approximation of the control law. 

With the equilibrium function k, the equations 
of the thermodynamic equilibrium also give the 
temperature T on each tray as a function of its 
liquid composition x (see Prausnitz et al., 1980): 
T=O(x) .  We now prove that Tr and ~, the 
temperatures on the aggregation trays r and s, 
can be considered, at the order zero in e, as 
functions of xr and x~ respectively, and thus can 
be seen as additional outputs for system (18). 

Let us return to the compartment of m trays of 
2.3.1. Consider the temperature of the aggreg- 
ated tray j,, ~o, and its liquid composition, £jo. 
We have: ~o = O(£jo). £jo depends on the slow 
variable £s but also on the fast variables £e as 
follows: 

J ~J. 

1 - - E  Z a'j 
j:~j. 

At the order 0 in e, £jo =£s. Consequently, 
~a = O(£s) + O(e). For the overall column, we 
have similarly 

T, = O(xr) + O(e) and T~ = O(x~) + O(e). 

This implies that x r and x~ can 
temperatures on aggregation 
Moreover, these estimates do 
components at the order 0 
feedback law where xr and xs 
O-l(Tr) and O-l(Ts) neither 

be estimated via 
trays r and s. 
not contain fast 
in e. Thus the 
are replaced by 
destabilizes the 

neglected fast dynamics nor the aggregated 
closed-loop system. Otherwise stated, the 
proposed synthesis by output feedback does not 
remix the time scales of the original system [for 
an extended discussion see Kokotovic (1984) or 
Marino and Kokotovic (1988)]. 

To summarize, the control law can be 
computed with the following online measure- 
ments: 

• The product compositions, xl and x,; 
• The rectifying temperature on tray r, T~; 
• The stripping temperature on tray s, T~; 
• The feed flow, F. 

We have observed that the position of the 
aggregation trays r and s does not require great 
precision. For the depropanizer described below, 
several choices of r and s have been explored. 
The corresponding simulations show only slight 
differences. An important byproduct of this 

approach is that, when the setpoints remain 
unchanged for a long period, the measurements 
of the product composition (1-y~,  Y2) are not 
necessary. Consequently, failures on these 
measurements can appear without significantly 
affecting the behavior of the control law. 

Notice that it results from Remark 8 that the 
number of on-line measurements (temperatures) 
does not depend on the number of compart- 
ments of the reduced model. 

3.3. Implementation on a refinery depropanizer 
The control law of Theorem 5 has been 

implemented on a refinery depropanizer (a 
binary column splitting a mixture of propane and 
butane into two products: the top product, 
essentially propane, and the bottom product, 
essentially butane). This depropanizer has the 
following characteristics: 

• 42 theoretical trays (n = 42), feed on tray 21 
(b =21). 

• The holdup profile is as follows: on tray 1 
(reflux drum): 60kmol; on trays 2 to 41: 
2 kmol; on tray 42 (bottom): 30 kmol. 

• The top pressure: 15 bar. 
• A typical steady-state is: saturated liquid feed 

flow of 5 kmol/min with a propane molar 
fraction around 0.35, a reflux flow of 
5kmol/min, a reboiler vapor outflow of 
7 kmol/min, product purities of 0.5% butane 
in the top product, and of 0.5% propane in 
the bottom product. 

For this column, the modeling assumptions are 
valid, and the hypothesis of Theorems 1, 3, 4 
and 5 are satisfied. The real-time control law 
depends on: 

• The molar fraction of butane in the top 
product; 

• The molar fraction of propane in the bottom 
product; 

• The rectifying temperature on tray 11; 
• The stripping temperature on tray 33; 
• The feed flowrate; 
• The top pressure as a parameter in the 

thermodynamic calculations. 

It should be mentioned that the two composition 
measurements are obtained with a delay greater 
than 5 min. The first control L, the reflux flow, is 
directly measured and regulated. The second 
control V, the reboiler vapor outflow, is 
proportional to the reboiler duty which is 
measured and regulated. The thermodynamic 
model (the functions k and O), used to represent 
the binary mixture propane-butane, is borrowed 
from Soave (1972). 

We now present records of real data relative 
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to this depropanizer. On Fig. 6, the variations 
over 10 hours of the product compositions 
(1- y~ and Y2), of the control variables (L and 
V) and of the measured input (F), are 
displayed. At time 0, the control law is switched 
on; the objectives are set to 0.5% butane in the 
distillate (setpoint of 1 - y l )  and to 0.3% 
propane in the bottom product (setpoint of Y2). 
These data suggest two comments. Firstly, 
though important initial offsets exist between 
outputs and setpoints, the objectives are 
reached in 5 hours (the time-constants of the 
linear first-order reference models are around 2 
hours). Secondly, the outputs are only slightly 
modified in spite of severe variations of the feed 
flow F (more than 40% in 15min). This 
demonstrates that the nonliner control law works 
in a large range of operating conditions and 
rejects the perturbations asymptotically. 

To conclude this section, we have compared 
our control technique with the following classical 
SISO method: 

• The reflux flow L is proportional to the feed 
flow F with a gain slowly adapted by PI 
controller depending on the top composition 

Yl; 
• The reboiler duty proportional to V is 

controlled through PI action depending on the 
stripping temperature T~. 

Figure 7 displays on-line data relative to the 
same depropanizer where the nonlinear control 
is removed after t--360 min and is replaced, in 
the absence of feed perturbations, by the SISO 
control described above. The bottom quality 
remains acceptable whereas the top quality 
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FIG. 7. Plant data;  comparison between the aggregated 
nonlinear control and a classical SISO control technique on a 

refinery depropanizer.  

slowly becomes out of specifications. This SISO 
controls the quality of one of the two products in 
a quite satisfactory way, but it is unable to 
control simultaneously the top and bottom 
product qualities. 

4. DISCUSSION 

All the dynamic simulations presented in this 
section correspond to the refinery depropanizer 
of the preceding section and are obtained via the 
dynamic simulator SPEEDUP [User Manual 
(1988)]. Numerical integrations start from the 
same steady-state characterized by: 

• Feed flowrate 5kmol/min, reflux flowrate 
5.088kmol/min, vapor leaving the reboiler 
6.957 kmol/min; 

• Column pressure 15 bar; 
• Feed composition: 2.5% ethane, 35% pro- 

pane, 60% n-butane, 2.5% n-pentane. 

During the first 10 min, the feed compositions 
change to the new values: 2.5% ethane 
(unchanged), 20% propane, 75% n-butane, 
2.5% n-pentane (unchanged). After that, all the 
entries remain unchanged. The thermodynamic 
model used to represent the liquid-vapor 
equilibria is the Soave model (1972). The 
open-loop responses can be seen on Fig. 4 where 
a similar perturbation of the feed composition is 
introduced. 

The set-points are: 0.5% n-butane in the top 
product, 0.5% propane in the bottom product. 
Notice that apart from the two key components 
(propane, n-butane), we add two other secon- 
dary ones, present in practice in small quantities. 

In the control law of Theorem 5, the output 
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dynamics (the functions q~a and q~2) are arbitrary 
stable dynamics. For the simulation tests, we 
choose 

~bl(yl ,  U,) - -  1)1 - - Y ,  cP2(y2, 112) = !)2 - Y-____Z 

where t r=  10 min is constant, vl = 0.995 is the 
top set-point and v2 = 0.005 the bottom one (the 
component chosen to write the balance equa- 
tions is the n-butane). 

Our control technique is now compared with 
other linear and nonlinear nonaggregated 
methods. We do not consider errors on the state 
measurements since an observer ought to be 
designed in each case and the comparisons 
would be hazardous. Only robustness versus 
delays is studied. 

4.1. Why nonlinear control? 
We compare, by simulation, the performance 

of the nonlinear control law of Theorem 5 with 
the linear geometric control law of Takamatsu et 
al. (1979). This linear control law is the solution 
of the linear system 

al,2b2,1 6L + al,2b2, 2 ~ V  = ~x 1 - (a2,1 + al,2a2A ) 

x6xl - al,2(al,1 + a2,2) 

X~X2 -- at,2a2,3 ~x3 

b,,,1 6L + bn. 2 6 V  = ~)Xn -- a.,,,-i 6x,,_l 

- a . , , .  6 x , ,  - b . , 1  6F, 

where 

(ai,j)x~_i,j~,, and ( b J ~ i ~ . a = l ,  2 are obtained by 
linearization at the steady-state; 
(6xj)~j<,, are the deviations of the state x (see 
system (1)), (6L, 6V) the deviations of the 
control (L, V) and 6F the deviation of the 
measured input F; 
~x~ and 6x,, are the closed-loop output 
dynamics, chosen linear and stable: 

1 1 1 
iSxl = - (-~ + ~-O) & ,  - ~-~ 6x, 

(28) 
6X,, 8xo= 

with 0 = 5 m i n ,  a constant and 6x1= 
al,1 6Xl + a~.2 (~X2. 

In simulations, we suppose that the part of the 
state required for control is measured directly 
(the composition of propane on tray 1 and 2, 
used for the control, are calculated by 1 minus 
the true compositions of n-butane on these 
trays). 

Figure 8 corresponds to the closed-loop output 
responses to feed composition perturbations, 
firstly when the state is perfectly known and 
secondly when a measurement delay of 5 min is 
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FIG. 8. Simulation data; comparison between the aggregated 
nonlinear control law and the linear geometric control law 

(depropanizer, step change of the feed composition). 

introduced. This delay corresponds to the 
resident time in the chromatograph, the 
composition sensor generally used for a de- 
propanizer. The linear control law works better 
than the nonlinear aggregated one if the 
measurements are perfect and without delays. 
But, the nonlinear aggregated control law is less 
sensitive to measurement delays, whereas the 
linear one blows up in their presence. 

In other simulations, we have observed that 
the parameter 0 of (28) must be carefully 
chosen: if 0 is too large, for instance greater 
than 10min, the linear control law destabilizes 
the column. The gains of the control law must be 
large enough to maintain the linear model in its 
validity region that seems to be small. 

4.2. Why aggregation? 
We have also compared the nonlinear 

aggregated control law with the nonlinear 
control law rejecting feed composition distur- 
bances in the system (1). 

We have proven in L6vine and Rouchon 
(1986) that, at the steady-state, the nonlinear 
control law of Gauthier et al. (1983) is singular. 
In order to bypass this difficulty, one can look 
for nonmaximal invariant distributions (see 
Isidori, 1989). Since on the singularity xl = 
k(x2), the reader can verify that this leads to 
rejecting the perturbation on the new output 
functions (y~=k(x2),y2=xn). That is, we 
change the top output (xl) to the propane 
composition of the vapor leaving tray 2 (k(x2)). 
Clearly, since t ' 1 1 x 1 = V ( k ( x 2 ) - x l ) ,  if x2 is 
constant then x~ is also constant. With these new 
outputs the control law is regular near the 
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nonlinear control law and the complete nonlinear one 
elaborated on the physical model (depropanizer, step change 

of the feed composition). 

steady-state and given by 

d k ,  , x l  - x2 L + d k  - k ( x 2 )  V -~ ~x;) ~ "~ (x2) k(X3)H2 

= vl - k(x2) 

fl (29) 
x,_l--X, L +X,, -k(x,) V 

n. n.  

U 2 - x n  Xn--Xn-1  = - - t  F, # I-I. 

where we chose linear stable output dynamics 
with fl = 10 min (Vl = 0.995 and v2 -- 0.005). 

As for the linear geometric control, two 
simulations have been made: the first one with 
perfect state measurements and no delay, the 
second one with a measurement delay of 5 mn 
(see Fig. 9). The complete nonlinear control law 
works perfectly without delays. But the linear 
geometric control destabilizes the column in 
the presence of delays. Instead of the linear 
geometric control, the choice of the parameter fl 
in (29) is not important: with perfect state 
knowledge, stability is ensured if fl > 0. 

5. CONCLUSIONS 
We have applied the nonlinear perturbation 

rejection techniques to an aggregated model of 
distillation columns. The obtained control law is 
shown to be robust and simple to implement. It 
is actually working on two depropanizers and 
two debutanizers of ELF-FRANCE. 

Another by-product of our control technique 
concerns the design of the instrumentation of 
the columns. The proposed control law uses 

intermediate temperatures; their positions can 
be adjusted in order to give the best closed-loop 
responses (composition and noise sensitivities). 

The same technique can be extended to other 
counter-current separation processes, as in 
DuchSne (1988), where counter-current mixer- 
settler extractors are studied and similar results 
are obtained. Moreover, the extensions of these 
results to more complex distillation columns 
(more than two components, several feeds, side 
products, networks of columns) seems to be 
reasonable. 

The implementation on the refinery de- 
propanizer has shown that controlling product 
qualities has several industrial interests, in 
particular: 

• Energy savings: the purity margins that the 
operator maintains with the final product 
specification can be reduced, as well as the 
associated energy consumption (for the de- 
propanizer, savings are greater than 15%); 

• Productivity gains: the internal fluid circula- 
tion is also reduced, the trays are less flooded 
and the feed fiowrate can be increased (for the 
depropanizer, productivity gains are greater 
than 15%); 

• Process flexibility. 
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APPENDIX A. TWO RESULTS 
Rosenbrock (1962) has proven the result given below 

(Theorem 6 of the appendix). 

Rosenbruck's theorem. Consider the differential system of 
dimension p >0,  ~=  0(~). Assume that ~ = (~i)i=l.....e 
belongs to ~,  a bounded, closed and convex subset of •P, 
and that tP=(q~i)i_l....p with its partial derivatives are 
continuous functions of ~. Suppose that: 

(i) For each initial condition in f2, the solution remains in 
f2; 

(ii) For all i e {1 . . . . .  p}, the function of 

= _ ~ ,  aOk 
~/'i(~) /..~, ~ (~) (30) 

is non-negative; 
(iii) For all i and k in {1 . . . . .  p} such that i :#k,  

aepk/ a~, >--0; 
(iv) Given any i~{1 . . . . .  p} for which ~Pi=0, there 

exists jve i  in (1 . . . . .  p} such that ac j /a~i#:0;  if ~pj=0, 
there exists k~ {1 . . . . .  p} different of i and ] such that 
a0k/a~):~0; if g'k =0,  then . . .  ; moreover, this process 
always leads in the end to some l ~ {1 . . . . .  p} for which 

Then there exists a unique steady-state in 2 ,  every 
solution starting in ~ converges to this steady-state and the 
function 

~ 14~k(~)l is a Lyapunov function of the system. 
k = l  

We will also use the following lemma. 

Lemma 2. Consider a = (ai) and b = (hi), two real vectors of 
dimension p > 0 ,  and the real p ×p  matrix J = ( J i j )  
constructed by means of a and b as follows: 

• F o r i = 2  . . . . .  P, Ji, i I=ai l; 
• For i = 1 . . . . .  P, Ji,i  = - a i  - b i ;  
• For i = 1  . . . . .  p - I ,  J i , i + l = b i + l  ", 
• For i, j = 1 . . . . .  p such that li - Jl > 1, J~,j = 0. 

If for all i~{0  . . . . .  p}, ai>O and bi>O, then the 
eigenvalues of J are distinct, real and negative. 

The proof of this lemma is a straightforward application of a 
classical result relative to Jacobi's matrix [Gantmacher (1966, 
p. 99)]. 

APPENDIX B. THE TIKHONOV THEOREM 
Consider the singularly perturbed system 

~s =[S(xS ' x F, u(t), w(t), e) xS(O) = x  s'° 

e.icr=fF(x s, X F, U(t), w(t), e) xF(o) = X  F'0, 

which admits continuous solution (xS(t, e),xF(t, e)) in 
[0, T], T>O ( fs  and f v  are continously differentiable 
functions). The associated slow subsystem is 

ffS = f S ( x S  ' X F, u(t), w(t), O) xS(O) = x  s'° 

0 = f F ( x S ,  X F, U(t), w(t), 0). 

We suppose that it admits a continuous solution (xS(t), xF(t)) 
in [0, T]. For i e [0, T], the associated fast subsystem is 

dx F 
-~-=/'~(Xo~(7), x'~(r), u(O, "(0, o), 

where r = t/e. 

Tokhonov's theorem. If, for each ?~ [0, T j, the tangent 
linearization of the fast subsystem around x~(?) produces a 
stable linear system, and if x F'° belongs to the region of 
attraction of xor(0) then 

lim xS(t, e) = xS(t) 
e~o + 

lim xr(t,  e)=XF(t) 
e ~ O  + 

uniformly on all closed subsets of ]0, T[. More details can be 
found for example in Tikhonov et al. (1980). 


