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A computation due to Holmgren1

Take the 1D-heat equation, ∂θ∂t (x , t) = ∂2θ
∂x2 (x , t) for x ∈ [0,1] and

set, formally, θ =
∑∞

i=0 ai(t)x i

i! . Since,

∂θ

∂t
=
∞∑
i=0

dai

dt

(
x i

i!

)
,

∂2θ

∂x2 =
∞∑
i=0

ai+2

(
x i

i!

)

the heat equation ∂θ
∂t = ∂2θ

∂x2 reads d
dt ai = ai+2 and thus

a2i+1 = a(i)
1 , a2i = a(i)

0

With two arbitrary smooth time-functions f (t) and g(t), playing
the role of a0 and a1, the general solution reads:

θ(x , t) =
∞∑
i=0

f (i)(t)
(

x2i

(2i)!

)
+ g(i)(t)

(
x2i+1

(2i + 1)!

)
.

Convergence issues ?
1E. Holmgren, Sur l’équation de la propagation de la chaleur. Arkiv für

Math. Astr. Physik, t. 4, (1908), p. 1-4



Gevrey functions2

I A C∞-function [0,T ] 3 t 7→ f (t) is of Gevrey-order α when,

∃ M,A > 0, ∀t ∈ [0,T ],∀i ≥ 0, |f (i)(t)| ≤ MAiΓ(1 + αi)

where Γ is the gamma function with n! = Γ(n + 1), ∀n ∈ N.
I Analytic functions correspond to Gevrey-order ≤ 1.
I When α > 1, the set of C∞-functions with Gevrey-order α

contains non-zero functions with compact supports.
Prototype of such functions:

t 7→ f (t) =

exp
(
−
(

1
t(1−t)

) 1
α−1
)

if t ∈]0,1[

0 otherwise.

2M. Gevrey: La nature analytique des solutions des équations aux
dérivées partielles, Ann. Sc. Ecole Norm. Sup., vol.25, pp:129–190, 1918.



Gevrey functions and exponential decay3

I Take, in the complex plane, the open bounded sector S
those vertex is the origin. Assume that f is analytic on S
and admits an exponential decay of order σ > 0 and type A
in S:

∃C, ρ > 0, ∀z ∈ S, |f (z)| ≤ C|z|ρ exp
(
−1

A|z|σ

)
Then in any closed sub-sector S̃ of S with origin as vertex,
exists M > 0 such that

∀z ∈ S̃/{0}, |f (i)(z)| ≤ MAi Γ

(
1 + i

(
1
σ

+ 1
))

I Rule of thumb: if a piece-wise analytic f admits an
exponential decay of order σ then it is of Gevrey-order
α = 1

σ + 1.
3J.P. Ramis: Dévissage Gevrey. Astérisque, vol:59-60, pp:173–204, 1978.

See also J.P. Ramis: Séries Divergentes et Théories Asymptotiques; SMF,
Panoramas et Synthèses, 1993.



Gevrey space and ultra-distributions4

Denote by Dα the set of functions R 7→ R of order α > 1 and
with compact supports. As for the class of C∞ functions, most
of the usual manipulations remain in Dα:

I Dα is stable by addition, multiplication, derivation,
integration, ....

I if f ∈ Dα and F is an analytic function on the image of f ,
then F (f ) remains in Dα.

I if f ∈ Dα and F ∈ L1
loc(R) then the convolution f ∗ F is of

Gevrey-order α on any compact interval.

As for the construction of D′, the space of distributions (the dual
of D the space of C∞ functions of compact supports), one can
construct D′α ⊃ D′, a space of ultra-distributions, the dual of
Dα ⊂ D.

4See, e.g., I.M. Guelfand and G.E. Chilov: Les Distributions, tomes 2 et 3.
Dunod, Paris,1964.



Symbolic computations: s := d/dt , s ∈ C
The general solution of θ′′ = sθ reads (′ := d/dx)

θ = cosh(x
√

s) f (s) +
sinh(x

√
s)√

s
g(s)

where f (s) and g(s) are the two constants of integration. Since
cosh and sinh gather the even and odd terms of the series
defining exp, we have

cosh(x
√

s) =
∑
i≥0

si x2i

(2i)!
,

sinh(x
√

s)√
s

=
∑
i≥0

si x2i+1

(2i + 1)!

and we recognize θ =
∑∞

i=0 f (i)(t)
(

x2i

(2i)!

)
+ g(i)(t)

(
x2i+1

(2i+1)!

)
.

For each x , the operators cosh(x
√

s) and sinh(x
√

s)/
√

s are
ultra-distributions of D′2− :∑

i≥0

(−1)ix2i

(2i)!
δ(i)(t),

∑
i≥0

(−1)ix2i+1

(2i + 1)!
δ(i)(t)

with δ, the Dirac distribution.



Entire functions of s = d/dt as ultra-distributions
I C 3 s 7→ P(s) =

∑
i≥0 aisi is an entire function when the

radius of convergence is infinite.
I If its order at infinity is σ > 0 and its type is finite, i.e.,
∃M,K > 0 such that ∀s ∈ C, |P(s)| ≤ M exp(K |s|σ), then

∃A,B > 0 | ∀i ≥ 0, |ai | ≤ A
Bi

Γ(i/σ + 1)
.

cosh(
√

s) and sinh(
√

s)/
√

s are entire functions of order
σ = 1/2 and of type 1.

I Take P(s) of order σ < 1 with s = d/dt . Then P ∈ D′1
σ

− :

P(s)f (s) corresponds, in the time domain, to absolutely
convergent series

P(s)y(s) ≡
∞∑

i=0

ai f (i)(t)

when t 7→ f (t) is a C∞-function of Gevrey-order α < 1/σ.



Motion planning (trajectory generation)

?

I Difficult problem because it requires, in general, the
integration of the open-loop dynamics

d
dt

x = f (x ,u(t)).

I One fundamental issue in system theory: controllability.



Trajectory tracking (stabilization)

real trajectory

reference trajectory

I Compute ∆u, u = ur + ∆u, such that ∆x = x − xr
converges to 0 at t tends to +∞ (closed-loop stability).

I Another fundamental issue in system theory: feedback.



Motion planning for the 1D heat equation
∂x θ(0, t) = 0

θ(1, t) = uθ(x, t)

x0 1

The data are:
1. the model relating the control input u(t) to the state,

(θ(x , t))x∈[0,1]:

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t), x ∈ [0,1]

∂θ

∂x
(0, t) = 0 θ(1, t) = u(t).

2. A transition time T > 0, the initial (resp. final) state:
[0,1] 3 x 7→ p(x) (resp. q(x))

The goal is to find the open-loop control [0,T ] 3 t 7→ u(t)
steering θ(x , t) from the initial profile θ(x ,0) = p(x) to the final
profile θ(x ,T ) = q(x).



Series solutions
Set, formally

θ =
∞∑

i=0

ai(t)
x i

i!
,

∂θ

∂t
=
∞∑

i=0

dai

dt

(
x i

i!

)
,

∂2θ

∂x2 =
∞∑

i=0

ai+2

(
x i

i!

)

and ∂θ
∂t = ∂2θ

∂x2 reads d
dt ai = ai+2. Since a1 = ∂θ

∂x (0, t) = 0 and
a0 = θ(0, t) we have

a2i+1 = 0, a2i = a(i)
0

Set y := a0 = θ(0, t) we have, in the time domain,

θ(x , t) =
∞∑

i=0

(
x2i

(2i)!

)
y (i)(t), u(t) =

∞∑
i=0

(
1

(2i)!

)
y (i)(t)

that also reads in the Laplace domain (s = d/dt):

θ(x , s) = cosh(x
√

s) y(s), u(s) = cosh(
√

s)y(s).



An explicit parameterization of trajectories
For any C∞-function y(t) of Gevrey-order α < 2, the time
function

u(t) =
+∞∑
i=1

y (i)(t)
(2i)!

is well defined and smooth. The (x , t)-function

θ(x , t) =
+∞∑
i=1

y (i)(t)
(2i)!

x2i

is also well defined (entire versus x and smooth versus t). More
over for all t and x ∈ [0,1], we have, whatever t 7→ y(t) is,

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t),
∂θ

∂x
(0, t) = 0, θ(1, t) = u(t)

An infinite dimensional analogue of differential flatness.5
5Fliess et al: Flatness and defect of nonlinear systems: introductory theory

and examples, International Journal of Control. vol.61, pp:1327–1361. 1995.



Motion planning of the heat equation6

Take
∑

i≥0 ai
ξi

i! and
∑

i≥0 bi
ξi

i! entire functions of ξ. With σ > 1

y(t) =

∑
i≥0

ai
t i

i!

( e
−Tσ

(T−t)σ

e
−Tσ

tσ + e
−Tσ

(T−t)σ

)
+

∑
i≥0

bi
t i

i!

( e
−Tσ

tσ

e
−Tσ

tσ + e
−Tσ

(T−t)σ

)

the series

θ(x , t) =
+∞∑
i=1

y (i)(t)
(2i)!

x2i , u(t) =
+∞∑
i=1

y (i)(t)
(2i)!

.

are convergent and provide a trajectory from

θ(x ,0) =
∑
i≥0

ai
x2i

(2i)!
to θ(x ,T ) =

∑
i≥0

bi
x2i

(2i)!

6B. Laroche, Ph. Martin, P. R.: Motion planning for the heat equation. Int.
Journal of Robust and Nonlinear Control. Vol.10, pp:629–643, 2000.



Real-time motion planning for the heat equation
Take σ > 1 and ε > 0. Consider the positive function

φε(t) =
exp

(
−ε2σ

(−t(t+ε))σ

)
Aε

for t ∈ [−ε,0]

prolonged by 0 outside [−ε,0] and where the normalization
constant Aε > 0 is such that

∫
φε = 1.

For any L1
loc signal t 7→ Y (t), set yr = φε ∗Y : its order 1 + 1/σ is

less than 2. Then θr = cosh(x
√

s)yr reads

θr (x , t) = Φx ,ε ∗ Y (t), ur (t) = Φ1,ε ∗ Y (t),

where for each x , Φx ,ε = cosh(x
√

s)φε is a smooth time
function with support contained in [−ε,0]. Since ur (t) and the
profile θr (·, t) depend only on the values of Y on [t − ε, t ], such
computations are well adapted to real-time generation of
reference trajectories t 7→ (θr ,ur ) (see matlab code heat.m).



Quantum particle inside a moving box7

Schrödinger equation in a Galilean frame:

ı
∂φ

∂t
= −1

2
∂2φ

∂z2 , z ∈ [v − 1
2
, v +

1
2

],

φ(v − 1
2
, t) = φ(v +

1
2
, t) = 0

7P.R.: Control of a quantum particle in a moving potential well. IFAC 2nd
Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,
2003. See, for the proof of nonlinear controllability, K. Beauchard and J.-M.
Coron: Controllability of a quantum particle in a moving potential well; J. of
Functional Analysis, vol.232, pp:328–389, 2006.



Particle in a moving box of position v

I In a Galilean frame

ı
∂φ

∂t
= −1

2
∂2φ

∂z2 , z ∈ [v − 1
2
, v +

1
2

],

φ(v − 1
2
, t) = φ(v +

1
2
, t) = 0

where v is the position of the box and z is an absolute
position.

I In the box frame x = z − v :

ı
∂ψ

∂t
= −1

2
∂2ψ

∂x2 + v̈xψ, x ∈ [−1
2
,
1
2

],

ψ(−1
2
, t) = ψ(

1
2
, t) = 0



Tangent linearization around state ψ̄ of energy ω̄

With8 −1
2
∂2ψ̄
∂x2 = ω̄ψ̄, ψ̄(−1

2) = ψ̄(1
2) = 0 and with

ψ(x , t) = exp(−ıω̄t)(ψ̄(x) + Ψ(x , t))

Ψ satisfies

ı
∂Ψ

∂t
+ ω̄Ψ = −1

2
∂2Ψ

∂x2 + v̈x(ψ̄ + Ψ)

0 = Ψ(−1
2
, t) = Ψ(

1
2
, t).

Assume Ψ and v̈ small and neglecte the second order term
v̈xΨ:

ı
∂Ψ

∂t
+ ω̄Ψ = −1

2
∂2Ψ

∂x2 + v̈xψ̄, Ψ(−1
2
, t) = Ψ(

1
2
, t) = 0.

8Remember that
∫ 1/2
−1/2 ψ̄

2(x)dx = 1.



Operational computations s = d/dt

The general solution of (′ stands for d/dx)

(ıs + ω̄)Ψ = −1
2

Ψ′′ + s2vxψ̄

is
Ψ = A(s, x)a(s) + B(s, x)b(s) + C(s, x)v(s)

where

A(s, x) = cos
(

x
√

2ıs + 2ω̄
)

B(s, x) =
sin
(
x
√

2ıs + 2ω̄
)

√
2ıs + 2ω̄

C(s, x) = (−ısxψ̄(x) + ψ̄′(x)).



Case x 7→ φ̄(x) even

The boundary conditions imply

A(s,1/2)a(s) = 0, B(s,1/2)b(s) = −ψ′(1/2)v(s).

a(s) is a torsion element: the system is not controllable.
Nevertheless, for steady-state controllability, we have

b(s) = −ψ̄′(1/2)
sin
(1

2

√
−2ıs + 2ω̄

)
√
−2ıs + 2ω̄

y(s)

v(s) =
sin
(1

2

√
2ıs + 2ω̄

)
√

2ıs + 2ω̄
sin
(1

2

√
−2ıs + 2ω̄

)
√
−2ıs + 2ω̄

y(s)

Ψ(s, x) = B(s, x)b(s) + C(s, x)v(s)



Series and convergence

v(s) =
sin
(1

2

√
2ıs + 2ω̄

)
√

2ıs + 2ω̄
sin
(1

2

√
−2ıs + 2ω̄

)
√
−2ıs + 2ω̄

y(s) = F (s)y(s)

where the entire function s 7→ F (s) is of order 1/2,

∃K ,M > 0, ∀s ∈ C, |F (s)| ≤ K exp(M|s|1/2).

Set F (s) =
∑

n≥0 ansn where |an| ≤ K n/Γ(1 + 2n) with K > 0
independent of n. Then F (s)y(s) corresponds, in the time
domain, to ∑

n≥0

any (n)(t)

that is convergent when t 7→ y(t) is C∞ of Gevrey-order α < 2.



Steady state controllability

Steering from Ψ = 0, v = 0 at time t = 0, to Ψ = 0, v = D at
t = T is possible with the following C∞-function of
Gevrey-order σ + 1:

[0,T ] 3 t 7→ y(t) =



0 for t ≤ 0

D̄
exp
(
−( T

t )
1
σ

)
exp
(
−( T

t )
1
σ

)
+exp

(
−( T

T−t )
1
σ

) for 0 < t < T

D̄ for t ≥ T

with D̄ = 2ω̄D
sin2(
√
ω̄/2)

. The fact that this C∞-function is of

Gevrey-order σ + 1 results from its exponential decay of order
1/σ around 0 and T .



Practical computations via Cauchy formula

Using the "magic" Cauchy formula

y (n)(t) =
Γ(n + 1)

2ıπ

∮
γ

y(t + ξ)

ξn+1 dξ

where γ is a closed path around zero,
∑

n≥0 any (n)(t) becomes

∑
n≥0

an
Γ(n + 1)

2ıπ

∮
γ

y(t + ξ)

ξn+1 dξ =
1

2ıπ

∮
γ

∑
n≥0

an
Γ(n + 1)

ξn+1

 y(t+ξ) dξ.

But ∑
n≥0

an
Γ(n + 1)

ξn+1 =

∫
Dδ

F (s) exp(−sξ)ds = B1(F )(ξ)

is the Borel/Laplace transform of F in direction δ ∈ [0,2π].



Practical computations via Cauchy formula (end)
(matlab code Qbox.m)

In the time domain F (s)y(s) corresponds to

1
2ıπ

∮
γ

B1(F )(ξ)y(t + ξ) dξ

where γ is a closed path around zero. Such integral
representation is very useful when y is defined by convolution
with a real signal Y ,

y(ζ) =
1

ε
√

2π

∫ +∞

−∞
exp(−(ζ − t)2/2ε2)Y (t) dt

where R 3 t 7→ Y (t) ∈ R is any measurable and bounded
function. Approximate motion planning with:

v(t) =

∫ +∞

−∞

[
1

ıε(2π)
3
2

∮
γ

B1(F )(ξ) exp(−(ξ − τ)2/2ε2) dξ

]
Y (t−τ) dτ.



A free-boundary Stefan problem9

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t)− ν ∂θ
∂x

(x , t)− ρθ2(x , t), x ∈ [0, y(t)]

θ(0, t) = u(t), θ(y(t), t) = 0
∂θ

∂x
(y(t), t) = − d

dt
y(t)

with ν, ρ ≥ 0 parameters.
9W. Dunbar, N. Petit, P. R., Ph. Martin. Motion planning for a non-linear

Stefan equation. ESAIM: Control, Optimisation and Calculus of Variations,
9:275–296, 2003.



Series solutions

I Set θ(x , t) =
∑∞

i=0 ai(t)
(x−y(t))i

i! in

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t)− ν ∂θ
∂x

(x , t)− ρθ2(x , t), x ∈ [0, y(t)]

θ(0, t) = u(t), θ(y(t), t) = 0,
∂θ

∂x
(y(t), t) = − d

dt
y(t)

Then ∂θ
∂t = ∂2θ

∂x2 yields

ai+2 =
d
dt

ai − ai−1
d
dt

y + νai+1 + ρ

i∑
k=0

(
i
k

)
ai−kak

and the boundary conditions: a0 = 0 and a1 = − d
dt y .

I The series defining θ admits a strictly positive radius of
convergence as soon as y is of Gevrey-order α strictly less
than 2.



Growth of the liquide zone with θ ≥ 0
ν = 0.5, ρ = 1.5, y goes from 1 to 2.



Conclusion
I For other 1D PDE of engineering interest where motion

planning can be obtained via Gevrey functions, see the
book of J. Rudolph: Flatness Based Control of Distributed
Parameter Systems (Shaker-Germany, 2003)

I For feedback design on linear 1D parabolic equations, see
the book of M. Krstić and A. Smyshlyaev : Boundary
Control of PDEs: a Course on Backstepping Designs
(SIAM, 2008).

I Open questions:
I Combine divergent series and smallest-term summation

(see the PhD of Th. Meurer: Feedforward and Feedback
Tracking Control of Diffusion-Convection-Reaction Systems
using Summability Methods (Stuttgart, 2005)).

I 2D heat equation with a scalar control u(t): with modal
decomposition and symbolic computations, we get
u(s) = P(s)y(s) with P(s) an entire function (coding the
spectrum) of order 1 but infinite type
|P(s)| ≤ M exp(K |s| log(|s|)). It yields divergence series for
any C∞ function y 6= 0 with compact support.



u(s) = P(s)y(s) for 1D and 2D heat equations
I 1D heat equation: eigenvalue asymptotics λn ∼ −n2:

Prototype: P(s) =
+∞∏
n=1

(
1− s

n2

)
=

sinh(π
√

s)

π
√

s

entire function of order 1/2.
I 2D heat equation in a domain Ω with a single scalar control

u(t) on the boundary ∂Ω1 (∂Ω = ∂Ω1
⋃
∂Ω2):

∂θ

∂t
= ∆θ on Ω, θ = u(t) on ∂Ω1,

∂θ

∂n
= 0 on ∂Ω2

Eigenvalue asymptotics λn ∼ −n

Prototype: P(s) =
+∞∏
n=1

(
1 +

s
n

)
exp(−s/n) =

exp(−γs)

sΓ(s)

entire function of order 1 but of infinite type10

10For the links between the distributions of the zeros and the order at
infinity of entire functions see the book of B.Ja Levin: Distribution of Zeros of
Entire Functions; AMS, 1972.
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