Fonctions Gevrey et contréle frontiere de
certaines EDP
(Gevrey functions and boundary control of some PDE)

Pierre Rouchon

Mines ParisTech
Centre Automatique et Systémes
Mathématiques et Systemes
pierre.rouchon@mines-paristech.fr
http://cas.ensmp.fr/~rouchon/index.html

Colloquium CESAME-MAPA
UCL, 4 juin 2009



Outline

Gevrey functions
A computation due to Holmgren
Gevrey-orders
Operators on Gevrey functions

Motion Planning
The 1D heat equation
Quantum particle inside a moving box
A free-boundary Stefan problem

Conclusion



A computation due to Holmgren1
Take the 1D-heat equation, 2 ot (x,t) = g—(x t) for x € [0,1] and

set, formally, 6 = >"7°, ai(t)%. Since,
90 da [x Fo T -~ x!
a2 d (n) o2~ 2 e (,.)
= /=

the heat equation g— reads dta, = aj,p and thus

i i
Biv1=a, ai=ay

With two arbitrary smooth time-functions f(t) and g(t), playing
the role of ay and ay, the general solution reads:

<0=210 () -0 (@i )

Convergence issues ?

'E. Holmgren, Sur I'équation de la propagation de la chaleur. Arkiv fiir
Math. Astr. Physik, t. 4, (1908), p. 1-4




Gevrey functions?

» A C-function [0, T] > t — f(t) is of Gevrey-order a when,
IM,A>0, Vtel0,T],Vi>0, [fO)<MAT( + i)

where I is the gamma function with n! =T(n+ 1), Vn € N.
» Analytic functions correspond to Gevrey-order < 1.

» When « > 1, the set of C>°-functions with Gevrey-order a
contains non-zero functions with compact supports.
Prototype of such functions:

1

s K1) = exp<—(t(11_t))a1) it £ €]0,1[

0 otherwise.

2M. Gevrey: La nature analytique des solutions des équations aux
dérivées partielles, Ann. Sc. Ecole Norm. Sup., vol.25, pp:129-190, 1918.



Gevrey functions and exponential decay?

» Take, in the complex plane, the open bounded sector S
those vertex is the origin. Assume that f is analyticon S
and admits an exponential decay of order ¢ > 0 and type A
inS:

3,00, vzes, |f(Z) < Clzlexp <A|Z1|U>

Then in any closed sub-sector S of S with origin as vertex,
exists M > 0 such that

vz e §/{0}, |f(z2)| < MA'F<1 ”(;“))

» Rule of thumb: if a piece-wise analytic f admits an
exponential decay of order o then it is of Gevrey-order
1

3J.P. Ramis: Dévissage Gevrey. Astérisque, vol:59-60, pp:173—204, 1978.
See also J.P. Ramis: Séries Divergentes et Théories Asymptotiques; SMF,
Panoramas et Syntheses, 1993.



Gevrey space and ultra-distributions®

Denote by D, the set of functions R — R of order « > 1 and
with compact supports. As for the class of C* functions, most
of the usual manipulations remain in D,:

» D, is stable by addition, multiplication, derivation,
integration, ....

» if f € D, and F is an analytic function on the image of f,
then F(f) remains in D,,.

» if f € D, and F € L} (R) then the convolution f x F is of

loc
Gevrey-order o« on any compact interval.

As for the construction of D', the space of distributions (the dual
of D the space of C*° functions of compact supports), one can
construct D!, D D/, a space of ultra-distributions, the dual of

D, CD.

4See, e.g., .M. Guelfand and G.E. Chilov: Les Distributions, tomes 2 et 3.
Dunod, Paris,1964.



Symbolic computations: s := d/dt seC
The general solution of §” = s reads (' := d/dx)

smh\(/)%\/E) a(s)

where f(s) and g(s) are the two constants of integration. Since
cosh and sinh gather the even and odd terms of the series
defining exp, we have

cosh(xy/s) = Z (2/i

i>0

6 = cosh(x+/s) f(s) +

smh 2/+1

and we recognize 6 = 572, f()(t) (éf;‘) + g(i)(t) (%)
For each x, the operators cosh(x+/s) and sinh(x\/s)/\/s are
ultra-distributions of D,_:

—1)ix2 —1)ix2+1
> e 0 X a0

i>0 i>0

with §, the Dirac distribution.



Entire functions of s = d/dt as ultra-distributions
» C3 s P(s) =Y ,50as is an entire function when the
radius of convergence is infinite.

» If its order at infinity is o > 0 and its type is finite, i.e.,
dM, K > 0 such that Vs € C, |P(s)| < Mexp(K|s|?), then

Bi
(ijo+1)

cosh(+/s) and sinh(y/s)/+/s are entire functions of order
o =1/2 and of type 1.

» Take P(s) of order o < 1 with s =d/at. Then P D', :

P(s)f(s) corresponds, in the time domain, to absolutély
convergent series

JAB>0|Vi>0, |al<A

P(s)y(s) Z a; fO(t)

when t — f(t) is a C*>-function of Gevrey-order a < 1 /0.



Motion planning (trajectory generation)

» Difficult problem because it requires, in general, the
integration of the open-loop dynamics

gtx = f(x, u(t)).

» One fundamental issue in system theory: controllability.



Trajectory tracking (stabilization)

. ”
real trajectory vl
L -,
s’

7
Awx Pag .
. - reference trajectory
-
- —.’Qj
-

» Compute Au, u = uy + Au, such that Ax = x — x;
converges to 0 at t tends to +oo (closed-loop stability).

» Another fundamental issue in system theory: feedback.



Motion planning for the 1D heat equation
0,6(0,1) = 0

o(x, 1) 0(1,t) = u

[ | « =

0 x 1
The data are:
1. the model relating the control input u(t) to the state,

(0%, ))xepo,1:

o0 020
a(x,t) o o5 (x 1), x€[0,1]
o0

500 =0 6(1.0) = u(t).

2. Atransition time T > 0, the initial (resp. final) state:
[0.1] 5 X = p(x) (resp. q(x))
The goal is to find the open-loop control [0, T] > t — u(t)
steering 6(x, t) from the initial profile 6(x, 0) = p(x) to the final
profile 8(x, T) = g(x).



Series solutions
Set, formally

ad x 00 Xda [x 920 x!

0= Zai(t)ﬂ, ot :ZE <I|> o2 Zai+2 </'
i=0 i=0 i=0

and 2 = ¢ reads $a; = .. Since a; = 22(0,t) = 0 and

ap = 0(0, t) we have

i1 =0, aj= a(()i)

Set y := ag = (0, t) we have, in the time domain,

00 2j 00 1

00,0 = 3 (g ) 70, 0 =3 (g7 ) 00

i=0 i=0

that also reads in the Laplace domain (s = d/df):

9(x, s) = cosh(xv/s) y(s), u(s) = cosh(vs)y(s).



An explicit parameterization of trajectories
For any C*°-function y(t) of Gevrey-order o < 2, the time

function .
o0\ (i)
YU
“(t)_l 2i)!

is well defined and smooth. The (x, t)-function

Zy(' t)

is also well defined (entire versus x and smooth versus t). More
over for all t and x € [0, 1], we have, whatever t — y(t) is,

00 020 06
E(Xa t)_ W()Q t)v 07(0’ t)_ov 0(1,t)—U(t)
An infinite dimensional analogue of differential flatness.®

®Fliess et al: Flatness and defect of nonlinear systems: introductory theory
and examples, International Journal of Control. vol.61, pp:1327—-1361.-1995:




Motion planning of the heat equation®

Take Z,-ZO a,-%’ and Z,-ZO b,-%i entire functions of £&. With o > 1

. A _70
t! el e
y(t): (E aiﬂ) ( _ —7o > (E bi— ) < “1o —70 )
i>0 e + el i>0 e +el-n”

the series

are convergent and provide a trajectory from

2i
Za, to O(x, T) = Zb’()z(i)!

i>0 i>0

8B. Laroche, Ph. Martin, P. R.: Motion planning for the heat equation. Int.
Journal of Robust and Nonlinear Control. Vol.10, pp:629—-643, 2000.



Real-time motion planning for the heat equation

Take o > 1 and € > 0. Consider the positive function

o (citrar)
A

oe(t) = or te[—¢0]

prolonged by 0 outside [—¢, 0] and where the normalization
constant A > 0 is such that [ ¢, = 1.

Forany L} . signal t — Y(t), set y, = ¢ = Y:its order 1+ 1/c is

less than 2. Then 6, = cosh(x+/s)y, reads
er(X, t) = q)X,e * Y(t), Ur(t) = ¢17€ * Y(t),

where for each x, ® . = cosh(x\/s)¢. is a smooth time
function with support contained in [—¢, 0]. Since u,(t) and the
profile 6,(-, t) depend only on the values of Y on [t — €, t], such
computations are well adapted to real-time generation of
reference trajectories t — (6, uy) (see matlab code heat .m).



Quantum particle inside a moving box’

- —
¢
v — 5 v+ 5
Schrédinger equation in a Galilean frame:
o6 10%¢ 1 1
ot~ 202 SV Tpvital
1 1
v —5.0)=¢(v+51)=0

"PR.: Control of a quantum particle in a moving potential well. IFAC 2nd
Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,
20083. See, for the proof of nonlinear controllability, K. Beauchard and J.-M.
Coron: Controllability of a quantum particle in a moving potential well; J. of
Functional Analysis, vol.232, pp:328—389, 2006.



Particle in a moving box of position v

» In a Galilean frame

a¢ 10%¢ 1 1
Yot ~ “2az20 Z€lVTgvTal

¢(v—§,t): (V—I—;, =0

where v is the position of the box and z is an absolute
position.

» In the box frame x =z — v:
8w 10%¢) . 1 1

1



Tangent linearization around state v of energy @

With8 —1 20 — o), 5(—1) = (%) = 0 and with

T 209x2
P(x, t) = exp(—t)(P(x) + W(x, 1))
V satisfies
ov 1 82\Il

0- w(—%, ) = w(%, 0.

Assume V and v small and neglecte the second order term
VXV
ov 1 0%V 1 1

za—t—l—w\U: > x2 +xp, W(—5, 1) = Y(

8Remember that f1<2/2 PP(x)dx = 1.



Operational computations s = d/dt

The general solution of (' stands for d/dx)

1 i}
(18 + O)V = —E\U” + s2vxy)

v = A(s, x)a(s) + B(s, x)b(s) + C(s, x)v(s)
where
A(s, x) = cos (x 215 + 2@)

Bs.x) = " \(X/zzs2 :S ;@2@)
C(s, x) = (—wsxyp(x) + ¢/ (x)).




Case x — ¢(x) even

The boundary conditions imply

A(s,1/2)a(s) =0, B(s,1/2)b(s) = —y'(1/2)v(s).

a(s) is a torsion element: the system is not controllable.
Nevertheless, for steady-state controllability, we have

, sin (3v-21s +20)
b(s) = —'(1/2) = 2o ()
sin (%\/M) sin (%\/M)

V215 + 2 V—215+ 20
V(s, x) = B(s,x)b(s) + C(s, x)v(s)

v(s) =

y(s)



Series and convergence

where the entire function s — F(s) is of order 1/2,

JK,M>0,¥s € C, |F(s)| < Kexp(M|s|'/?).

Set F(s) = > 50 ans"” where |ap| < K"/I'(1 + 2n) with K > 0
independent of n. Then F(s)y(s) corresponds, in the time

domain, to
> any (1)
n>0

that is convergent when t — y(t) is C*> of Gevrey-order o < 2.



Steady state controllability

SteeringfromV¥ =0,v=0attimet=0,tov=0,v=Dat
t = T is possible with the following C>°-function of
Gevrey-order o + 1:

0 fort <0
1
_ exp —()°
[0, T|>t—y(t)=<D 1<(t)> —~ forO<t<T
oxp(~(1)7 ) e ()7 )
D fort>T

. — _ ZLDD . oo _ . .
with D = SP(JTT) The fact that this C>°-function is of

Gevrey-order o + 1 results from its exponential decay of order
1/oaround0and T.



Practical computations via Cauchy formula

Using the "magic" Cauchy formula

i £t

where ~ is a closed path around zero, 3. any("(t) becomes

N+1 y(t+¢§) 1 r(n+1)
§n+1 d&. = 2”.‘_%; (Z an £n+1 ) y(t—i—g) d£

n>0

n>O

But

S an o) = [ F(s)exp(-s€)ds = By (F)()

n>0

is the Borel/Laplace transform of F in direction § € [0, 27].



Practical computations via Cauchy formula (end)

(matlab code Qbox .m)
In the time domain F(s)y(s) corresponds to

mea y(t+€) de

where ~ is a closed path around zero. Such integral
representation is very useful when y is defined by convolution
with a real signal Y,

y(¢) = / exp(—(¢ — 1)2/262)Y(t) dt

exﬁ

where R > t — Y(t) € R is any measurable and bounded
function. Approximate motion planning with:

v(t) = / [ m 7{ By (F)(€) exp(—(¢ — 7)2/2¢2) de | Y(t—7) dr.



A free-boundary Stefan problem®

Mobile interface

Heating point Liguid phase L Solid phase
| v Y ASSSSSASSTSY.
h(t)
| |
x=0 x=p(t)
00 0°6 00

a(x, t) = W(X’ t) — Va(x, t) — pb?(x,1), x e [0,y(t)]
(0 t)y=u(t), 0(y(t),t)=0

o a0 =~ St

with v, p > 0 parameters.

SW. Dunbar, N. Petit, P. R., Ph. Martin. Motion planning for a non-linear
Stefan equation. ESAIM: Control, Optimisation and Calculus of Variations,
9:275-296, 2003.

Y .



Series solutions
> Set O(x, 1) = 0%, a;(t) C=H) in

00 020 00 5
E(X,t)—ﬁ(x,t)—l/a(x,t)—pe (Xat)v X6[07y(t)]

00,0 = ult), ()0 =0, T (y(t).1) =~ Ty(n)

Then &% = 8x2 9 yields

d d
diyo = dt — aj—1 dty +vajpq + PZ ( ) aj_kak

and the boundary conditions: a; = 0 and a; = —%y.

» The series defining 6 admits a strictly positive radius of
convergence as soon as y is of Gevrey-order « strictly less
than 2.



Growth of the liquide zone with 6 > 0
v=0.5,p=1.5, y goes from 1 to 2.
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Conclusion

» For other 1D PDE of engineering interest where motion
planning can be obtained via Gevrey functions, see the
book of J. Rudolph: Flatness Based Control of Distributed
Parameter Systems (Shaker-Germany, 2003)

» For feedback design on linear 1D parabolic equations, see
the book of M. Krsti¢ and A. Smyshlyaev : Boundary
Control of PDEs: a Course on Backstepping Designs
(SIAM, 2008).

» Open questions:

» Combine divergent series and smallest-term summation
(see the PhD of Th. Meurer: Feedforward and Feedback
Tracking Control of Diffusion-Convection-Reaction Systems
using Summability Methods (Stuttgart, 2005)).

» 2D heat equation with a scalar control u(t): with modal
decomposition and symbolic computations, we get
u(s) = P(s)y(s) with P(s) an entire function (coding the
spectrum) of order 1 but infinite type
|P(s)| < Mexp(K]|s|log(]s])). It yields divergence series for
any C* function y # 0 with compact support.



u(s) = P(s)y(s) for 1D and 2D heat equations

» 1D heat equation: eigenvalue asymptotics \p, ~ —n?:

Prototype:  P(s) = ﬁo (1 _ i) _ smt;(;%fs)

n2
n=1

entire function of order 1/2.
» 2D heat equation in a domain Q with a single scalar control
u(t) on the boundary 991 (092 = 94 |J 0Q2):

a6 00
a:AeonQ, 6 = u(t) on 0%y, %:Oonaﬂg
Eigenvalue asymptotics A\, ~ —n
+oo
S expl(—vys
Prototype:  P(s) = H (1 + E) exp(—s/n) = M

n=1

entire function of order 1 but of infinite type'°

°For the links between the distributions of the zeros and the order at
infinity of entire functions see the book of B.Ja Levin: Distribution of Zeros of
Entire Functions; AMS, 1972.
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