# Fonctions Gevrey et contrôle frontière de certaines EDP 

(Gevrey functions and boundary control of some PDE)

Pierre Rouchon

Mines ParisTech<br>Centre Automatique et Systèmes<br>Mathématiques et Systèmes<br>pierre.rouchon@mines-paristech.fr<br>http://cas.ensmp.fr/~rouchon/index.html

Colloquium CESAME-MAPA
UCL, 4 juin 2009

## Outline

Gevrey functions
A computation due to Holmgren
Gevrey-orders
Operators on Gevrey functions

Motion Planning
The 1D heat equation
Quantum particle inside a moving box
A free-boundary Stefan problem

Conclusion

## A computation due to Holmgren ${ }^{1}$

Take the 1D-heat equation, $\frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t)$ for $x \in[0,1]$ and set, formally, $\theta=\sum_{i=0}^{\infty} a_{i}(t) \frac{x_{i}^{i}}{i!}$. Since,

$$
\frac{\partial \theta}{\partial t}=\sum_{i=0}^{\infty} \frac{d a_{i}}{d t}\left(\frac{x^{i}}{i!}\right), \quad \frac{\partial^{2} \theta}{\partial x^{2}}=\sum_{i=0}^{\infty} a_{i+2}\left(\frac{x^{i}}{i!}\right)
$$

the heat equation $\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}$ reads $\frac{d}{d t} a_{i}=a_{i+2}$ and thus

$$
a_{2 i+1}=a_{1}^{(i)}, \quad a_{2 i}=a_{0}^{(i)}
$$

With two arbitrary smooth time-functions $f(t)$ and $g(t)$, playing the role of $a_{0}$ and $a_{1}$, the general solution reads:

$$
\theta(x, t)=\sum_{i=0}^{\infty} f^{(i)}(t)\left(\frac{x^{2 i}}{(2 i)!}\right)+g^{(i)}(t)\left(\frac{x^{2 i+1}}{(2 i+1)!}\right) .
$$

## Convergence issues?

${ }^{1}$ E. Holmgren, Sur l'équation de la propagation de la chaleur. Arkiv für Math. Astr. Physik, t. 4, (1908), p. 1-4

## Gevrey functions ${ }^{2}$

- A $C^{\infty}$-function $[0, T] \ni t \mapsto f(t)$ is of Gevrey-order $\alpha$ when,

$$
\exists M, A>0, \quad \forall t \in[0, T], \forall i \geq 0, \quad\left|f^{(i)}(t)\right| \leq M A^{i} \Gamma(1+\alpha i)
$$ where $\Gamma$ is the gamma function with $n!=\Gamma(n+1), \forall n \in \mathbb{N}$.

- Analytic functions correspond to Gevrey-order $\leq 1$.
- When $\alpha>1$, the set of $C^{\infty}$-functions with Gevrey-order $\alpha$ contains non-zero functions with compact supports. Prototype of such functions:

$$
t \mapsto f(t)= \begin{cases}\exp \left(-\left(\frac{1}{t(1-t)}\right)^{\frac{1}{\alpha-1}}\right) & \text { if } t \in] 0,1[ \\ 0 & \text { otherwise } .\end{cases}
$$

[^0]
## Gevrey functions and exponential decay ${ }^{3}$

- Take, in the complex plane, the open bounded sector $\mathcal{S}$ those vertex is the origin. Assume that $f$ is analytic on $\mathcal{S}$ and admits an exponential decay of order $\sigma>0$ and type $A$ in $\mathcal{S}$ :

$$
\exists C, \rho>0, \quad \forall z \in \mathcal{S}, \quad|f(z)| \leq C|z|^{\rho} \exp \left(\frac{-1}{A|z|^{\sigma}}\right)
$$

Then in any closed sub-sector $\tilde{\mathcal{S}}$ of $\mathcal{S}$ with origin as vertex, exists $M>0$ such that

$$
\forall z \in \tilde{\mathcal{S}} /\{0\}, \quad\left|f^{(i)}(z)\right| \leq M A^{i} \Gamma\left(1+i\left(\frac{1}{\sigma}+1\right)\right)
$$

- Rule of thumb: if a piece-wise analytic $f$ admits an exponential decay of order $\sigma$ then it is of Gevrey-order $\alpha=\frac{1}{\sigma}+1$.

[^1]
## Gevrey space and ultra-distributions ${ }^{4}$

Denote by $\mathcal{D}_{\alpha}$ the set of functions $\mathbb{R} \mapsto \mathbb{R}$ of order $\alpha>1$ and with compact supports. As for the class of $C^{\infty}$ functions, most of the usual manipulations remain in $\mathcal{D}_{\alpha}$ :

- $\mathcal{D}_{\alpha}$ is stable by addition, multiplication, derivation, integration, ....
- if $f \in \mathcal{D}_{\alpha}$ and $F$ is an analytic function on the image of $f$, then $F(f)$ remains in $\mathcal{D}_{\alpha}$.
- if $f \in \mathcal{D}_{\alpha}$ and $F \in L_{\text {loc }}^{1}(\mathbb{R})$ then the convolution $f * F$ is of Gevrey-order $\alpha$ on any compact interval.

As for the construction of $\mathcal{D}^{\prime}$, the space of distributions (the dual of $\mathcal{D}$ the space of $C^{\infty}$ functions of compact supports), one can construct $\mathcal{D}_{\alpha}^{\prime} \supset \mathcal{D}^{\prime}$, a space of ultra-distributions, the dual of $\mathcal{D}_{\alpha} \subset \mathcal{D}$.
${ }^{4}$ See, e.g., I.M. Guelfand and G.E. Chilov: Les Distributions, tomes 2 et 3. Dunod, Paris,1964.

## Symbolic computations: $s:=d / d t, s \in \mathbb{C}$

The general solution of $\theta^{\prime \prime}=s \theta$ reads $\left(^{\prime}:=d / d x\right)$

$$
\theta=\cosh (x \sqrt{s}) f(s)+\frac{\sinh (x \sqrt{s})}{\sqrt{s}} g(s)
$$

where $f(s)$ and $g(s)$ are the two constants of integration. Since cosh and sinh gather the even and odd terms of the series defining exp, we have

$$
\cosh (x \sqrt{s})=\sum_{i \geq 0} s^{i} \frac{x^{2 i}}{(2 i)!}, \quad \frac{\sinh (x \sqrt{s})}{\sqrt{s}}=\sum_{i \geq 0} s^{i} \frac{x^{2 i+1}}{(2 i+1)!}
$$

and we recognize $\theta=\sum_{i=0}^{\infty} f^{(i)}(t)\left(\frac{x^{2 i}}{(2 i)!}\right)+g^{(i)}(t)\left(\frac{x^{2 i+1}}{(2 i+1)!}\right)$. For each $x$, the operators $\cosh (x \sqrt{s})$ and $\sinh (x \sqrt{s}) / \sqrt{s}$ are ultra-distributions of $\mathcal{D}_{2^{-}}^{\prime}$ :

$$
\sum_{i \geq 0} \frac{(-1)^{i} x^{2 i}}{(2 i)!} \delta^{(i)}(t), \quad \sum_{i \geq 0} \frac{(-1)^{i} x^{2 i+1}}{(2 i+1)!} \delta^{(i)}(t)
$$

with $\delta$, the Dirac distribution.

## Entire functions of $s=d / d t$ as ultra-distributions

- $\mathbb{C} \ni s \mapsto P(s)=\sum_{i \geq 0} a_{i} s^{i}$ is an entire function when the radius of convergence is infinite.
- If its order at infinity is $\sigma>0$ and its type is finite, i.e., $\exists M, K>0$ such that $\forall s \in \mathbb{C},|P(s)| \leq M \exp \left(K|s|^{\sigma}\right)$, then

$$
\exists A, B>0|\forall i \geq 0, \quad| a_{i} \left\lvert\, \leq A \frac{B^{i}}{\Gamma(i / \sigma+1)} .\right.
$$

$\cosh (\sqrt{s})$ and $\sinh (\sqrt{s}) / \sqrt{s}$ are entire functions of order $\sigma=1 / 2$ and of type 1 .

- Take $P(s)$ of order $\sigma<1$ with $s=d / d t$. Then $P \in \mathcal{D}_{\frac{1}{\sigma}}^{\prime}$ : $P(s) f(s)$ corresponds, in the time domain, to absolutely convergent series

$$
P(s) y(s) \equiv \sum_{i=0}^{\infty} a_{i} f^{(i)}(t)
$$

when $t \mapsto f(t)$ is a $C^{\infty}$-function of Gevrey-order $\alpha<1 / \sigma$.

## Motion planning (trajectory generation)



- Difficult problem because it requires, in general, the integration of the open-loop dynamics

$$
\frac{d}{d t} x=f(x, u(t))
$$

- One fundamental issue in system theory: controllability.


## Trajectory tracking (stabilization)



- Compute $\Delta u, u=u_{r}+\Delta u$, such that $\Delta x=x-x_{r}$ converges to 0 at $t$ tends to $+\infty$ (closed-loop stability).
- Another fundamental issue in system theory: feedback.


## Motion planning for the 1D heat equation

$$
\partial_{x} \theta(0, t)=0
$$



The data are:

1. the model relating the control input $u(t)$ to the state, $(\theta(x, t))_{x \in[0,1]}$ :

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t), \quad x \in[0,1] \\
& \frac{\partial \theta}{\partial x}(0, t)=0 \quad \theta(1, t)=u(t) .
\end{aligned}
$$

2. A transition time $T>0$, the initial (resp. final) state:

$$
[0,1] \ni x \mapsto p(x)(\text { resp. } q(x))
$$

The goal is to find the open-loop control $[0, T] \ni t \mapsto u(t)$ steering $\theta(x, t)$ from the initial profile $\theta(x, 0)=p(x)$ to the final profile $\theta(x, T)=q(x)$.

## Series solutions

Set, formally

$$
\theta=\sum_{i=0}^{\infty} a_{i}(t) \frac{x^{i}}{i!}, \quad \frac{\partial \theta}{\partial t}=\sum_{i=0}^{\infty} \frac{d a_{i}}{d t}\left(\frac{x^{i}}{i!}\right), \quad \frac{\partial^{2} \theta}{\partial x^{2}}=\sum_{i=0}^{\infty} a_{i+2}\left(\frac{x^{i}}{i!}\right)
$$

and $\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}$ reads $\frac{d}{d t} a_{i}=a_{i+2}$. Since $a_{1}=\frac{\partial \theta}{\partial x}(0, t)=0$ and $a_{0}=\theta(0, t)$ we have

$$
a_{2 i+1}=0, \quad a_{2 i}=a_{0}^{(i)}
$$

Set $y:=a_{0}=\theta(0, t)$ we have, in the time domain,

$$
\theta(x, t)=\sum_{i=0}^{\infty}\left(\frac{x^{2 i}}{(2 i)!}\right) y^{(i)}(t), \quad u(t)=\sum_{i=0}^{\infty}\left(\frac{1}{(2 i)!}\right) y^{(i)}(t)
$$

that also reads in the Laplace domain $(s=d / d t)$ :

$$
\theta(x, s)=\cosh (x \sqrt{s}) y(s), \quad u(s)=\cosh (\sqrt{s}) y(s)
$$

## An explicit parameterization of trajectories

For any $C^{\infty}$-function $y(t)$ of Gevrey-order $\alpha<2$, the time function

$$
u(t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!}
$$

is well defined and smooth. The $(x, t)$-function

$$
\theta(x, t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!} x^{2 i}
$$

is also well defined (entire versus $x$ and smooth versus $t$ ). More over for all $t$ and $x \in[0,1]$, we have, whatever $t \mapsto y(t)$ is,

$$
\frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t), \quad \frac{\partial \theta}{\partial x}(0, t)=0, \quad \theta(1, t)=u(t)
$$

An infinite dimensional analogue of differential flatness. ${ }^{5}$
${ }^{5}$ Fliess et al: Flatness and defect of nonlinear systems: introductory theory and examples, International Journal of Control. vol.61,pp:1327-1361. 1995 ,

## Motion planning of the heat equation ${ }^{6}$

Take $\sum_{i \geq 0} a_{i} \xi_{!}^{\xi^{i}}$ and $\sum_{i \geq 0} b_{i \frac{\xi^{i}}{i}}$ entire functions of $\xi$. With $\sigma>1$

the series

$$
\theta(x, t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!} x^{2 i}, \quad u(t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!} .
$$

are convergent and provide a trajectory from

$$
\theta(x, 0)=\sum_{i \geq 0} a_{i} \frac{x^{2 i}}{(2 i)!} \text { to } \theta(x, T)=\sum_{i \geq 0} b_{i} \frac{x^{2 i}}{(2 i)!}
$$

${ }^{6}$ B. Laroche, Ph. Martin, P. R.: Motion planning for the heat equation. Int. Journal of Robust and Nonlinear Control. Vol.10, pp:629-643, 2000.

## Real-time motion planning for the heat equation

Take $\sigma>1$ and $\epsilon>0$. Consider the positive function

$$
\phi_{\epsilon}(t)=\frac{\exp \left(\frac{-\epsilon^{2 \sigma}}{(-t(t+\epsilon))^{\sigma}}\right)}{A_{\epsilon}} \text { for } t \in[-\epsilon, 0]
$$

prolonged by 0 outside $[-\epsilon, 0]$ and where the normalization constant $A_{\epsilon}>0$ is such that $\int \phi_{\epsilon}=1$.
For any $L_{l o c}^{1}$ signal $t \mapsto Y(t)$, set $y_{r}=\phi_{\epsilon} * Y$ : its order $1+1 / \sigma$ is less than 2. Then $\theta_{r}=\cosh (x \sqrt{s}) y_{r}$ reads

$$
\theta_{r}(x, t)=\Phi_{x, \epsilon} * Y(t), \quad u_{r}(t)=\Phi_{1, \epsilon} * Y(t)
$$

where for each $x, \Phi_{x, \epsilon}=\cosh (x \sqrt{s}) \phi_{\epsilon}$ is a smooth time function with support contained in $[-\epsilon, 0]$. Since $u_{r}(t)$ and the profile $\theta_{r}(\cdot, t)$ depend only on the values of $Y$ on $[t-\epsilon, t]$, such computations are well adapted to real-time generation of reference trajectories $t \mapsto\left(\theta_{r}, u_{r}\right)$ (see matlab code heat. $m$ ).

## Quantum particle inside a moving box ${ }^{7}$



Schrödinger equation in a Galilean frame:

$$
\begin{aligned}
\imath \frac{\partial \phi}{\partial t} & =-\frac{1}{2} \frac{\partial^{2} \phi}{\partial z^{2}}, \quad z \in\left[v-\frac{1}{2}, v+\frac{1}{2}\right], \\
\phi\left(v-\frac{1}{2}, t\right) & =\phi\left(v+\frac{1}{2}, t\right)=0
\end{aligned}
$$

${ }^{7}$ P.R.: Control of a quantum particle in a moving potential well. IFAC 2nd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, 2003. See, for the proof of nonlinear controllability, K. Beauchard and J.-M. Coron: Controllability of a quantum particle in a moving potential well; J. of Functional Analysis, vol.232, pp:328-389, 2006.

## Particle in a moving box of position $v$

- In a Galilean frame

$$
\begin{aligned}
\imath \frac{\partial \phi}{\partial t} & =-\frac{1}{2} \frac{\partial^{2} \phi}{\partial z^{2}}, \quad z \in\left[v-\frac{1}{2}, v+\frac{1}{2}\right], \\
\phi\left(v-\frac{1}{2}, t\right) & =\phi\left(v+\frac{1}{2}, t\right)=0
\end{aligned}
$$

where $v$ is the position of the box and $z$ is an absolute position.

- In the box frame $x=z-v$ :

$$
\begin{aligned}
\imath \frac{\partial \psi}{\partial t} & =-\frac{1}{2} \frac{\partial^{2} \psi}{\partial x^{2}}+\ddot{v} x \psi, \quad x \in\left[-\frac{1}{2}, \frac{1}{2}\right], \\
\psi\left(-\frac{1}{2}, t\right) & =\psi\left(\frac{1}{2}, t\right)=0
\end{aligned}
$$

## Tangent linearization around state $\bar{\psi}$ of energy $\bar{\omega}$

With ${ }^{8}-\frac{1}{2} \frac{\partial^{2} \bar{\psi}}{\partial x^{2}}=\bar{\omega} \bar{\psi}, \bar{\psi}\left(-\frac{1}{2}\right)=\bar{\psi}\left(\frac{1}{2}\right)=0$ and with

$$
\psi(x, t)=\exp (-\imath \bar{\omega} t)(\bar{\psi}(x)+\psi(x, t))
$$

$\psi$ satisfies

$$
\begin{aligned}
\imath \frac{\partial \Psi}{\partial t}+\bar{\omega} \Psi & =-\frac{1}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}+\ddot{v} x(\bar{\psi}+\Psi) \\
0 & =\Psi\left(-\frac{1}{2}, t\right)=\Psi\left(\frac{1}{2}, t\right)
\end{aligned}
$$

Assume $\psi$ and $\ddot{v}$ small and neglecte the second order term $\ddot{v} X \Psi$ :

$$
\imath \frac{\partial \Psi}{\partial t}+\bar{\omega} \Psi=-\frac{1}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}+\ddot{v} x \bar{\psi}, \quad \Psi\left(-\frac{1}{2}, t\right)=\Psi\left(\frac{1}{2}, t\right)=0 .
$$

## Operational computations $s=d / d t$

The general solution of ( ${ }^{\prime}$ stands for $d / d x$ )

$$
(\imath s+\bar{\omega}) \Psi=-\frac{1}{2} \psi^{\prime \prime}+s^{2} v x \bar{\psi}
$$

is

$$
\psi=A(s, x) a(s)+B(s, x) b(s)+C(s, x) v(s)
$$

where

$$
\begin{aligned}
& A(s, x)=\cos (x \sqrt{2 \imath s+2 \bar{\omega}}) \\
& B(s, x)=\frac{\sin (x \sqrt{2 \imath s+2 \bar{\omega}})}{\sqrt{2 \imath s+2 \bar{\omega}}} \\
& C(s, x)=\left(-\imath s x \bar{\psi}(x)+\bar{\psi}^{\prime}(x)\right)
\end{aligned}
$$

## Case $x \mapsto \bar{\phi}(x)$ even

The boundary conditions imply

$$
A(s, 1 / 2) a(s)=0, \quad B(s, 1 / 2) b(s)=-\psi^{\prime}(1 / 2) v(s)
$$

$a(s)$ is a torsion element: the system is not controllable. Nevertheless, for steady-state controllability, we have

$$
\begin{aligned}
b(s) & =-\bar{\psi}^{\prime}(1 / 2) \frac{\sin \left(\frac{1}{2} \sqrt{-2 \imath s+2 \bar{\omega}}\right)}{\sqrt{-2 \imath s+2 \bar{\omega}}} y(s) \\
v(s) & =\frac{\sin \left(\frac{1}{2} \sqrt{2 \imath s+2 \bar{\omega}}\right)}{\sqrt{2 \imath s+2 \bar{\omega}}} \frac{\sin \left(\frac{1}{2} \sqrt{-2 \imath s+2 \bar{\omega}}\right)}{\sqrt{-2 \imath s+2 \bar{\omega}}} y(s) \\
\Psi(s, x) & =B(s, x) b(s)+C(s, x) v(s)
\end{aligned}
$$

## Series and convergence

$$
v(s)=\frac{\sin \left(\frac{1}{2} \sqrt{2 \imath s+2 \bar{\omega}}\right)}{\sqrt{2 \imath s+2 \bar{\omega}}} \frac{\sin \left(\frac{1}{2} \sqrt{-2 \imath s+2 \bar{\omega}}\right)}{\sqrt{-2 \imath s+2 \bar{\omega}}} y(s)=F(s) y(s)
$$

where the entire function $s \mapsto F(s)$ is of order $1 / 2$,

$$
\exists K, M>0, \forall s \in \mathbb{C}, \quad|F(s)| \leq K \exp \left(M|s|^{1 / 2}\right)
$$

Set $F(s)=\sum_{n \geq 0} a_{n} s^{n}$ where $\left|a_{n}\right| \leq K^{n} / \Gamma(1+2 n)$ with $K>0$ independent of $n$. Then $F(s) y(s)$ corresponds, in the time domain, to

$$
\sum_{n \geq 0} a_{n} y^{(n)}(t)
$$

that is convergent when $t \mapsto y(t)$ is $C^{\infty}$ of Gevrey-order $\alpha<2$.

## Steady state controllability

Steering from $\Psi=0, v=0$ at time $t=0$, to $\psi=0, v=D$ at $t=T$ is possible with the following $C^{\infty}$-function of
Gevrey-order $\sigma+1$ :
$[0, T] \ni t \mapsto y(t)= \begin{cases}0 & \text { for } t \leq 0 \\ \bar{D} \frac{\exp \left(-\left(\frac{T}{t}\right)^{\frac{1}{\sigma}}\right)}{\exp \left(-\left(\frac{T}{t}\right)^{\frac{1}{\sigma}}\right)+\exp \left(-\left(\frac{T}{T-t}\right)^{\frac{1}{\sigma}}\right)} & \text { for } 0<t<T \\ \bar{D} & \text { for } t \geq T\end{cases}$
with $\bar{D}=\frac{2 \bar{\omega} D}{\sin ^{2}(\sqrt{\bar{\omega}} / 2)}$. The fact that this $C^{\infty}$-function is of
Gevrey-order $\sigma+1$ results from its exponential decay of order $1 / \sigma$ around 0 and $T$.

## Practical computations via Cauchy formula

Using the "magic" Cauchy formula

$$
y^{(n)}(t)=\frac{\Gamma(n+1)}{2 \imath \pi} \oint_{\gamma} \frac{y(t+\xi)}{\xi^{n+1}} d \xi
$$

where $\gamma$ is a closed path around zero, $\sum_{n \geq 0} a_{n} y^{(n)}(t)$ becomes

$$
\sum_{n \geq 0} a_{n} \frac{\Gamma(n+1)}{2 \imath \pi} \oint_{\gamma} \frac{y(t+\xi)}{\xi^{n+1}} d \xi=\frac{1}{2 \imath \pi} \oint_{\gamma}\left(\sum_{n \geq 0} a_{n} \frac{\Gamma(n+1)}{\xi^{n+1}}\right) y(t+\xi) d \xi
$$

But

$$
\sum_{n \geq 0} a_{n} \frac{\Gamma(n+1)}{\xi^{n+1}}=\int_{D_{\delta}} F(s) \exp (-s \xi) d s=B_{1}(F)(\xi)
$$

is the Borel/Laplace transform of $F$ in direction $\delta \in[0,2 \pi]$.

## Practical computations via Cauchy formula (end)

 (matlab code Qbox.m)In the time domain $F(s) y(s)$ corresponds to

$$
\frac{1}{2 i \pi} \oint_{\gamma} B_{1}(F)(\xi) y(t+\xi) d \xi
$$

where $\gamma$ is a closed path around zero. Such integral representation is very useful when $y$ is defined by convolution with a real signal $Y$,

$$
y(\zeta)=\frac{1}{\varepsilon \sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-(\zeta-t)^{2} / 2 \varepsilon^{2}\right) Y(t) d t
$$

where $\mathbb{R} \ni t \mapsto Y(t) \in \mathbb{R}$ is any measurable and bounded function. Approximate motion planning with:
$v(t)=\int_{-\infty}^{+\infty}\left[\frac{1}{\varepsilon(2 \pi)^{\frac{3}{2}}} \oint_{\gamma} B_{1}(F)(\xi) \exp \left(-(\xi-\tau)^{2} / 2 \varepsilon^{2}\right) d \xi\right] Y(t-\tau) d \tau$.

## A free-boundary Stefan problem ${ }^{9}$

## Mobile interface

$\frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t)-\nu \frac{\partial \theta}{\partial x}(x, t)-\rho \theta^{2}(x, t), \quad x \in[0, y(t)]$

$$
\theta(0, t)=u(t), \quad \theta(y(t), t)=0
$$

$$
\frac{\partial \theta}{\partial x}(y(t), t)=-\frac{d}{d t} y(t)
$$

with $\nu, \rho \geq 0$ parameters.
${ }^{9}$ W. Dunbar, N. Petit, P. R., Ph. Martin. Motion planning for a non-linear Stefan equation. ESAIM: Control, Optimisation and Calculus of Variations, 9:275-296, 2003.

## Series solutions

- Set $\theta(x, t)=\sum_{i=0}^{\infty} a_{i}(t) \frac{(x-y(t))^{i}}{i!}$ in

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t)-\nu \frac{\partial \theta}{\partial x}(x, t)-\rho \theta^{2}(x, t), \quad x \in[0, y(t)] \\
& \theta(0, t)=u(t), \quad \theta(y(t), t)=0, \quad \frac{\partial \theta}{\partial x}(y(t), t)=-\frac{d}{d t} y(t)
\end{aligned}
$$

Then $\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}$ yields

$$
a_{i+2}=\frac{d}{d t} a_{i}-a_{i-1} \frac{d}{d t} y+\nu a_{i+1}+\rho \sum_{k=0}^{i}\binom{i}{k} a_{i-k} a_{k}
$$

and the boundary conditions: $a_{0}=0$ and $a_{1}=-\frac{d}{d t} y$.

- The series defining $\theta$ admits a strictly positive radius of convergence as soon as $y$ is of Gevrey-order $\alpha$ strictly less than 2.


## Growth of the liquide zone with $\theta \geq 0$

$\nu=0.5, \rho=1.5, y$ goes from 1 to 2.


## Conclusion

- For other 1D PDE of engineering interest where motion planning can be obtained via Gevrey functions, see the book of J. Rudolph: Flatness Based Control of Distributed Parameter Systems (Shaker-Germany, 2003)
- For feedback design on linear 1D parabolic equations, see the book of M. Krstić and A. Smyshlyaev : Boundary Control of PDEs: a Course on Backstepping Designs (SIAM, 2008).
- Open questions:
- Combine divergent series and smallest-term summation (see the PhD of Th. Meurer: Feedforward and Feedback Tracking Control of Diffusion-Convection-Reaction Systems using Summability Methods (Stuttgart, 2005)).
- 2D heat equation with a scalar control $u(t)$ : with modal decomposition and symbolic computations, we get $u(s)=P(s) y(s)$ with $P(s)$ an entire function (coding the spectrum) of order 1 but infinite type $|P(s)| \leq M \exp (K|s| \log (|s|))$. It yields divergence series for any $C^{\infty}$ function $y \neq 0$ with compact support.


## $u(s)=P(s) y(s)$ for 1D and 2D heat equations

- 1D heat equation: eigenvalue asymptotics $\lambda_{n} \sim-n^{2}$ :

$$
\text { Prototype: } \quad P(s)=\prod_{n=1}^{+\infty}\left(1-\frac{s}{n^{2}}\right)=\frac{\sinh (\pi \sqrt{s})}{\pi \sqrt{s}}
$$

entire function of order $1 / 2$.

- 2D heat equation in a domain $\Omega$ with a single scalar control $u(t)$ on the boundary $\partial \Omega_{1}\left(\partial \Omega=\partial \Omega_{1} \bigcup \partial \Omega_{2}\right)$ :

$$
\frac{\partial \theta}{\partial t}=\Delta \theta \text { on } \Omega, \quad \theta=u(t) \text { on } \partial \Omega_{1}, \quad \frac{\partial \theta}{\partial n}=0 \text { on } \partial \Omega_{2}
$$

Eigenvalue asymptotics $\lambda_{n} \sim-n$

$$
\text { Prototype: } \quad P(s)=\prod_{n=1}^{+\infty}\left(1+\frac{s}{n}\right) \exp (-s / n)=\frac{\exp (-\gamma s)}{s \Gamma(s)}
$$

entire function of order 1 but of infinite type ${ }^{10}$

[^2]
[^0]:    ${ }^{2} \mathrm{M}$. Gevrey: La nature analytique des solutions des équations aux dérivées partielles, Ann. Sc. Ecole Norm. Sup., vol.25, pp:129-190, 1918.

[^1]:    ${ }^{3}$ J.P. Ramis: Dévissage Gevrey. Astérisque, vol:59-60, pp:173-204, 1978. See also J.P. Ramis: Séries Divergentes et Théories Asymptotiques; SMF, Panoramas et Synthèses, 1993.

[^2]:    ${ }^{10}$ For the links between the distributions of the zeros and the order at infinity of entire functions see the book of B.Ja Levin: Distribution of Zeros of Entire Functions; AMS, 1972.

