A real-time synchronization feedback for single-atom frequency standards ${ }^{1}$

Pierre Rouchon
Mines ParisTech, Centre Automatique et Systèmes pierre.rouchon@mines-paristech.fr
in collaboration with
Mazyar Mirrahimi (INRIA)

Quantum/Classical Control in Quantum Information:
Theory and experiments.
September 13-20, 2008
Otranto, Italy

Outline

Chip-scale Atomic clock
The NIST MicroClock
The principle: Coherent Population Trapping
The system and its synchronization scheme

Master equations and quantum trajectories
The slow/fast master equation
The slow master equation
Quantum trajectories

Convergence analysis
Concluding remarks

The NIST MicroClock ${ }^{2}$

- Quartz crystal clocks: 1 second over few days.
- NIST chip-scale atomic clock: 1 second over 300 years
- High-Perf. atomic clocks: 1 second over 100 million years.
${ }^{2}$ NIST: National Institute of Standards and Technology, web-site: http://tf.nist.gov/timefreq/index.html.

The principle: Coherent Population Trapping ${ }^{3}$

${ }^{3}$ From the web-site: http://tf.nist.gov/timefreq/index.html.

The synchronization via extremum seeking

 Here $u=\omega_{\text {diode }}$ and $y=f\left(\omega_{\text {diode }}\right)$ where f admits a sharp maximum at the unknown value $\bar{u}=\omega_{\text {atom }}$.
$s=\frac{d}{d t}$, constant >0 parameters (h, k, a, ω).
Extremum seeking via feedback: $u(t)=v(t)+a \sin (\omega t)$ where $v(t) \approx \omega_{\text {atom }}$ is adjusted via a dynamic time-varying output feedback (with $\omega, a, h, \sqrt{k} \ll \omega_{\text {atom }}$):

$$
\frac{d}{d t} v(t)=-k \sin (\omega t)(y(t)-\xi(t)) \quad \text { with } \quad \frac{d}{d t} \xi=h(y(t)-\xi(t))
$$

Our contribution ${ }^{4}$: a real-time synchronization scheme when the atomic cloud is replaced by a single atom.
${ }^{4}$ Mirrahimi-R, 2008, arxiv:0806.1392v1

The system and its synchronization scheme

Input: $\tilde{\Omega}_{1}, \tilde{\Omega}_{2} \in \mathbb{C}$ and $u=\frac{d}{d t} \Delta$. Output: photo-detector click times corresponding to stochastic jumps from $|e\rangle$ to $\left|g_{1}\right\rangle$ or $\left|g_{2}\right\rangle$. Synchronization goal: stabilize the unknown detuning Δ to 0 .
Two time-scales:
$\left|\tilde{\Omega}_{1}\right|,\left|\tilde{\Omega}_{2}\right|,\left|\Delta_{e}\right|,|\Delta| \ll \Gamma_{1}, \Gamma_{2}$
Modulation of Rabi complex amplitudes $\tilde{\Omega}_{1}$ and $\tilde{\Omega}_{2}$:
$\tilde{\Omega}_{1}(t)=\Omega_{1}-\tau \varepsilon \Omega_{2} \cos (\omega t), \quad \tilde{\Omega}_{2}(t)=\imath \varepsilon \Omega_{1} \cos (\omega t)+\Omega_{2}$, with $\Omega_{1}, \Omega_{2}>0$ constant, $\omega \ll \Gamma_{1}, \Gamma_{2}$ and $0<\varepsilon \ll 1$.
Detuning update $\quad \Delta_{N+1}=\Delta_{N}-K \frac{2 \Omega_{1} \Omega_{2}}{\Omega_{1}^{2}+\Omega_{2}^{2}} \cos \left(\omega t_{N}\right)$
at each detected jump-time t_{N}. The gain $K>0$ fixes the standard deviation $\sigma_{K}: 4 \sigma_{K}^{2}=\varepsilon K \frac{\Omega_{1}^{2}+\Omega_{2}^{2}}{\Gamma_{1}+\Gamma_{2}}$.

Closed-loop quantum trajectory (matlab M-file: accaio8pr.m)

Λ-system parameters: $\Gamma_{1}=\Gamma_{2}=10, \Delta_{e}=2.0$
Modulation parameters: $\Omega_{1}=\Omega_{2}=1.0, \omega=2.8, \varepsilon=0.14$
Feedback gain $K=0.0023$ leading to a standard deviation $\sigma_{K}=0.0057$

Robustness

Detector efficiency of 50%, wrong jump detection of 50%, feedback-loop delay of τ with $\omega \tau=\pi / 4$.

The slow/fast master equation

Master equation of the \wedge-system

$$
\frac{d}{d t} \rho=-\frac{l}{\hbar}[\tilde{H}, \rho]+\frac{1}{2} \sum_{j=1}^{2}\left(2 Q_{j} \rho Q_{j}^{\dagger}-Q_{j}^{\dagger} Q_{j} \rho-\rho Q_{j}^{\dagger} Q_{j}\right)
$$

with jump operators $Q_{j}=\sqrt{\Gamma_{j}}\left|g_{j}\right\rangle\langle e|$ and Hamiltonian

$$
\begin{aligned}
& \frac{\tilde{H}}{\hbar}=\frac{\Delta}{2}\left(\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|\right)-\left(\Delta_{e}+\frac{\Delta}{2}\right)|e\rangle\langle e| \\
&+\widetilde{\Omega}_{1}\left|g_{1}\right\rangle\langle e|+\widetilde{\Omega}_{1}^{*}|e\rangle\left\langle g_{1}\right|+\widetilde{\Omega}_{2}\left|g_{2}\right\rangle\langle e|+\widetilde{\Omega}_{2}^{*}|e\rangle\left\langle g_{2}\right| .
\end{aligned}
$$

Since $\left|\tilde{\Omega}_{1}\right|,\left|\tilde{\Omega}_{2}\right|,\left|\Delta_{e}\right|,|\Delta| \ll \Gamma_{1}, \Gamma_{2}$ we have two time-scales: a fast exponential decay for "|e|" and a slow evolution for " $\left(\left|g_{1}\right\rangle,\left|g_{2}\right\rangle\right)$ ".

The slow master equation

Geometric reduction via center manifold techniques ${ }^{5}$ leads to a reduced master equation that is still of Lindblad type with a slow Hamiltonian H and slow jump operators L_{j} :

$$
\frac{d}{d t} \rho=-\frac{l}{\hbar}[H, \rho]+\frac{1}{2} \sum_{j=1}^{2}\left(2 L_{j} \rho L_{j}^{\dagger}-L_{j}^{\dagger} L_{j} \rho-\rho L_{j}^{\dagger} L_{j}\right),
$$

with $H=\frac{\Delta}{2} \sigma_{z}=\frac{\Delta\left(\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|\right)}{2}$ and $L_{j}=\sqrt{\gamma_{j}}\left|g_{j}\right\rangle\left\langle b_{\tilde{\Omega}}\right|$ and where $\tilde{\gamma}_{j}=4 \frac{\left.\tilde{\Omega}_{1}\right|^{2}+\left|\tilde{\Omega}_{2}\right|^{2}}{\left(\Gamma_{1}+\Gamma_{2}\right)^{2}} \Gamma_{j}$ and $\left|b_{\tilde{\Omega}}\right\rangle$ is the bright state:

$$
\left|b_{\tilde{\Omega}}\right\rangle=\frac{\widetilde{\Omega}_{1}}{\sqrt{\left|\widetilde{\Omega}_{1}\right|^{2}+\left|\widetilde{\Omega}_{2}\right|^{2}}}\left|g_{1}\right\rangle+\frac{\widetilde{\Omega}_{2}}{\sqrt{\left|\widetilde{\Omega}_{1}\right|^{2}+\left|\widetilde{\Omega}_{2}\right|^{2}}}\left|g_{2}\right\rangle
$$

For $\Delta=0, \rho$ converges towards the dark state $\left|d_{\tilde{\Omega}}\right\rangle\left\langle d_{\tilde{\Omega}}\right|$:

$$
\left|d_{\tilde{\Omega}}\right\rangle=-\frac{\tilde{\Omega}_{2}^{*}}{\sqrt{\left|\widetilde{\Omega}_{1}\right|^{2}+\left|\widetilde{\Omega}_{2}\right|^{2}}}\left|g_{1}\right\rangle+\frac{\tilde{\Omega}_{1}^{*}}{\sqrt{\left|\widetilde{\Omega}_{1}\right|^{2}+\left|\widetilde{\Omega}_{2}\right|^{2}}}\left|g_{2}\right\rangle .
$$

${ }^{5}$ Mirrahimi-R 2008, arXiv:0801.1602v1, accepted in IEEE-AC.

Quantum trajectories for the slow approximation

In the absence of the quantum jumps, ρ evolves on the Bloch sphere according to $\left(\tilde{\gamma}=4 \frac{\left|\tilde{\Omega}_{1}\right|^{2}+\left|\tilde{\Omega}_{2}\right|^{2}}{\Gamma_{1}+\Gamma_{2}}\right)$

$$
\frac{1}{\tilde{\gamma}} \frac{d}{d t} \rho=-l \frac{\Delta}{2 \tilde{\gamma}}\left[\sigma_{z}, \rho\right]-\frac{\left|b_{\tilde{\Omega}}\right\rangle\left\langle b_{\tilde{\Omega}}\right| \rho+\rho\left|b_{\tilde{\Omega}}\right\rangle\left\langle b_{\tilde{\Omega}}\right|}{2}+\left\langle b_{\tilde{\Omega}}\right| \rho\left|b_{\tilde{\Omega}}\right\rangle \rho
$$

At each time step $d t, \rho$ may jump towards the state $\left|g_{1}\right\rangle\left\langle g_{1}\right|$ or $\left|g_{2}\right\rangle\left\langle g_{2}\right|$ with a jump probability given by:

$$
d t \tilde{\gamma}\left\langle b_{\tilde{\Omega}}\right| \rho\left|b_{\tilde{\Omega}}\right\rangle
$$

Since $\tilde{\Omega}_{1}(t)=\Omega_{1}-\imath \varepsilon \Omega_{2} \cos (\omega t)$ and $\tilde{\Omega}_{2}(t)=\imath \varepsilon \Omega_{1} \cos (\omega t)+\Omega_{2}$,

$$
\tilde{\gamma}\left|b_{\tilde{\Omega}}\right\rangle\left\langle b_{\tilde{\Omega}}\right|=\gamma(|b\rangle+t \varepsilon \cos (\omega t)|d\rangle)(\langle b|-l \varepsilon \cos (\omega t)\langle d|)
$$

with $\gamma=4 \frac{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}{\Gamma_{1}+\Gamma_{2}},|b\rangle=\frac{\Omega_{1}\left|g_{1}\right\rangle+\Omega_{2}\left|g_{2}\right\rangle}{\sqrt{\Omega_{1}^{2}+\Omega_{2}^{2}}}$ and $|d\rangle=\frac{-\Omega_{2}\left|g_{1}\right\rangle+\Omega_{1}\left|g_{2}\right\rangle}{\sqrt{\Omega_{1}^{2}+\Omega_{2}^{2}}}$

Quantum trajectories in Bloch-sphere coordinates

With $\beta=2 \arg \left(\Omega_{1}+\imath \Omega_{2}\right)$ and
$\rho=\frac{1+X(|b\rangle\langle d|+|d\rangle\langle b|)+Y(l|b\rangle\langle d|-\imath|d\rangle\langle b|)+Z(|d\rangle\langle d|-|b\rangle\langle b|)}{2}:$

$$
\begin{aligned}
& \frac{d}{d t} X=-\Delta \cos \beta Y-\gamma\left(\varepsilon \cos (\omega t) Y+\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2} Z\right) X \\
& \begin{aligned}
& \frac{d}{d t} Y=\Delta \cos \beta X-\Delta \sin \beta Z+\gamma \varepsilon \cos (\omega t) \\
&-\gamma\left(\varepsilon \cos (\omega t) Y+\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2} Z\right) Y \\
& \frac{d}{d t} Z=\Delta \sin \beta Y+\gamma\left(\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2}\right) \\
&-\gamma\left(\varepsilon \cos (\omega t) Y+\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2} Z\right) Z
\end{aligned}
\end{aligned}
$$

The jump probability per unit of time is

$$
P_{j u m p}=\frac{\gamma}{2}\left(1-Z-2 \varepsilon \cos (\omega t) Y+\varepsilon^{2} \cos ^{2}(\omega t)(1+Z)\right)
$$

Just after a jump (X, Y, Z) is reset to $\pm(\sin \beta, 0, \cos \beta)$.

Convergence of the no-jump dynamics

$$
\begin{aligned}
& \frac{d}{d t} X=-\Delta \cos \beta Y-\gamma\left(\varepsilon \cos (\omega t) Y+\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2} Z\right) X \\
& \frac{d}{d t} Y=\Delta \cos \beta X-\Delta \sin \beta Z+\gamma \varepsilon \cos (\omega t)-\gamma\left(\varepsilon \cos (\omega t) Y+\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2} Z\right) Y \\
& \frac{d}{d t} Z=\Delta \sin \beta Y+\gamma\left(\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2}\right)-\gamma\left(\varepsilon \cos (\omega t) Y+\frac{1-\varepsilon^{2} \cos ^{2}(\omega t)}{2} Z\right) Z
\end{aligned}
$$

For $|\Delta|<\frac{\gamma}{2}$ and $0<\varepsilon \ll 1$, the above time-periodic nonlinear system admits a quasi-global asymptotically stable periodic orbit (proof: Poincaré-Bendixon and perturbation). It reads

$$
(X, Y, Z)=\left(\begin{array}{lll}
0 & , \quad-\sin \beta \frac{\Delta}{\gamma}+\frac{\gamma^{2} \cos (\omega t)+\gamma \omega \sin (\omega t)}{\omega^{2}+\gamma^{2}} \varepsilon \quad, \quad 1
\end{array}\right)
$$

up to second order terms in ε and $\frac{\Delta}{\gamma}$.
When $\omega \gg \gamma, P_{\text {jump }} \approx \gamma\left(\varepsilon \cos (\omega t)+\frac{\Delta \sin \beta}{2 \gamma}\right)^{2}$ if the last jump occurs more that few $-\log \varepsilon / \gamma$ second(s) ago. ${ }^{6}$.
${ }^{6}$ Replace Z by $1-\frac{X^{2}+Y^{2}}{2}$ in previous formula giving $P_{\text {jum } \bar{p}}$.

Detuning update as a discrete-time stochastic process

Our analysis neglects the transient just after a jump.
When a jump occurs at t_{N}, we have

$$
\Delta_{N+1}=\Delta_{N}-K \sin \beta \cos \left(\omega t_{N}\right)
$$

and its probability was proportional to $\left(\varepsilon \cos \left(\omega t_{N}\right)+\frac{\Delta_{N} \sin \beta}{2 \gamma}\right)^{2}$.
The phase $\bar{\omega}=\omega t_{N}$ can be seen as a stochastic variable in $[0,2 \pi]$ with the following probability density $P_{\Delta_{N}}(\bar{\sigma})$ on $[0,2 \pi]$:

$$
P_{\Delta_{N}}(\bar{\sigma})=\frac{\left(\varepsilon \cos (\bar{\sigma})+\frac{\Delta_{N} \sin \beta}{2 \gamma}\right)^{2}}{2 \pi\left(\frac{\varepsilon^{2}}{2}+\frac{\Delta_{N}^{2} \sin ^{2} \beta}{4 \gamma^{2}}\right)}
$$

The de-tuning update is thus a discrete-time stochastic process

$$
\Delta_{N+1}=\Delta_{N}-K \sin \beta \cos \varpi
$$

where the probability of $\varpi \in[0,2 \pi]$ depends on Δ_{N}.

Convergence proof

We assume here $|\Delta| \ll \varepsilon \gamma\left(\right.$ remember $\left.\gamma \ll \omega \ll \Gamma_{1}+\Gamma_{2}\right)$:

$$
\Delta_{N+1}=\Delta_{N}-K \sin \beta \cos \overline{ }
$$

with $\bar{\sigma}$ of probability density $P_{\Delta_{N}}(\varpi) \approx \frac{1}{2 \pi}+\frac{\Delta_{N} \sin \beta}{\pi \varepsilon \gamma} \cos \varpi$. Simple computations yield to ${ }^{7}$

$$
E\left(\Delta_{N+1} \mid \Delta_{N}\right)=\left(1-\frac{K \sin ^{2} \beta}{\varepsilon \gamma}\right) \Delta_{N}
$$

For $0<K \leq \frac{\varepsilon \gamma}{\sin ^{2} \beta}, E\left(\Delta_{N}\right)$ tends to zero.
Similarly, we have

$$
E\left(\Delta_{N+1}^{2} \mid \Delta_{N}\right)=\left(1-\frac{2 K \sin ^{2} \beta}{\varepsilon \gamma}\right) \Delta_{N}^{2}+\frac{K^{2} \sin ^{2} \beta}{2}
$$

For $0<K \leq \frac{\varepsilon \gamma}{2 \sin ^{2} \beta}, E\left(\Delta_{N}^{2}\right)$ converges to $\sigma_{K}^{2}=\frac{\varepsilon \gamma K}{4}$.
${ }^{7} E\left(\Delta_{N+1} \mid \Delta_{N}\right)$ stands for the conditional expectation-value of Δ_{N+1} knowing Δ_{N}.

Summary: scales and feedback-gain design

Rabi frequency modulations:
$\tilde{\Omega}_{1}(t)=\Omega_{1}-\imath \varepsilon \Omega_{2} \cos (\omega t)$
$\tilde{\Omega}_{2}(t)=t \varepsilon \Omega_{1} \cos (\omega t)+\Omega_{2}$ with $\Omega_{1}, \Omega_{2} \ll \Gamma=\Gamma_{1}+\Gamma_{2}$,
$0<\varepsilon_{2} \ll 1$ and
$\frac{\Omega_{1}^{2}+\Omega_{2}^{2}}{\Gamma_{1}+\Gamma_{2}}=\gamma \ll \omega \ll \Gamma$
Detuning update
$\Delta_{N+1}=\Delta_{N}-K \sin \beta \cos \left(\omega t_{N}\right)$
with $K>0, \beta=2 \arg \left(\Omega_{1}+\imath \Omega_{2}\right)$.
A discrete-time stochastic process where the gain $K>0$ drives

- the convergence speed with a contraction of $\left(1-\frac{K \sin ^{2} \beta}{\varepsilon \gamma}\right)$ for $E\left(\Delta_{N}\right)$ at each iteration
- the precision via the asymptotic root-mean-square

$$
\sigma_{K}=\frac{\sqrt{\varepsilon \gamma K}}{2}
$$

Concluding remarks

- For a nonlinear convergence proof with $\Delta<\gamma / 2, \varepsilon$ small enough and well tuned gain K, see Mirrahimi-R 2008, arxiv:0806.1392v1. Sensitivity analysis to wrong jump detection and noise remains to be done.
- Such simple feedback can be also developed for other single quantum systems such as the 3-level system illustrating the Dehmelt's electron shelving scheme ${ }^{8}$
- Such feedback scheme could be a preliminary guide for inventing the "quantum regulator", a quantum analogue of the classical PID regulator.

[^0]
[^0]: ${ }^{8}$ C. Cohen-Tannoudji, J. Dalibard: Single atom Laser spectroscopy: looking for dark periods in fluorescent light. Europhys. Lett. 1 (9), pp:441-448, 1986.

