A real-time synchronization feedback for single-atom frequency standards ¹

Pierre Rouchon Mines ParisTech, Centre Automatique et Systèmes pierre.rouchon@mines-paristech.fr in collaboration with Mazyar Mirrahimi (INRIA)

Quantum/Classical Control in Quantum Information: Theory and experiments. September 13-20, 2008 Otranto, Italy

Outline

Chip-scale Atomic clock

The NIST MicroClock The principle: Coherent Population Trapping The system and its synchronization scheme

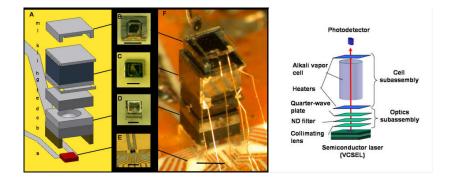
(ロ) (同) (三) (三) (三) (○) (○)

Master equations and quantum trajectories The slow/fast master equation The slow master equation Quantum trajectories

Convergence analysis

Concluding remarks

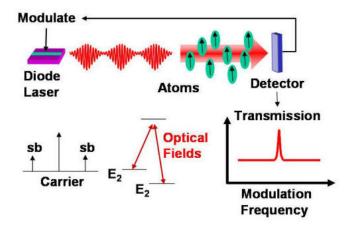
The NIST MicroClock²



- Quartz crystal clocks: 1 second over few days.
- NIST chip-scale atomic clock: 1 second over 300 years
- High-Perf. atomic clocks: 1 second over 100 million years.

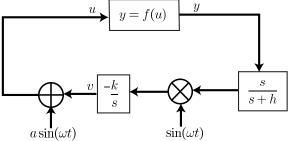
²NIST: National Institute of Standards and Technology, web-site: http://tf.nist.gov/timefreq/index.html.

The principle: Coherent Population Trapping³



³From the web-site: http://tf.nist.gov/timefreq/index.html. =>> = - ???

The synchronization via extremum seeking



Here $u = \omega_{diode}$ and $y = f(\omega_{diode})$ where *f* admits a sharp maximum at the unknown value $\bar{u} = \omega_{atom}$.

・ロット (雪) (日) (日) (日)

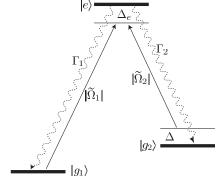
 $s = \frac{d}{dt}$, constant > 0 parameters (h, k, a, ω) . Extremum seeking via feedback: $u(t) = v(t) + a \sin(\omega t)$ where $v(t) \approx \omega_{atom}$ is adjusted via a dynamic time-varying output feedback (with $\omega, a, h, \sqrt{k} \ll \omega_{atom}$):

$$\frac{d}{dt}v(t) = -k\sin(\omega t)(y(t) - \xi(t)) \quad \text{with} \quad \frac{d}{dt}\xi = h(y(t) - \xi(t))$$

Our contribution⁴: a real-time synchronization scheme when the atomic cloud is replaced by a single atom.

⁴Mirrahimi-R, 2008, arxiv:0806.1392v1

The system and its synchronization scheme



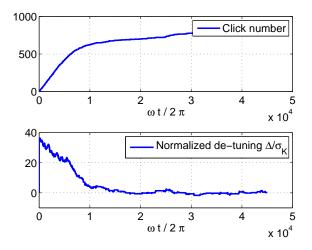
Input: $\tilde{\Omega}_1, \tilde{\Omega}_2 \in \mathbb{C}$ and $u = \frac{d}{dt}\Delta$. Output: photo-detector click times corresponding to stochastic jumps from $|e\rangle$ to $|g_1\rangle$ or $|g_2\rangle$. Synchronization goal: stabilize the unknown detuning Δ to 0. Two time-scales: $|\tilde{\Omega}_1|, |\tilde{\Omega}_2|, |\Delta_e|, |\Delta| \ll \Gamma_1, \Gamma_2$

 $\begin{array}{l} \text{Modulation of Rabi complex amplitudes } \tilde{\Omega}_1 \text{ and } \tilde{\Omega}_2 \text{:} \\ \tilde{\Omega}_1(t) = \Omega_1 - \iota \epsilon \Omega_2 \cos(\omega t), \quad \tilde{\Omega}_2(t) = \iota \epsilon \Omega_1 \cos(\omega t) + \Omega_2, \\ \text{with } \Omega_1, \Omega_2 > 0 \text{ constant, } \omega \ll \Gamma_1, \Gamma_2 \text{ and } 0 < \epsilon \ll 1. \end{array}$

Detuning update
$$\Delta_{N+1} = \Delta_N - K \frac{2\Omega_1 \Omega_2}{\Omega_1^2 + \Omega_2^2} \cos(\omega t_N)$$

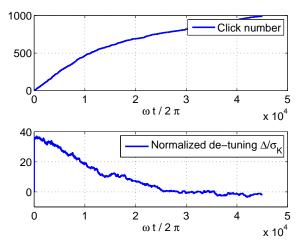
at each detected jump-time t_N . The gain K > 0 fixes the standard deviation σ_K : $4\sigma_K^2 = \varepsilon K \frac{\Omega_1^2 + \Omega_2^2}{\Gamma_1 + \Gamma_2}$.

Closed-loop quantum trajectory (matlab M-file: QCCQI08PR.m)



A-system parameters: $\Gamma_1 = \Gamma_2 = 10$, $\Delta_e = 2.0$ Modulation parameters: $\Omega_1 = \Omega_2 = 1.0$, $\omega = 2.8$, $\varepsilon = 0.14$ Feedback gain K = 0.0023 leading to a standard deviation $\sigma_K = 0.0057$

Robustness



Detector efficiency of 50%, wrong jump detection of 50%, feedback-loop delay of τ with $\omega \tau = \pi/4$.

The slow/fast master equation

Master equation of the A-system

$$rac{d}{dt}
ho = -rac{\iota}{\hbar}[ilde{H},
ho] + rac{1}{2}\sum_{j=1}^2 (2Q_j
ho Q_j^{\dagger} - Q_j^{\dagger}Q_j
ho -
ho Q_j^{\dagger}Q_j),$$

with jump operators $Q_j = \sqrt{\Gamma_j} |g_j\rangle \langle e|$ and Hamiltonian

$$egin{aligned} & rac{ ilde{\mathcal{H}}}{\hbar} = rac{\Delta}{2} (\ket{g_2} ra{g_2} - \ket{g_1} ra{g_1}) - \left(\Delta_{m{e}} + rac{\Delta}{2}
ight) \ket{m{e}} ra{m{e}} \ + & \widetilde{\Omega}_1 \ket{g_1} ra{m{e}} + & \widetilde{\Omega}_1^* \ket{m{e}} ra{g_1} + & \widetilde{\Omega}_2 \ket{g_2} ra{m{e}} + & \widetilde{\Omega}_2^* \ket{m{e}} ra{g_2}. \end{aligned}$$

Since $|\tilde{\Omega}_1|, |\tilde{\Omega}_2|, |\Delta_e|, |\Delta| \ll \Gamma_1, \Gamma_2$ we have two time-scales: a fast exponential decay for " $|e\rangle$ " and a slow evolution for " $(|g_1\rangle, |g_2\rangle)$ ".

The slow master equation

Geometric reduction via center manifold techniques⁵ leads to a reduced master equation that is still of Lindblad type with a slow Hamiltonian H and slow jump operators L_i :

$$\frac{d}{dt}\rho = -\frac{\iota}{\hbar}[H,\rho] + \frac{1}{2}\sum_{j=1}^{2}(2L_{j}\rho L_{j}^{\dagger} - L_{j}^{\dagger}L_{j}\rho - \rho L_{j}^{\dagger}L_{j}),$$

with $H = \frac{\Delta}{2}\sigma_z = \frac{\Delta(|g_2\rangle\langle g_2| - |g_1\rangle\langle g_1|)}{2}$ and $L_j = \sqrt{\tilde{\gamma}_j} |g_j\rangle \langle b_{\widetilde{\Omega}}|$ and where $\tilde{\gamma}_j = 4 \frac{|\tilde{\Omega}_1|^2 + |\tilde{\Omega}_2|^2}{(\Gamma_1 + \Gamma_2)^2} \Gamma_j$ and $|b_{\widetilde{\Omega}}\rangle$ is the bright state:

$$|b_{\widetilde{\Omega}}\rangle = rac{\widetilde{\Omega}_{1}}{\sqrt{|\widetilde{\Omega}_{1}|^{2} + |\widetilde{\Omega}_{2}|^{2}}}|g_{1}\rangle + rac{\widetilde{\Omega}_{2}}{\sqrt{|\widetilde{\Omega}_{1}|^{2} + |\widetilde{\Omega}_{2}|^{2}}}|g_{2}\rangle$$

For $\Delta = 0$, ρ converges towards the dark state $|d_{\tilde{\Omega}}\rangle \langle d_{\tilde{\Omega}}|$:

$$\left| \boldsymbol{d}_{\widetilde{\boldsymbol{\Omega}}} \right\rangle = -\frac{\widetilde{\boldsymbol{\Omega}}_{2}^{*}}{\sqrt{|\widetilde{\boldsymbol{\Omega}}_{1}|^{2} + |\widetilde{\boldsymbol{\Omega}}_{2}|^{2}}} \left| \boldsymbol{g}_{1} \right\rangle + \frac{\widetilde{\boldsymbol{\Omega}}_{1}^{*}}{\sqrt{|\widetilde{\boldsymbol{\Omega}}_{1}|^{2} + |\widetilde{\boldsymbol{\Omega}}_{2}|^{2}}} \left| \boldsymbol{g}_{2} \right\rangle$$

⁵Mirrahimi-R 2008, arXiv:0801.1602v1, accepted in IEEE+AC. => (=>)

Quantum trajectories for the slow approximation

In the absence of the quantum jumps, ρ evolves on the Bloch sphere according to $(\tilde{\gamma} = 4 \frac{|\tilde{\Omega}_1|^2 + |\tilde{\Omega}_2|^2}{\Gamma_1 + \Gamma_2})$

$$\frac{1}{\tilde{\gamma}}\frac{d}{dt}\rho = -\iota \frac{\Delta}{2\tilde{\gamma}}[\sigma_{z},\rho] - \frac{\left|b_{\widetilde{\Omega}}\right\rangle \left\langle b_{\widetilde{\Omega}}\right|\rho + \rho\left|b_{\widetilde{\Omega}}\right\rangle \left\langle b_{\widetilde{\Omega}}\right|}{2} + \left\langle b_{\widetilde{\Omega}}\right|\rho\left|b_{\widetilde{\Omega}}\right\rangle \rho.$$

At each time step dt, ρ may jump towards the state $|g_1\rangle\langle g_1|$ or $|g_2\rangle\langle g_2|$ with a jump probability given by:

dt
$$ilde{\gamma}\left\langle \textit{b}_{\widetilde{\Omega}} \middle|
ho \left| \textit{b}_{\widetilde{\Omega}} \right
ight
angle$$

Since $\tilde{\Omega}_1(t) = \Omega_1 - \iota \epsilon \Omega_2 \cos(\omega t)$ and $\tilde{\Omega}_2(t) = \iota \epsilon \Omega_1 \cos(\omega t) + \Omega_2$,

$$\tilde{\gamma} \left| \boldsymbol{b}_{\widetilde{\Omega}} \right\rangle \left\langle \boldsymbol{b}_{\widetilde{\Omega}} \right| = \gamma(|\boldsymbol{b}\rangle + \iota\varepsilon \cos(\omega t) |\boldsymbol{d}\rangle) \left(\left\langle \boldsymbol{b} \right| - \iota\varepsilon \cos(\omega t) \left\langle \boldsymbol{d} \right| \right)$$

with
$$\gamma = 4 \frac{|\Omega_1|^2 + |\Omega_2|^2}{\Gamma_1 + \Gamma_2}$$
, $|\mathbf{b}\rangle = \frac{\Omega_1 |g_1\rangle + \Omega_2 |g_2\rangle}{\sqrt{\Omega_1^2 + \Omega_2^2}}$ and $|\mathbf{d}\rangle = \frac{-\Omega_2 |g_1\rangle + \Omega_1 |g_2\rangle}{\sqrt{\Omega_1^2 + \Omega_2^2}}$

Quantum trajectories in Bloch-sphere coordinates
With
$$\beta = 2 \arg(\Omega_1 + i\Omega_2)$$
 and
 $\rho = \frac{1+X(|b\rangle\langle d|+|d\rangle\langle b|)+Y(i|b\rangle\langle d|-i|d\rangle\langle b|)+Z(|d\rangle\langle d|-|b\rangle\langle b|)}{2}$:
 $\frac{d}{dt}X = -\Delta\cos\beta Y - \gamma\left(\varepsilon\cos(\omega t)Y + \frac{1-\varepsilon^2\cos^2(\omega t)}{2}Z\right)X$
 $\frac{d}{dt}Y = \Delta\cos\beta X - \Delta\sin\beta Z + \gamma\varepsilon\cos(\omega t)$
 $-\gamma\left(\varepsilon\cos(\omega t)Y + \frac{1-\varepsilon^2\cos^2(\omega t)}{2}Z\right)Y$
 $\frac{d}{dt}Z = \Delta\sin\beta Y + \gamma\left(\frac{1-\varepsilon^2\cos^2(\omega t)}{2}\right)$
 $-\gamma\left(\varepsilon\cos(\omega t)Y + \frac{1-\varepsilon^2\cos^2(\omega t)}{2}Z\right)Z$

The jump probability per unit of time is

$$P_{jump} = \frac{\gamma}{2}(1 - Z - 2\varepsilon\cos(\omega t)Y + \varepsilon^2\cos^2(\omega t)(1 + Z)).$$

Just after a jump (X, Y, Z) is reset to $\pm (\sin \beta_2 0, \cos \beta)$.

Convergence of the no-jump dynamics

$$\frac{d}{dt}X = -\Delta\cos\beta Y - \gamma\left(\varepsilon\cos(\omega t)Y + \frac{1-\varepsilon^2\cos^2(\omega t)}{2}Z\right)X$$
$$\frac{d}{dt}Y = \Delta\cos\beta X - \Delta\sin\beta Z + \gamma\varepsilon\cos(\omega t) - \gamma\left(\varepsilon\cos(\omega t)Y + \frac{1-\varepsilon^2\cos^2(\omega t)}{2}Z\right)Y$$
$$\frac{d}{dt}Z = \Delta\sin\beta Y + \gamma\left(\frac{1-\varepsilon^2\cos^2(\omega t)}{2}\right) - \gamma\left(\varepsilon\cos(\omega t)Y + \frac{1-\varepsilon^2\cos^2(\omega t)}{2}Z\right)Z$$

For $|\Delta| < \frac{\gamma}{2}$ and $0 < \varepsilon \ll 1$, the above time-periodic nonlinear system admits a quasi-global asymptotically stable periodic orbit (proof: Poincaré-Bendixon and perturbation). It reads

$$(X, Y, Z) = \begin{pmatrix} 0 & , & -\sin\beta \frac{\Delta}{\gamma} + \frac{\gamma^2 \cos(\omega t) + \gamma \omega \sin(\omega t)}{\omega^2 + \gamma^2} \varepsilon & , & 1 \end{pmatrix}$$

up to second order terms in ε and $\frac{\Delta}{\gamma}$.

When $\omega \gg \gamma$, $P_{jump} \approx \gamma \left(\varepsilon \cos(\omega t) + \frac{\Delta \sin \beta}{2\gamma} \right)^2$ if the last jump <u>occurs more that few $-\log \varepsilon / \gamma$ second(s) ago.⁶. ⁶Replace *Z* by $1 - \frac{X^2 + Y^2}{2}$ in previous formula giving $P_{jump} \approx z \approx z \approx z \approx 2$ </u>

Detuning update as a discrete-time stochastic process

Our analysis neglects the transient just after a jump. When a jump occurs at t_N , we have

$$\Delta_{N+1} = \Delta_N - K \sin\beta \cos(\omega t_N)$$

and its probability was proportional to $\left(\varepsilon \cos(\omega t_N) + \frac{\Delta_N \sin\beta}{2\gamma}\right)^2$. The phase $\overline{\omega} = \omega t_N$ can be seen as a stochastic variable in $[0, 2\pi]$ with the following probability density $P_{\Delta_N}(\overline{\omega})$ on $[0, 2\pi]$:

$$P_{\Delta_{N}}(\boldsymbol{\varpi}) = \frac{\left(\varepsilon\cos(\boldsymbol{\varpi}) + \frac{\Delta_{N}\sin\beta}{2\gamma}\right)^{2}}{2\pi\left(\frac{\varepsilon^{2}}{2} + \frac{\Delta_{N}^{2}\sin^{2}\beta}{4\gamma^{2}}\right)}$$

The de-tuning update is thus a discrete-time stochastic process

$$\Delta_{N+1} = \Delta_N - K \sin\beta \cos \varpi$$

where the probability of $\sigma \in [0, 2\pi]$ depends on Δ_N .

Convergence proof

We assume here $|\Delta| \ll \epsilon \gamma$ (remember $\gamma \ll \omega \ll \Gamma_1 + \Gamma_2$):

$$\Delta_{N+1} = \Delta_N - K \sin\beta \cos \varpi$$

with $\overline{\omega}$ of probability density $P_{\Delta_N}(\overline{\omega}) \approx \frac{1}{2\pi} + \frac{\Delta_N \sin\beta}{\pi\epsilon\gamma} \cos \overline{\omega}$. Simple computations yield to⁷

$$E(\Delta_{N+1}|\Delta_N) = \left(1 - \frac{K \sin^2 \beta}{\epsilon \gamma}\right) \Delta_N$$

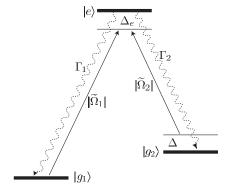
For $0 < K \leq \frac{\epsilon \gamma}{\sin^2 \beta}$, $E(\Delta_N)$ tends to zero. Similarly, we have

$$E(\Delta_{N+1}^2|\Delta_N) = \left(1 - \frac{2K\sin^2\beta}{\epsilon\gamma}\right)\Delta_N^2 + \frac{K^2\sin^2\beta}{2}$$

 $\underline{\text{For } 0 < K \leq \frac{\epsilon \gamma}{2 \sin^2 \beta}, \, E(\Delta_N^2) \text{ converges to } \sigma_K^2 = \frac{\epsilon \gamma K}{4}.}$

 $^{7}E(\Delta_{N+1}|\Delta_{N})$ stands for the conditional expectation-value of Δ_{N+1} knowing Δ_{N} .

Summary: scales and feedback-gain design



 $\begin{array}{l} \textbf{Rabi frequency modulations:}\\ \tilde{\Omega}_{1}(t) = \Omega_{1} - \imath \varepsilon \Omega_{2} \cos(\omega t) \\ \tilde{\Omega}_{2}(t) = \imath \varepsilon \Omega_{1} \cos(\omega t) + \Omega_{2} \\ \text{with } \Omega_{1}, \Omega_{2} \ll \Gamma = \Gamma_{1} + \Gamma_{2}, \\ \textbf{0} < \varepsilon \ll 1 \text{ and} \\ \frac{\Omega_{1}^{2} + \Omega_{2}^{2}}{\Gamma_{1} + \Gamma_{2}} = \gamma \ll \omega \ll \Gamma \end{array}$

Detuning update

A discrete-time stochastic process where the gain K > 0 drives

► the convergence speed with a contraction of $\left(1 - \frac{K \sin^2 \beta}{\epsilon \gamma}\right)$ for $E(\Delta_N)$ at each iteration

• the precision via the asymptotic root-mean-square $\sigma_{K} = \frac{\sqrt{\epsilon \gamma K}}{2}$.

Concluding remarks

- For a nonlinear convergence proof with Δ < γ/2, ε small enough and well tuned gain K, see Mirrahimi-R 2008, arxiv:0806.1392v1. Sensitivity analysis to wrong jump detection and noise remains to be done.
- Such simple feedback can be also developed for other single quantum systems such as the 3-level system illustrating the Dehmelt's electron shelving scheme⁸
- Such feedback scheme could be a preliminary guide for inventing the "quantum regulator", a quantum analogue of the classical PID regulator.

⁸C. Cohen-Tannoudji, J. Dalibard: Single atom Laser spectroscopy: looking for dark periods in fluorescent light. Europhys. Lett. 1 (9), pp:441-448, 1986.