# Low rank approximation for the numerical simulation of high dimensional Lindblad equations 

```
pierre.rouchon@mines-paristech.fr
```

Based on the arXiv preprint http://arxiv.org/abs/1207.4580 with Claude Le Bris from CERMICS

PRACQSYS, September 2012, Tokyo

## Outline

Simulation of high dimensional Lindblad equations

The low rank approximation

Numerical scheme

Numerical tests for oscillation revivals

Concluding remarks

High dimensional Lindblad equations

- The Lindblad master equation governing open-quantum systems:

$$
\frac{d}{d t} \rho=-i[H, \rho]-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)+L \rho L^{\dagger},
$$

where $\rho$ is the density operator ( $\rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0$ ), $H$ is an Hermitian operator and $L$ is any operator on the Hilbert space $\mathcal{H}$ of dimension $n=\operatorname{dim} \mathcal{H}$.

- Usually, $n=\prod_{j=1}^{c} n_{j}$ large comes from $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots \otimes \mathcal{H}_{c}$ where each $\mathcal{H}_{j}$ is of small or intermediate dimension $n_{j} \ll n$. Moreover, the operators $H$ and $L$ are usually defined as sums with few terms of simple tensor products of operators acting only on some $\mathcal{H}_{j}$.
- Typical situations of composite systems: coherent feedback scheme, circuit/cavity QED, ...


## Quantum Monte-Carlo (QMC) simulations ${ }^{1}$

The Lindbald equation $\frac{d}{d t} \rho=-i[H, \rho]-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)+L \rho L^{\dagger}$, is the master equation of the stochastic system
$d\left|\psi_{t}\right\rangle=\left(-i H-\frac{1}{2} L^{\dagger} L+\left\langle\psi_{t} L^{\dagger} L \mid \psi_{t}\right\rangle\right)\left|\psi_{t}\right\rangle d t+\left(\frac{\left.L \psi_{\psi_{t}}\right\rangle}{\sqrt{\left\langle\psi_{t} L L^{\dagger} L \psi_{t}\right\rangle}}-\left|\psi_{t}\right\rangle\right) d N_{t}$
with $d N_{t} \in\{0,1\}, \mathbb{E}\left(d N_{t}\right)=\left\langle\psi_{t}\right| L^{\dagger} L\left|\psi_{t}\right\rangle d t$ (Poisson process).
Monte-Carlo simulations: simulate $N$ realizations of such stochastic Schrödinger equation $[0, T] \ni t \mapsto\left|\psi_{t}^{k}\right\rangle, k=1, \ldots N$ : for $N$ large (typically $N \sim 1000$ )

$$
\rho_{t} \approx \frac{1}{N} \sum_{k=1}^{N}\left|\psi_{t}^{k}\right\rangle\left\langle\psi_{t}^{k}\right| .
$$

[^0] 1992.

Approximation by projection methods ${ }^{2} 3$
Based on physical intuition, select an adapted sub-set of density matrices, i.e. a sub-manifold $\mathcal{D}$ of the vector space of Hermitian matrices equipped with Frobenius Euclidian metric. The approximate evolution is given by the orthogonal projection $\Pi^{\rho}(d \rho / d t)$ of $d \rho / d t$ onto the tangent space at $\rho$ to $\mathcal{D}$ :

$$
\text { for } \rho \in \mathcal{D}, \quad \frac{d}{d t} \rho=\overbrace{\Pi^{\rho}\left(-i[H, \rho]-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)+L \rho L^{\dagger}\right)}^{\text {vector field on } \mathcal{D}} .
$$

In ${ }^{3}$, Mabuchi considers a reduced order model for a spin-spring system. The sub-manifold $\mathcal{D}$ was the (real) 5-dimensional manifold constructed with the tensor products of arbitrary two-level states and pure coherent states.
Computation of $\Pi^{\rho}(d \rho / d t)$ in local coordinates is not trivial and yields usually to nonlinear ODEs.
${ }^{2}$ R. van Handel and H. Mabuchi. Quantum projection filter for a highly nonlinear model in cavity qed. Journal of Optics B: Quantum and Semiclassical Optics, 7(10):S226, 2005.
${ }^{3} \mathrm{H}$. Mabuchi. Derivation of Maxwell-Bloch-type equations by projection of quantum models. Phys. Rev. A, 78:015801, Jul 2008.

## Low rank Kalman filters ${ }^{4}$

For $d x=A x d t+G d \omega, d y=C d x+H d \eta$, computation of the best estimate of $x$ at $t$ knowing the past values of the output $y$ relies on the computation of the conditional error covariance matrix $P$ solution of the Riccati matrix equation

$$
\frac{d}{d t} P=A P+P A^{\prime}+G G^{\prime}-P C^{\prime}\left(H H^{\prime}\right)^{-1} C P
$$

When $G=0$, the Riccati equation is rank preserving. It defines then a vector field on the sub-manifold of rank $m<n$ covariance matrices ( $n=\operatorname{dim} x$ here). This sub-manifold admits the over-parameterization

$$
(U, R) \mapsto U R U^{\prime}=P
$$


where $U$ belongs to the set of $n \times m$ orthogonal matrices ( $U^{\prime} U=\mathbb{I}_{m}$ ) and $R$ is $m \times m$, positive definite and symmetric.
Lift of $d P / d t$ ( $P=U R U^{\prime}$ solution the above Riccati equation):

$$
\frac{d}{d t} U=\left(\mathbb{I}_{n}-U U^{\prime}\right) A U, \quad \frac{d}{d t} R=U^{\prime} A U R+R U^{\prime} A U-R U^{\prime} C\left(H H^{\prime}\right)^{-1} C U R
$$

${ }^{4}$ S. Bonnabel and R. Sepulchre. The geometry of low-rank Kalman filters. preprint arXiv:1203.4049v1, March 2012.

## Projection and lift for rank- $m$ density operators of $\mathbb{C}^{n \times n}$

The sub-manifold $\mathcal{D}_{m}$ of density matrices $\rho$ of rank $m<n$ is over-parameterized via

where $\sigma$ is a $m \times m$ strictly positive Hermitian matrix, $U$ a $n \times m$ matrix with $U^{\dagger} U=\mathbb{I}_{m}$.
The family of lifts for $d \rho / d t=-i[H, \rho]-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)+L \rho L^{\dagger}$

$$
\begin{aligned}
\frac{d}{d t} U= & -i A U+\left(\mathbb{I}_{n}-U U^{\dagger}\right)\left(-i(H-A)-\frac{1}{2} L^{\dagger} L+L U \sigma U^{\dagger} L^{\dagger} U \sigma^{-1} U^{\dagger}\right) U \\
\frac{d}{d t} \sigma= & -i\left[U^{\dagger}(H-A) U, \sigma\right]-\frac{1}{2}\left(U^{\dagger} L^{\dagger} L U \sigma+\sigma U^{\dagger} L^{\dagger} L U\right)+U^{\dagger} L U \sigma U^{\dagger} L^{\dagger} U \\
& +\frac{1}{m} \operatorname{Tr}\left(\left(L^{\dagger}\left(\mathbb{I}_{n}-U U^{\dagger}\right) L U \sigma U^{\dagger}\right) \mathbb{I}_{m} .\right.
\end{aligned}
$$

where the gage degree of freedom $A$ is any time varying $n \times n$ Hermitian matrix.

## The computation of the lifted dynamics

Tangent map of the submersion:

$$
(U, \sigma) \mapsto U_{\sigma} U^{\dagger}=\rho
$$



with the infinitesimal variations $\delta U=\imath \eta U$ and $\delta \sigma=\varsigma$ :

$$
(\eta, \varsigma) \mapsto i[\eta, \rho]+U_{\varsigma} \boldsymbol{U}^{\dagger}
$$

where $\eta$ is any $n \times n$ Hermitian matrix, $\varsigma$ is any $m \times m$ Hermitian matrix with zero trace.
A $n \times n$ Hermitian matrix $\xi$ in the tangent space at $\rho=U \sigma U^{\dagger}$ to $\mathcal{D}_{m}$ admits the parameterization $\xi=i[\eta, \rho]+U_{\varsigma} U^{\dagger}$.
The projection $\Pi_{m}^{\rho}\left(\frac{d}{d t} \rho\right)$ corresponds to the tangent vector $\xi$ associated to $\eta$ and $\varsigma$ minimizing

$$
\operatorname{Tr}\left(\left(-i[H, \rho]-\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right) / 2+L \rho L^{\dagger}-i[\eta, \rho]-U_{\varsigma} U^{\dagger}\right)^{2}\right),
$$

First order stationary conditions give $\eta$ and $\varsigma$ as function of $\rho=U_{\sigma} U^{\dagger}$ : the lifted evolution is given by $\frac{d}{d t} U=i \eta U$ and $\frac{d}{d t} \sigma=\varsigma$ where the arbitrary matrix $A$ appears.

## Gage $A=H$ adapted to weak dissipation

In

$$
\begin{aligned}
\frac{d}{d t} U= & -i A U+\left(\mathbb{I}_{n}-U U^{\dagger}\right)\left(-i(H-A)-\frac{1}{2} L^{\dagger} L+L U \sigma U^{\dagger} L^{\dagger} U \sigma^{-1} U^{\dagger}\right) U \\
\frac{d}{d t} \sigma= & -i\left[U^{\dagger}(H-A) U, \sigma\right]-\frac{1}{2}\left(U^{\dagger} L^{\dagger} L U \sigma+\sigma U^{\dagger} L^{\dagger} L U\right)+U^{\dagger} L U \sigma U^{\dagger} L^{\dagger} U \\
& +\frac{1}{m} \operatorname{Tr}\left(\left(L^{\dagger}\left(\mathbb{I}_{n}-U U^{\dagger}\right) L U \sigma U^{\dagger}\right) \mathbb{I}_{m} .\right.
\end{aligned}
$$

set $A=H$ :

$$
\begin{aligned}
\frac{d}{d t} U= & -i H U+\left(\mathbb{I}_{n}-U U^{\dagger}\right)\left(-\frac{1}{2} L^{\dagger} L+L U \sigma U^{\dagger} L^{\dagger} U \sigma^{-1} U^{\dagger}\right) U \\
\frac{d}{d t} \sigma= & -\frac{1}{2}\left(U^{\dagger} L^{\dagger} L U \sigma+\sigma U^{\dagger} L^{\dagger} L U\right)+U^{\dagger} L U \sigma U^{\dagger} L^{\dagger} U \\
& +\frac{1}{m} \operatorname{Tr}\left(\left(L^{\dagger}\left(\mathbb{I}_{n}-U U^{\dagger}\right) L U \sigma U^{\dagger}\right) \mathbb{I}_{m}\right.
\end{aligned}
$$

$H$ only appears in the dynamics of $U$ and not in the dynamics of $\sigma$. Appropriate when $H$ dominates $L$ : a slow evolution of $\sigma$ as compared to a fast evolution of $U$ (important for the numerical procedure)

A numerical integration scheme adapted to weak dissipation
$U_{k}$ and $\sigma_{k}$ the numerical approximations of $U(k \delta t)$ and $\sigma(k \delta t)$.
The update from time $k \delta t$ to time $(k+1) \delta t$ is split into 3 steps for $U$ and 2 steps for $\sigma$

$$
\begin{aligned}
U_{k+\frac{1}{3}} & =\left(\mathbb{I}_{n}-\frac{i \delta t}{2} H-\frac{\delta t^{2}}{8} H^{2}+i \frac{\delta t^{3}}{48} H^{3}\right) U_{k} \\
U_{k+\frac{2}{3}} & =U_{k+\frac{1}{3}}+\delta t\left(\mathbb{I}_{n}-U_{k+\frac{1}{3}} U_{k+\frac{1}{3}}^{\dagger}\right)\left(-\frac{1}{2} L^{\dagger} L U_{k+\frac{1}{3}}+L U_{k+\frac{1}{3}} \sigma_{k} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} \sigma_{k}^{-1}\right) \\
U_{k+1} & =\Upsilon\left(\left(\mathbb{I}_{n}-\frac{i \delta t}{2} H-\frac{\delta t^{2}}{8} H^{2}+i \frac{\delta t^{3}}{48} H^{3}\right) U_{k+\frac{2}{3}}\right) \quad(\Upsilon \text { ortho-normalization) } \\
\sigma_{k+\frac{1}{2}} & =\sigma_{k}+\delta t U_{k+\frac{1}{3}}^{\dagger} L U_{k+\frac{1}{3}} \sigma_{k} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} \\
& +\delta t \frac{\operatorname{Tr}\left(\left(U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}}-U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} U_{k+\frac{1}{3}}^{\dagger} L U_{k+\frac{1}{3}}\right) \sigma_{k}\right) \mathbb{I}_{m}}{m} \\
\sigma_{k+1} & =\frac{\left(\mathbb{I}_{m}-\frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}}\right) \sigma_{k+\frac{1}{2}}\left(\mathbb{I}_{m}-\frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}}\right)}{\operatorname{Tr}\left(\left(\mathbb{I}_{m}-\frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}}\right) \sigma_{k+\frac{1}{2}}\left(\mathbb{I}_{m}-\frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}}\right)\right)} .
\end{aligned}
$$

This scheme preserves $U^{\dagger} U=\mathbb{I}_{m}, \sigma^{\dagger}=\sigma, \sigma>0$ and $\operatorname{Tr}(\sigma)=1$.

## Computational cost versus QMC procedure

$$
\begin{aligned}
d\left|\psi_{t}\right\rangle & =\left(-i H-\frac{1}{2} L^{\dagger} L+\left\langle\psi_{t}\right| L^{\dagger} L\left|\psi_{t}\right\rangle\right)\left|\psi_{t}\right\rangle d t+\left(\frac{L\left|\psi_{t}\right\rangle}{\sqrt{\left\langle\psi_{t}\right| L^{\dagger} L\left|\psi_{t}\right\rangle}}-\left|\psi_{t}\right\rangle\right) d N_{t} \\
U_{k+\frac{1}{3}} & =\left(\mathbb{I}_{n}-\frac{i \delta t}{2} H-\frac{\delta t^{2}}{8} H^{2}+i \frac{\delta t^{3}}{48} H^{3}\right) U_{k} \\
U_{k+\frac{2}{3}} & =U_{k+\frac{1}{3}}+\delta t\left(\mathbb{I}_{n}-U_{k+\frac{1}{3}} U_{k+\frac{1}{3}}^{\dagger}\right)\left(-\frac{1}{2} L^{\dagger} L U_{k+\frac{1}{3}}+L U_{k+\frac{1}{3}} \sigma_{k} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} \sigma_{k}^{-1}\right) \\
U_{k+1} & =\Upsilon\left(\left(\mathbb{I}_{n}-\frac{i \delta t}{2} H-\frac{\delta t^{2}}{8} H^{2}+i \frac{\delta t^{3}}{48} H^{3}\right) U_{k+\frac{2}{3}}\right)
\end{aligned}
$$

Both methods use essentially right multiplications of $H, L, L^{\dagger}$ by $n \times 1$ or $n \times m$ matrices, as, for example, the products $H|\psi\rangle, L|\psi\rangle$ or HU , $L U, L^{\dagger}(L U)$. No string $n \times n$ matrices since $H$ and $L$ are defined as tensor products of operators of small dimensions. When $n$ is very large and $m$ is small, this point is crucial for an efficient numerical implementation: evaluations of products like HU or LU can be parallelized.

## Empirical estimation ${ }^{5}$ of truncation error

- Based on Frobenius norms of $\dot{\rho}=\frac{d}{d t} \rho$ and $\dot{\rho}_{\perp}=\dot{\rho}-\Pi_{m}^{\rho}(\dot{\rho})$ for $\rho=U_{\sigma} U^{\dagger}$ using:

$$
\begin{aligned}
\dot{\rho} & \left.=-i[H, \rho]-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)+L \rho L^{\dagger}\right) \\
\dot{\rho}_{\perp} & =\left(\mathbb{I}_{n}-P_{\rho}\right) L \rho L^{\dagger}\left(\mathbb{I}_{n}-P_{\rho}\right)-\frac{\operatorname{Tr}\left(L \rho L^{\dagger}\left(\mathbb{I}_{n}-P_{\rho}\right)\right)}{m} P_{\rho}
\end{aligned}
$$

where $P_{\rho}=U U^{\dagger}$.

- Good approximation when $\operatorname{Tr}\left(\dot{\rho}_{\perp}^{2}\right) \ll \operatorname{Tr}\left(\dot{\rho}^{2}\right)$.
- At each time step, $\operatorname{Tr}\left(\dot{\rho}^{2}\right)$ and $\operatorname{Tr}\left(\dot{\rho}_{\perp}^{2}\right)$ may be numerically evaluated with a complexity similar to the complexity of the numerical scheme (no need to explicitly compute $\dot{\rho}$ and $\dot{\rho}_{\perp}$ as $n \times n$ matrices before taking their Frobenius norms).

[^1]
## Initialization procedure

$\sigma_{0}$ and $U_{0}$ need to be deduced from a given initial condition $\rho_{0}$ :

- When the rank of $\rho_{0} \geq m$ : $\sigma_{0}$ diagonal matrix made of the largest $m$ eigenvalues of $\rho_{0}$ with sum normalized to one; $U_{0}$ the associated normalized eigenvectors.
- When the rank of $\rho_{0}=1$ and $m>1: \rho_{0}=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$. It is then natural to take for $\sigma_{0}$ a diagonal matrix where the first diagonal element is $1-(m-1) \epsilon$ and the over ones are equal to $\epsilon \ll 1$. Then $U_{0}$ is constructed, up to an ortho-normalization preserving the first column, with $\left|\psi_{0}\right\rangle$ as the first column, $H\left|\psi_{0}\right\rangle$ as the second column, ..., $H^{m-1}\left|\psi_{0}\right\rangle$ as the last column.
- When the rank of $\rho_{0}$ in $] 1, m[$ : combine the above initialization scheme...


## Lindblad equation of oscillation revivals

The collective symmetric behavior of $N_{a}$ two-level atoms resonantly interacting with a quantized field:

$$
\frac{d}{d t} \rho=\frac{\Omega_{0}}{2}\left[\mathbf{a}^{\dagger} J^{-}-\mathbf{a} J^{+}, \rho\right]-\kappa\left(\mathbf{n} \rho / 2+\rho \mathbf{n} / 2-\mathbf{a} \rho \mathbf{a}^{\dagger}\right)
$$

Preliminary tests via two different type of simulations including the first complete revival:

- $N_{a}=1$ atom initially in the excited state, a field initially in a coherent state with $\bar{n}=15$ photons (truncation to 30 photons): comparisons between the full-rank and rank-2-4-6 solutions with $\kappa=\Omega_{0} / 500$ :
- $N_{a}=50$ atoms all initially in excited states, a field with $\bar{n}=200$ (truncation to 300 photons): comparison of the analytic approximate weak-damping model proposed in ${ }^{6}$ (predicts a reduction of a factor $r=2$ of the complete first revival between $\kappa=0$ and $\left.\kappa=\log (r) \Omega_{0} /\left(4 \pi \bar{n}^{3 / 2}\right)\right)$ with the rank-8 approximation given by the above integration scheme with $\delta t=1 /\left(\Omega_{0} \sqrt{\bar{n}} N_{a}\right)$.
${ }^{6}$ T. Meunier, A. Le Diffon, C. Ruef, P. Degiovanni, and J.-M. Raimond. Entanglement and decoherence of N atoms and a mesoscopic field in a cavity. Phys. Rev. A, 74:033802, 2006.

Full rank (left) versus rank 2 (right) ( $\left.N_{a}=1, \bar{n}=15, \phi=\Omega_{0} t / 2 \sqrt{\bar{n}}\right)$







Full rank (left) versus rank 4 (right) ( $\left.N_{a}=1, \bar{n}=15, \phi=\Omega_{0} t / 2 \sqrt{\bar{n}}\right)$







Full rank (left) versus rank 6 (right) ( $\left.N_{a}=1, \bar{n}=15, \phi=\Omega_{0} t / 2 \sqrt{\bar{n}}\right)$







Oscillation revival with $\kappa=0\left(N_{a}=50, \bar{n}=200, \phi=\Omega_{0} t / 2 \sqrt{\bar{n}}\right)$


Schrödinger simulation time 1 h15 (Dell precision M4440 with Matlab)

Rank-8 solution with $\kappa=\log (2) \Omega_{0} /\left(4 \pi \bar{n}^{3 / 2}\right)\left(N_{a}=50, \bar{n}=200\right)$


Rank-8 simulation time 17 h 00 (Dell precision M4440 with Matlab)

## Concluding remarks

A single tuning parameter: the rank $m \ll n$.
Extension to an arbitrary number of Lindblad operators:

$$
\begin{aligned}
\frac{d}{d t} \rho= & -i[H, \rho]+\sum_{\nu} L_{\nu} \rho L_{\nu}^{\dagger}-\frac{1}{2}\left(L_{\nu}^{\dagger} L_{\nu} \rho+\rho L_{\nu}^{\dagger} L_{\nu}\right) \\
\frac{d}{d t} U= & -i H U+\left(\mathbb{I}_{n}-U U^{\dagger}\right)\left(\sum_{\nu}-\frac{1}{2} L_{\nu}^{\dagger} L_{\nu}+L_{\nu} U \sigma U^{\dagger} L_{\nu}^{\dagger} U \sigma^{-1} U^{\dagger}\right) U \\
\frac{d}{d t} \sigma= & \sum_{\nu} \frac{-1}{2}\left(U^{\dagger} L_{\nu}^{\dagger} L_{\nu} U \sigma+\sigma U^{\dagger} L_{\nu}^{\dagger} L_{\nu} U\right)+U^{\dagger} L_{\nu} U \sigma U^{\dagger} L_{\nu}^{\dagger} U \\
& +\frac{1}{m} \operatorname{Tr}\left(\sum_{\nu}\left(L_{\nu}^{\dagger}\left(\mathbb{I}_{n}-U U^{\dagger}\right) L_{\nu} U \sigma U^{\dagger}\right) \mathbb{I}_{m} .\right.
\end{aligned}
$$

Similar low-rank approximations could be done for continuous-time quantum filters...
Implemented in simulation packages such as QuTip ${ }^{7}$ ?
Adaptation when $n$ is huge ${ }^{8}$ ? Low-rank quantum tomography ?

[^2]
[^0]:    ${ }^{1}$ J. Dalibard, Y. Castion, and K. MøImer. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett., 68(5):580-583,

[^1]:    ${ }^{5}$ Inspired from R. van Handel and H. Mabuchi. Quantum projection filter for a highly nonlinear model in cavity qed. Journal of Optics B: Quantum and Semiclassical Optics

[^2]:    ${ }^{7}$ J.R Johansson, P.D. Nation, F.Nori: QuTiP an open-source Python framework for dynamics of open quantum systems. Computers Physics Communications 183 (2012) 1760-1772.
    ${ }^{8}$ Ilya Kuprov: Spinach - software library for spin dynamics simulation of large spin systems. PRACQSYS 2010.

