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High dimensional Lindblad equations

I The Lindblad master equation governing open-quantum
systems:

d
dt
ρ = −i[H, ρ]− 1

2(L†Lρ+ ρL†L) + LρL†,

where ρ is the density operator (ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0),
H is an Hermitian operator and L is any operator on the
Hilbert space H of dimension n = dimH.

I Usually, n =
∏c

j=1 nj large comes from
H = H1 ⊗H2 ⊗ . . .⊗Hc where each Hj is of small or
intermediate dimension nj � n. Moreover, the operators H
and L are usually defined as sums with few terms of simple
tensor products of operators acting only on some Hj .

I Typical situations of composite systems: coherent
feedback scheme, circuit/cavity QED, . . .



Quantum Monte-Carlo (QMC) simulations1

The Lindbald equation d
dt ρ = −i[H, ρ]− 1

2(L†Lρ+ ρL†L) + LρL†,
is the master equation of the stochastic system

d |ψt〉 =
(
−iH−1

2L†L+〈ψt |L†L|ψt〉
)
|ψt〉 dt+

(
L|ψt 〉√
〈ψt |L†L|ψt 〉

− |ψt〉
)

dNt

with dNt ∈ {0,1}, E(dNt ) = 〈ψt |L†L|ψt〉 dt (Poisson process).

Monte-Carlo simulations: simulate N realizations of such
stochastic Schrödinger equation [0,T ] 3 t 7→ |ψk

t 〉, k = 1, . . .N:
for N large (typically N ∼ 1000)

ρt ≈ 1
N

N∑
k=1

|ψk
t 〉〈ψk

t |.

1J. Dalibard, Y. Castion, and K. Mølmer. Wave-function approach to
dissipative processes in quantum optics. Phys. Rev. Lett., 68(5):580–583,
1992.



Approximation by projection methods2 3

Based on physical intuition, select an adapted sub-set of density
matrices, i.e. a sub-manifold D of the vector space of Hermitian
matrices equipped with Frobenius Euclidian metric. The approximate
evolution is given by the orthogonal projection Πρ(dρ/dt) of dρ/dt
onto the tangent space at ρ to D:

for ρ ∈ D, d
dt
ρ =

vector field on D︷ ︸︸ ︷
Πρ
(
− i[H, ρ]− 1

2 (L†Lρ+ ρL†L) + LρL†
)
.

In 3, Mabuchi considers a reduced order model for a spin-spring
system. The sub-manifold D was the (real) 5-dimensional manifold
constructed with the tensor products of arbitrary two-level states and
pure coherent states.
Computation of Πρ(dρ/dt) in local coordinates is not trivial and yields
usually to nonlinear ODEs.

2R. van Handel and H. Mabuchi. Quantum projection filter for a highly
nonlinear model in cavity qed. Journal of Optics B: Quantum and
Semiclassical Optics, 7(10):S226, 2005.

3 H. Mabuchi. Derivation of Maxwell-Bloch-type equations by projection of
quantum models. Phys. Rev. A, 78:015801, Jul 2008.



Low rank Kalman filters4

For dx = Ax dt + G dω, dy = C dx + H dη, computation of the best
estimate of x at t knowing the past values of the output y relies on the
computation of the conditional error covariance matrix P solution of
the Riccati matrix equation

d
dt

P = AP + PA′ + GG′ − PC′(HH ′)−1CP.

When G = 0, the Riccati equation is rank preserving. It defines then a
vector field on the sub-manifold of rank m < n covariance matrices
(n = dim x here). This sub-manifold admits the over-parameterization

(U,R) 7→ URU ′ = P !

U︷︸︸︷
R︷︸︸︷ U′︷︸︸︷

=

P︷︸︸︷
where U belongs to the set of n ×m orthogonal matrices (U ′U = Im)
and R is m ×m, positive definite and symmetric.
Lift of dP/dt (P = URU ′ solution the above Riccati equation):

d
dt

U = (In−UU ′)AU,
d
dt

R = U ′AUR + RU ′AU−RU ′C(HH ′)−1CUR

4S. Bonnabel and R. Sepulchre. The geometry of low-rank Kalman filters.
preprint arXiv:1203.4049v1, March 2012.



Projection and lift for rank-m density operators of Cn×n

The sub-manifold Dm of density matrices ρ of rank m < n is
over-parameterized via

ρ = UσU† !

ρ︷︸︸︷
=

U︷︸︸︷
σ︷︸︸︷ U†︷︸︸︷

where σ is a m ×m strictly positive Hermitian matrix, U a n ×m
matrix with U†U = Im.
The family of lifts for dρ/dt = −i[H, ρ]− 1

2 (L†Lρ+ ρL†L) + LρL†

d
dt

U = −iAU + (In − UU†)
(
−i(H − A)− 1

2 L†L + LUσU†L†Uσ−1U†
)

U,

d
dt
σ = −i[U†(H − A)U, σ]− 1

2 (U†L†LUσ + σU†L†LU) + U†LUσU†L†U

+ 1
m Tr

(
(L†(In − UU†)L UσU†

)
Im.

where the gage degree of freedom A is any time varying n × n
Hermitian matrix.



The computation of the lifted dynamics
Tangent map of the submersion:

(U, σ) 7→ UσU† = ρ!

U︷︸︸︷
σ︷︸︸︷ U†︷︸︸︷

=

ρ︷︸︸︷
with the infinitesimal variations δU = ıηU and δσ = ς:

(η, ς) 7→ i[η, ρ] + UςU†

where η is any n × n Hermitian matrix, ς is any m ×m Hermitian
matrix with zero trace.
A n × n Hermitian matrix ξ in the tangent space at ρ = UσU† to Dm
admits the parameterization ξ = i[η, ρ] + UςU†.
The projection Πρm( d

dt ρ) corresponds to the tangent vector ξ
associated to η and ς minimizing

Tr
((
− i[H, ρ]− (L†Lρ+ ρL†L)/2 + LρL† − i[η, ρ]− UςU†

)2
)
,

First order stationary conditions give η and ς as function of ρ = UσU†:
the lifted evolution is given by d

dt U = iηU and d
dt σ = ς where the

arbitrary matrix A appears.



Gage A = H adapted to weak dissipation

In

d
dt

U = −iAU + (In − UU†)
(
−i(H − A)− 1

2 L†L + LUσU†L†Uσ−1U†
)

U,

d
dt
σ = −i[U†(H − A)U, σ]− 1

2 (U†L†LUσ + σU†L†LU) + U†LUσU†L†U

+ 1
m Tr

(
(L†(In − UU†)L UσU†

)
Im.

set A = H:

d
dt

U = −iHU + (In − UU†)
(
− 1

2 L†L + LUσU†L†Uσ−1U†
)

U,

d
dt
σ = − 1

2 (U†L†LUσ + σU†L†LU) + U†LUσU†L†U

+ 1
m Tr

(
(L†(In − UU†)L UσU†

)
Im,

H only appears in the dynamics of U and not in the dynamics of σ.
Appropriate when H dominates L: a slow evolution of σ as compared
to a fast evolution of U (important for the numerical procedure)



A numerical integration scheme adapted to weak dissipation
Uk and σk the numerical approximations of U(kδt) and σ(kδt).
The update from time kδt to time (k + 1)δt is split into 3 steps for U
and 2 steps for σ

Uk+1
3

=
(
In − iδt

2 H − δt2

8 H2 + i δt
3

48 H3
)

Uk

Uk+2
3

= Uk+1
3

+ δt(In − Uk+1
3
U†k+1

3
)
(
− 1

2 L†LUk+1
3

+ LUk+1
3
σk U†k+1

3
L†Uk+1

3
σ−1

k

)
Uk+1 = Υ

((
In − iδt

2 H − δt2

8 H2 + i δt
3

48 H3
)

Uk+2
3

)
(Υ ortho-normalization)

σk+1
2

= σk + δt U†k+1
3
LUk+1

3
σk U†k+1

3
L†Uk+1

3

+ δt
Tr
(

(U†k+1
3
L†LUk+1

3
− U†k+1

3
L†Uk+1

3
U†k+1

3
LUk+1

3
)σk

)
Im

m

σk+1 =
(Im − δt

2 U†k+1
3
L†LUk+1

3
)σk+1

2
(Im − δt

2 U†k+1
3
L†LUk+1

3
)

Tr
(

(Im − δt
2 U†k+1

3
L†LUk+1

3
)σk+1

2
(Im − δt

2 U†k+1
3
L†LUk+1

3
)
) .

This scheme preserves U†U = Im, σ† = σ, σ > 0 and Tr (σ) = 1.



Computational cost versus QMC procedure

d |ψt〉 =
(
− iH − 1

2 L†L + 〈ψt |L†L|ψt〉
)
|ψt〉 dt +

(
L|ψt〉√
〈ψt |L†L|ψt〉

− |ψt〉
)

dNt

Uk+1
3

=
(
In − iδt

2 H − δt2

8 H2 + i δt
3

48 H3
)

Uk

Uk+2
3

= Uk+1
3

+ δt(In − Uk+1
3
U†k+1

3
)
(
− 1

2 L†LUk+1
3

+ LUk+1
3
σk U†k+1

3
L†Uk+1

3
σ−1

k

)
Uk+1 = Υ

((
In − iδt

2 H − δt2

8 H2 + i δt
3

48 H3
)

Uk+2
3

)
Both methods use essentially right multiplications of H, L, L† by n × 1
or n ×m matrices, as, for example, the products H|ψ〉, L|ψ〉 or HU,
LU, L†(LU). No string n × n matrices since H and L are defined as
tensor products of operators of small dimensions. When n is very
large and m is small, this point is crucial for an efficient numerical
implementation: evaluations of products like HU or LU can be
parallelized.



Empirical estimation5 of truncation error

I Based on Frobenius norms of ρ̇ = d
dt ρ and ρ̇⊥ = ρ̇− Πρ

m(ρ̇)
for ρ = UσU† using:

ρ̇ = −i[H, ρ]− 1
2(L†Lρ+ ρL†L) + LρL†

)
ρ̇⊥ = (In − Pρ)LρL†(In − Pρ)− Tr(LρL†(In−Pρ))

m Pρ

where Pρ = UU†.
I Good approximation when Tr

(
ρ̇2
⊥
)
� Tr

(
ρ̇2).

I At each time step, Tr
(
ρ̇2) and Tr

(
ρ̇2
⊥
)

may be numerically
evaluated with a complexity similar to the complexity of the
numerical scheme (no need to explicitly compute ρ̇ and ρ̇⊥
as n × n matrices before taking their Frobenius norms).

5Inspired from R. van Handel and H. Mabuchi. Quantum projection filter for
a highly nonlinear model in cavity qed. Journal of Optics B: Quantum and
Semiclassical Optics



Initialization procedure

σ0 and U0 need to be deduced from a given initial condition ρ0:
I When the rank of ρ0 ≥ m: σ0 diagonal matrix made of the

largest m eigenvalues of ρ0 with sum normalized to one;
U0 the associated normalized eigenvectors.

I When the rank of ρ0 = 1 and m > 1: ρ0 = |ψ0〉〈ψ0|. It is
then natural to take for σ0 a diagonal matrix where the first
diagonal element is 1− (m − 1)ε and the over ones are
equal to ε� 1. Then U0 is constructed, up to an
ortho-normalization preserving the first column, with |ψ0〉
as the first column, H|ψ0〉 as the second column, . . . ,
Hm−1|ψ0〉 as the last column.

I When the rank of ρ0 in ]1,m[: combine the above
initialization scheme . . .



Lindblad equation of oscillation revivals
The collective symmetric behavior of Na two-level atoms resonantly
interacting with a quantized field:

d
dt
ρ =

Ω0

2
[a†J− − aJ+, ρ]− κ(nρ/2 + ρn/2− aρa†)

Preliminary tests via two different type of simulations including the
first complete revival:

I Na = 1 atom initially in the excited state, a field initially in a
coherent state with n̄ = 15 photons (truncation to 30 photons):
comparisons between the full-rank and rank-2-4-6 solutions with
κ = Ω0/500:

I Na = 50 atoms all initially in excited states, a field with n̄ = 200
(truncation to 300 photons): comparison of the analytic
approximate weak-damping model proposed in 6 (predicts a
reduction of a factor r = 2 of the complete first revival between
κ = 0 and κ = log(r)Ω0/(4πn̄3/2)) with the rank-8 approximation
given by the above integration scheme with δt = 1/(Ω0

√
n̄Na).

6T. Meunier, A. Le Diffon, C. Ruef, P. Degiovanni, and J.-M. Raimond.
Entanglement and decoherence of N atoms and a mesoscopic field in a
cavity. Phys. Rev. A, 74:033802, 2006.



Full rank (left) versus rank 2 (right) (Na = 1, n̄ = 15, φ = Ω0t/2
√

n̄)
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Full rank (left) versus rank 4 (right) (Na = 1, n̄ = 15, φ = Ω0t/2
√

n̄)
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Full rank (left) versus rank 6 (right) (Na = 1, n̄ = 15, φ = Ω0t/2
√

n̄)
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Oscillation revival with κ = 0 (Na = 50, n̄ = 200, φ = Ω0t/2
√

n̄)
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Schrödinger simulation time 1h15 (Dell precision M4440 with Matlab)



Rank-8 solution with κ = log(2)Ω0/(4πn̄3/2) (Na = 50, n̄ = 200)
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Rank-8 simulation time 17h00 (Dell precision M4440 with Matlab)



Concluding remarks

A single tuning parameter: the rank m� n.
Extension to an arbitrary number of Lindblad operators:

d
dt
ρ = −i[H, ρ] +

∑
ν

LνρL†ν − 1
2 (L
†
νLνρ+ ρL†νLν)

d
dt

U = −iHU + (In − UU†)

(∑
ν

− 1
2 L†νLν + LνUσU†L†νUσ−1U†

)
U

d
dt
σ =

∑
ν

−1
2 (U†L†νLνUσ + σU†L†νLνU) + U†LνUσU†L†νU

+ 1
m Tr

(∑
ν

(L†ν(In − UU†)Lν UσU†
)

Im.

Similar low-rank approximations could be done for continuous-time
quantum filters . . .
Implemented in simulation packages such as QuTip7?
Adaptation when n is huge8 ? Low-rank quantum tomography ?

7J.R Johansson, P.D. Nation, F.Nori: QuTiP an open-source Python
framework for dynamics of open quantum systems. Computers Physics
Communications 183 (2012) 1760–1772.

8Ilya Kuprov: Spinach - software library for spin dynamics simulation of
large spin systems. PRACQSYS 2010.
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