Low rank approximation for the numerical simulation of high dimensional Lindblad equations

pierre.rouchon@mines-paristech.fr

Based on the arXiv preprint http://arxiv.org/abs/1207.4580 with Claude Le Bris from CERMICS

PRACQSYS, September 2012, Tokyo

(ロ) (同) (三) (三) (三) (○) (○)

Simulation of high dimensional Lindblad equations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The low rank approximation

Numerical scheme

Numerical tests for oscillation revivals

Concluding remarks

High dimensional Lindblad equations

The Lindblad master equation governing open-quantum systems:

$$\frac{d}{dt}\rho = -i[H,\rho] - \frac{1}{2}(L^{\dagger}L\rho + \rho L^{\dagger}L) + L\rho L^{\dagger},$$

where ρ is the density operator ($\rho^{\dagger} = \rho$, Tr (ρ) = 1, $\rho \ge 0$), *H* is an Hermitian operator and *L* is any operator on the Hilbert space \mathcal{H} of dimension $n = \dim \mathcal{H}$.

- Usually, n = ∏^c_{j=1} n_j large comes from H = H₁ ⊗ H₂ ⊗ ... ⊗ H_c where each H_j is of small or intermediate dimension n_j ≪ n. Moreover, the operators H and L are usually defined as sums with few terms of simple tensor products of operators acting only on some H_j.
- Typical situations of composite systems: coherent feedback scheme, circuit/cavity QED, ...

Quantum Monte-Carlo (QMC) simulations¹

The Lindbald equation $\frac{d}{dt}\rho = -i[H,\rho] - \frac{1}{2}(L^{\dagger}L\rho + \rho L^{\dagger}L) + L\rho L^{\dagger}$, is the master equation of the stochastic system

$$d|\psi_t\rangle = \left(-iH - \frac{1}{2}L^{\dagger}L + \langle \psi_t | L^{\dagger}L | \psi_t \rangle\right)|\psi_t\rangle dt + \left(\frac{L|\psi_t\rangle}{\sqrt{\langle \psi_t | L^{\dagger}L | \psi_t \rangle}} - |\psi_t\rangle\right) dN_t$$

with $dN_t \in \{0, 1\}$, $\mathbb{E}(dN_t) = \langle \psi_t | L^{\dagger}L | \psi_t \rangle dt$ (Poisson process).

Monte-Carlo simulations: simulate *N* realizations of such stochastic Schrödinger equation $[0, T] \ni t \mapsto |\psi_t^k\rangle$, k = 1, ..., N: for *N* large (typically $N \sim 1000$)

$$\rho_t \approx \frac{1}{N} \sum_{k=1}^{N} |\psi_t^k\rangle \langle \psi_t^k|.$$

¹J. Dalibard, Y. Castion, and K. Mølmer. Wave-function approach to dissipative processes in quantum optics. *Phys. Rev. Lett.*, 68(5):580–583, 1992.

Approximation by projection methods^{2 3}

Based on physical intuition, select an adapted sub-set of density matrices, i.e. a sub-manifold \mathcal{D} of the vector space of Hermitian matrices equipped with Frobenius Euclidian metric. The approximate evolution is given by the orthogonal projection $\Pi^{\rho}(d\rho/dt)$ of $d\rho/dt$ onto the tangent space at ρ to \mathcal{D} :

for
$$\rho \in \mathcal{D}$$
, $\frac{d}{dt}\rho = \overline{\Pi^{\rho} \left(-i[H,\rho] - \frac{1}{2}(L^{\dagger}L\rho + \rho L^{\dagger}L) + L\rho L^{\dagger} \right)}$.

In ³, Mabuchi considers a reduced order model for a spin-spring system. The sub-manifold \mathcal{D} was the (real) 5-dimensional manifold constructed with the tensor products of arbitrary two-level states and pure coherent states.

Computation of $\Pi^{\rho}(d\rho/dt)$ in local coordinates is not trivial and yields usually to nonlinear ODEs.

²R. van Handel and H. Mabuchi. Quantum projection filter for a highly nonlinear model in cavity qed. *Journal of Optics B: Quantum and Semiclassical Optics*, 7(10):S226, 2005.

³ H. Mabuchi. Derivation of Maxwell-Bloch-type equations by projection of quantum models. *Phys. Rev. A*, 78:015801, Jul 2008. Dot A. Dot A.

Low rank Kalman filters⁴

For $dx = Ax dt + G d\omega$, $dy = C dx + H d\eta$, computation of the best estimate of x at t knowing the past values of the output y relies on the computation of the conditional error covariance matrix P solution of the Riccati matrix equation

$$\frac{d}{dt}P = AP + PA' + GG' - PC'(HH')^{-1}CP.$$

When G = 0, the Riccati equation is rank preserving. It defines then a vector field on the sub-manifold of rank m < n covariance matrices ($n = \dim x$ here). This sub-manifold admits the over-parameterization

$$(U,R)\mapsto URU'=P\iff \bigcup_{n=1}^{U}\bigoplus_{n=1}^{P}\bigoplus_{n=$$

where *U* belongs to the set of $n \times m$ orthogonal matrices ($U'U = \mathbb{I}_m$) and *R* is $m \times m$, positive definite and symmetric. Lift of dP/dt (P = URU' solution the above Riccati equation):

$$\frac{d}{dt}U = (\mathbb{I}_n - UU')AU, \quad \frac{d}{dt}R = U'AUR + RU'AU - RU'C(HH')^{-1}CUR$$

⁴S. Bonnabel and R. Sepulchre. The geometry of low-rank Kalman filters. preprint arXiv:1203.4049v1, March 2012.

Projection and lift for rank-*m* density operators of $\mathbb{C}^{n \times n}$

The sub-manifold D_m of density matrices ρ of rank m < n is over-parameterized via

$$\rho = U\sigma U^{\dagger} \iff \boxed{\begin{array}{c} \rho \\ \bullet \end{array}} = \underbrace{\begin{array}{c} U \\ \bullet \end{array}}^{\sigma} \xleftarrow{U^{\dagger}} \\ \bullet \end{array}$$

where σ is a $m \times m$ strictly positive Hermitian matrix, U a $n \times m$ matrix with $U^{\dagger}U = \mathbb{I}_{m}$. The family of lifts for $d\rho/dt = -i[H, \rho] - \frac{1}{2}(L^{\dagger}L\rho + \rho L^{\dagger}L) + L\rho L^{\dagger}$ $\frac{d}{dt}U = -iAU + (\mathbb{I}_{n} - UU^{\dagger})(-i(H - A) - \frac{1}{2}L^{\dagger}L + LU\sigma U^{\dagger}L^{\dagger}U\sigma^{-1}U^{\dagger})U,$ $\frac{d}{dt}\sigma = -i[U^{\dagger}(H - A)U, \sigma] - \frac{1}{2}(U^{\dagger}L^{\dagger}LU\sigma + \sigma U^{\dagger}L^{\dagger}LU) + U^{\dagger}LU\sigma U^{\dagger}L^{\dagger}U$ $+ \frac{1}{m}\text{Tr}((L^{\dagger}(\mathbb{I}_{n} - UU^{\dagger})L U\sigma U^{\dagger})\mathbb{I}_{m}.$

where the gage degree of freedom *A* is any time varying $n \times n$ Hermitian matrix. The computation of the lifted dynamics Tangent map of the submersion: U σ U^{\dagger}

$$(\boldsymbol{U},\sigma)\mapsto\boldsymbol{U}\sigma\boldsymbol{U}^{\dagger}=\rho\longleftrightarrow$$

with the infinitesimal variations $\delta U = i\eta U$ and $\delta \sigma = \varsigma$:

$$(\eta,\varsigma)\mapsto \mathit{i}[\eta,
ho]+\mathit{U}\varsigma\mathit{U}^\dagger$$

where η is any $n \times n$ Hermitian matrix, ς is any $m \times m$ Hermitian matrix with zero trace.

A $n \times n$ Hermitian matrix ξ in the tangent space at $\rho = U\sigma U^{\dagger}$ to \mathcal{D}_m admits the parameterization $\xi = i[\eta, \rho] + U_{\varsigma}U^{\dagger}$. The projection $\Pi_m^{\rho}(\frac{d}{dt}\rho)$ corresponds to the tangent vector ξ associated to η and ς minimizing

$$\operatorname{Tr}\left(\left(-i[H,\rho]-(L^{\dagger}L\rho+\rho L^{\dagger}L)/2+L\rho L^{\dagger}-i[\eta,\rho]-U\varsigma U^{\dagger}\right)^{2}\right),$$

First order stationary conditions give η and ς as function of $\rho = U\sigma U^{\dagger}$: the lifted evolution is given by $\frac{d}{dt}U = i\eta U$ and $\frac{d}{dt}\sigma = \varsigma$ where the arbitrary matrix *A* appears.

Gage A = H adapted to weak dissipation

In

$$\frac{d}{dt}U = -iAU + (\mathbb{I}_n - UU^{\dagger}) \left(-i(H - A) - \frac{1}{2}L^{\dagger}L + LU\sigma U^{\dagger}L^{\dagger}U\sigma^{-1}U^{\dagger} \right) U,$$

$$\frac{d}{dt}\sigma = -i[U^{\dagger}(H - A)U, \sigma] - \frac{1}{2}(U^{\dagger}L^{\dagger}LU\sigma + \sigma U^{\dagger}L^{\dagger}LU) + U^{\dagger}LU\sigma U^{\dagger}L^{\dagger}U$$

$$+ \frac{1}{m}\text{Tr} \left((L^{\dagger}(\mathbb{I}_n - UU^{\dagger})L \ U\sigma U^{\dagger} \right) \mathbb{I}_m.$$

set A = H:

$$\begin{aligned} \frac{d}{dt}U &= -iHU + (\mathbb{I}_n - UU^{\dagger}) \left(-\frac{1}{2}L^{\dagger}L + LU\sigma U^{\dagger}L^{\dagger}U\sigma^{-1}U^{\dagger} \right) U, \\ \frac{d}{dt}\sigma &= -\frac{1}{2} (U^{\dagger}L^{\dagger}LU\sigma + \sigma U^{\dagger}L^{\dagger}LU) + U^{\dagger}LU\sigma U^{\dagger}L^{\dagger}U \\ &+ \frac{1}{m}\mathrm{Tr} \left((L^{\dagger}(\mathbb{I}_n - UU^{\dagger})L \ U\sigma U^{\dagger} \right) \mathbb{I}_m, \end{aligned}$$

H only appears in the dynamics of *U* and not in the dynamics of σ . Appropriate when *H* dominates *L*: a slow evolution of σ as compared to a fast evolution of *U* (important for the numerical procedure)

A numerical integration scheme adapted to weak dissipation

 U_k and σ_k the numerical approximations of $U(k\delta t)$ and $\sigma(k\delta t)$. The update from time $k\delta t$ to time $(k + 1)\delta t$ is split into 3 steps for U and 2 steps for σ

$$\begin{aligned} U_{k+\frac{1}{3}} &= \left(\mathbb{I}_{n} - \frac{i\delta t}{2} H - \frac{\delta t^{2}}{8} H^{2} + i \frac{\delta t^{3}}{48} H^{3} \right) U_{k} \\ U_{k+\frac{2}{3}} &= U_{k+\frac{1}{3}} + \delta t (\mathbb{I}_{n} - U_{k+\frac{1}{3}} U_{k+\frac{1}{3}}^{\dagger}) \left(-\frac{1}{2} L^{\dagger} L U_{k+\frac{1}{3}} + L U_{k+\frac{1}{3}} \sigma_{k} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} \sigma_{k}^{-1} \right) \\ U_{k+1} &= \Upsilon \left(\left(\mathbb{I}_{n} - \frac{i\delta t}{2} H - \frac{\delta t^{2}}{8} H^{2} + i \frac{\delta t^{3}}{48} H^{3} \right) U_{k+\frac{2}{3}} \right) \text{ (\Upsilon ortho-normalization)} \end{aligned}$$

$$\sigma_{k+\frac{1}{2}} = \sigma_{k} + \delta t \ U_{k+\frac{1}{3}}^{\dagger} L U_{k+\frac{1}{3}} \sigma_{k} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} \\ + \delta t \ \frac{\operatorname{Tr}\left((U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}} - U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} U_{k+\frac{1}{3}}^{\dagger} L U_{k+\frac{1}{3}}) \sigma_{k}\right) \ \mathbb{I}_{m}}{m} \\ \sigma_{k+1} = \frac{(\mathbb{I}_{m} - \frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}}) \sigma_{k+\frac{1}{2}} (\mathbb{I}_{m} - \frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}})}{\operatorname{Tr}\left((\mathbb{I}_{m} - \frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}}) \sigma_{k+\frac{1}{2}} (\mathbb{I}_{m} - \frac{\delta t}{2} U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} L U_{k+\frac{1}{3}})\right)}.$$

This scheme preserves $U^{\dagger}U = \mathbb{I}_m$, $\sigma^{\dagger} = \sigma$, $\sigma > 0$ and $\operatorname{Tr}(\sigma) = 1$.

Computational cost versus QMC procedure

$$d|\psi_t\rangle = \left(-iH - \frac{1}{2}L^{\dagger}L + \langle\psi_t|L^{\dagger}L|\psi_t\rangle\right)|\psi_t\rangle \ dt + \left(\frac{L|\psi_t\rangle}{\sqrt{\langle\psi_t|L^{\dagger}L|\psi_t\rangle}} - |\psi_t\rangle\right) \ dN_t$$

$$\begin{aligned} U_{k+\frac{1}{3}} &= \left(\mathbb{I}_n - \frac{i\delta t}{2} H - \frac{\delta t^2}{8} H^2 + i\frac{\delta t^3}{48} H^3 \right) U_k \\ U_{k+\frac{2}{3}} &= U_{k+\frac{1}{3}} + \delta t (\mathbb{I}_n - U_{k+\frac{1}{3}} U_{k+\frac{1}{3}}^{\dagger}) \left(-\frac{1}{2} L^{\dagger} L U_{k+\frac{1}{3}} + L U_{k+\frac{1}{3}} \sigma_k U_{k+\frac{1}{3}}^{\dagger} L^{\dagger} U_{k+\frac{1}{3}} \sigma_k^{-1} \right) \\ U_{k+1} &= \Upsilon \left(\left(\mathbb{I}_n - \frac{i\delta t}{2} H - \frac{\delta t^2}{8} H^2 + i\frac{\delta t^3}{48} H^3 \right) U_{k+\frac{2}{3}} \right) \end{aligned}$$

Both methods use essentially right multiplications of H, L, L^{\dagger} by $n \times 1$ or $n \times m$ matrices, as, for example, the products $H|\psi\rangle$, $L|\psi\rangle$ or HU, LU, $L^{\dagger}(LU)$. No string $n \times n$ matrices since H and L are defined as tensor products of operators of small dimensions. When n is very large and m is small, this point is crucial for an efficient numerical implementation: evaluations of products like HU or LU can be parallelized.

Empirical estimation⁵ of truncation error

► Based on Frobenius norms of $\dot{\rho} = \frac{d}{dt}\rho$ and $\dot{\rho}_{\perp} = \dot{\rho} - \Pi_m^{\rho}(\dot{\rho})$ for $\rho = U\sigma U^{\dagger}$ using:

$$\dot{\rho} = -i[H,\rho] - \frac{1}{2}(L^{\dagger}L\rho + \rho L^{\dagger}L) + L\rho L^{\dagger})$$
$$\dot{\rho}_{\perp} = (\mathbb{I}_n - P_{\rho})L\rho L^{\dagger}(\mathbb{I}_n - P_{\rho}) - \frac{\mathrm{Tr}(L\rho L^{\dagger}(\mathbb{I}_n - P_{\rho}))}{m}P_{\rho}$$

where $P_{\rho} = UU^{\dagger}$.

- Good approximation when $\operatorname{Tr}(\dot{\rho}_{\perp}^2) \ll \operatorname{Tr}(\dot{\rho}^2)$.
- At each time step, Tr (p²) and Tr (p²_⊥) may be numerically evaluated with a complexity similar to the complexity of the numerical scheme (no need to explicitly compute ṗ and ṗ_⊥ as n × n matrices before taking their Frobenius norms).

⁵Inspired from R. van Handel and H. Mabuchi. Quantum projection filter for a highly nonlinear model in cavity qed. *Journal of Optics B: Quantum and Semiclassical Optics*

Initialization procedure

 σ_0 and U_0 need to be deduced from a given initial condition ρ_0 :

- When the rank of ρ₀ ≥ m: σ₀ diagonal matrix made of the largest m eigenvalues of ρ₀ with sum normalized to one; U₀ the associated normalized eigenvectors.
- ▶ When the rank of $\rho_0 = 1$ and m > 1: $\rho_0 = |\psi_0\rangle\langle\psi_0|$. It is then natural to take for σ_0 a diagonal matrix where the first diagonal element is $1 - (m - 1)\epsilon$ and the over ones are equal to $\epsilon \ll 1$. Then U_0 is constructed, up to an ortho-normalization preserving the first column, with $|\psi_0\rangle$ as the first column, $H|\psi_0\rangle$ as the second column, ..., $H^{m-1}|\psi_0\rangle$ as the last column.

When the rank of ρ₀ in]1, m[: combine the above initialization scheme ...

Lindblad equation of oscillation revivals

The collective symmetric behavior of N_a two-level atoms resonantly interacting with a quantized field:

$$rac{d}{dt}
ho = rac{\Omega_0}{2} [\mathbf{a}^\dagger J^- - \mathbf{a} J^+,
ho] - \kappa (\mathbf{n}
ho/2 +
ho \mathbf{n}/2 - \mathbf{a}
ho \mathbf{a}^\dagger)$$

Preliminary tests via two different type of simulations including the first complete revival:

- N_a = 1 atom initially in the excited state, a field initially in a coherent state with n

 15 photons (truncation to 30 photons): comparisons between the full-rank and rank-2-4-6 solutions with κ = Ω₀/500:
- ► $N_a = 50$ atoms all initially in excited states, a field with $\bar{n} = 200$ (truncation to 300 photons): comparison of the analytic approximate weak-damping model proposed in ⁶ (predicts a reduction of a factor r = 2 of the complete first revival between $\kappa = 0$ and $\kappa = \log(r)\Omega_0/(4\pi \bar{n}^{3/2})$) with the rank-8 approximation given by the above integration scheme with $\delta t = 1/(\Omega_0 \sqrt{\bar{n}}N_a)$.

⁶T. Meunier, A. Le Diffon, C. Ruef, P. Degiovanni, and J.-M. Raimond. Entanglement and decoherence of N atoms and a mesoscopic field in a cavity. *Phys. Rev. A*, 74:033802, 2006.

Full rank (left) versus rank 2 (right) ($N_a = 1$, $\bar{n} = 15$, $\phi = \Omega_0 t/2\sqrt{\bar{n}}$)

▲ロ▶▲舂▶▲巻▶▲巻▶ 差 ののの

Full rank (left) versus rank 4 (right) ($N_a = 1$, $\bar{n} = 15$, $\phi = \Omega_0 t/2\sqrt{\bar{n}}$)

▲ロト▲御と▲注と▲注と 注 めの()

Full rank (left) versus rank 6 (right) ($N_a = 1$, $\bar{n} = 15$, $\phi = \Omega_0 t/2\sqrt{\bar{n}}$)

▲口▶▲御▶▲臣▶▲臣▶ 臣 のへで

Oscillation revival with $\kappa = 0$ ($N_a = 50$, $\bar{n} = 200$, $\phi = \Omega_0 t/2\sqrt{\bar{n}}$)

Schrödinger simulation time 1h15 (Dell precision M4440 with Matlab)

Rank-8 solution with $\kappa = \log(2)\Omega_0/(4\pi \bar{n}^{3/2})$ (*N*_a = 50, \bar{n} = 200)

Rank-8 simulation time 17h00 (Dell precision M4440 with Matlab)

Concluding remarks

A single tuning parameter: the rank
$$m \ll n$$
.
Extension to an arbitrary number of Lindblad operators:

$$\frac{d}{dt}\rho = -i[H,\rho] + \sum_{\nu} L_{\nu}\rho L_{\nu}^{\dagger} - \frac{1}{2}(L_{\nu}^{\dagger}L_{\nu}\rho + \rho L_{\nu}^{\dagger}L_{\nu})$$

$$\frac{d}{dt}U = -iHU + (\mathbb{I}_{n} - UU^{\dagger})\left(\sum_{\nu} -\frac{1}{2}L_{\nu}^{\dagger}L_{\nu} + L_{\nu}U\sigma U^{\dagger}L_{\nu}^{\dagger}U\sigma^{-1}U^{\dagger}\right)U$$

$$\frac{d}{dt}\sigma = \sum_{\nu} \frac{-1}{2}(U^{\dagger}L_{\nu}^{\dagger}L_{\nu}U\sigma + \sigma U^{\dagger}L_{\nu}^{\dagger}L_{\nu}U) + U^{\dagger}L_{\nu}U\sigma U^{\dagger}L_{\nu}^{\dagger}U$$

$$+ \frac{1}{m}\mathrm{Tr}\left(\sum_{\nu}(L_{\nu}^{\dagger}(\mathbb{I}_{n} - UU^{\dagger})L_{\nu}U\sigma U^{\dagger}\right)\mathbb{I}_{m}.$$

Similar low-rank approximations could be done for continuous-time quantum filters ...

Implemented in simulation packages such as QuTip⁷? Adaptation when *n* is huge⁸ ? Low-rank quantum tomography ?

⁷J.R Johansson, P.D. Nation, F.Nori: QuTiP an open-source Python framework for dynamics of open quantum systems. Computers Physics Communications 183 (2012) 1760–1772.

⁸Ilya Kuprov: Spinach - software library for spin dynamics simulation of large spin systems. PRACQSYS 2010.