

Adiabatic elimination for bipartite open quantum systems 4th Workshop on Quantum Non-Equilibrium Dynamics 24-26 April 2017, University of Nottingham (UK)

Pierre Rouchon
Centre Automatique et Systèmes, Mines ParisTech, PSL Research University Quantic Research Team, Inria

Joint work with R. Azouit, F. Chittaro and A. Sarlette (arXiv.1704.00785)

Adiabatic elimination for bipartite open quantum systems

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

Several contributions on adiabatic elimination (partial list)

- Lambda systems :
E. Brion, L.H. Pedersen, K. Mølmer : Adiabatic elimination in a lambda system Journal of Physics A :

Mathematical and Theoretical, 2007, 40, 1033.
M. Mirrahimi, PR :. Singular perturbations and Lindblad-Kossakowski differential equations IEEE Trans.

Automatic Control , 2009, 54, 1325-1329
F. Reiter, A. Sørensen : Effective operator formalism for open quantum systems Phys. Rev. A, 2012, 85, 032111-

- Slow/fast Lindblad dynamics :
E.M. Kessler : Generalized Schrieffer-Wolff formalism for dissipative systems. Phys. Rev. A, 2012, 86, 012126-
D. Burgarth et al. : Non-Abelian Phases from a Quantum Zeno Dynamics. Phys. Rev. A 88, 042107 (2013)
P. Zanardi, L. Campos Venuti : Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems. Phys. Rev. Lett. 113, 240406 (2014)
K. Macieszczak, M. Guta, I. Lesanovsky,J.P. Garrahan : Towards a Theory of Metastability in Open Quantum Dynamics. Phys. Rev. Lett. 116, 240404 (2016)
L. Campos Venuti, P. Zanardi : Dynamical Response Theory for Driven-Dissipative Quantum Systems. Phys. Rev. A 93, 032101 (2016)
- Quantum stochastic models:
J. Gough, R. van Handel : Singular perturbation of quantum stochastic differential equations with coupling through an oscillator model. J. Stat. Phys. 2007, 127 pp :575.
L. Bouten, A. Silberfarb : Adiabatic elimination in quantum stochastic model, Commun. Math. Phys., 283, 491-505 (2008)
L. Bouten, R. van Handel, A. Silberfarb : Approximation and limit theorems for quantum stochastic models with unbounded coefficients. Journal of Functional Analysis 254 (2008) 3123-3147.
O. Cernotik, D. Vasilyev, K. Hammerer : Adiabatic elimination of Gaussian subsystems from quantum dynamics under continuous measurement Phys. Rev. A, , 92, 012124 (2015)

Bipartite slow/fast open quantum systems

- Sub-system A with Hilbert space \mathcal{H}_{A} relaxing rapidly towards a unique equilibrium density operator $\bar{\rho}_{A}$ via the Lindbladian evolution :

$$
\frac{d}{d t} \rho_{A}=\mathcal{L}_{A}\left(\rho_{A}\right) \text { with } \lim _{t \rightarrow+\infty} \rho_{A}(t)=\bar{\rho}_{A} ;
$$

- Sub-system B with Hilbert space \mathcal{H}_{B} having a slow Lindbladian evolution

$$
\frac{d}{d t} \rho_{B}=\epsilon \mathcal{L}_{B}\left(\rho_{B}\right) \text { with } 0 \leq \epsilon \ll 1
$$

- Weak (A, B) coupling via the Hamiltonian $\epsilon \sum_{k=1}^{m} \boldsymbol{A}_{k} \otimes \boldsymbol{B}_{k}^{\dagger}$

Bipartite Hilbert space (A, B) with Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and density operator ρ governed by

$$
\frac{d}{d t} \rho=\mathcal{L}_{A}(\rho)-\boldsymbol{i} \boldsymbol{\epsilon}\left[\sum_{k=1}^{m} \boldsymbol{A}_{k} \otimes \boldsymbol{B}_{k}^{\dagger}, \rho\right]+\boldsymbol{\epsilon} \mathcal{L}_{B}(\rho)
$$

Adiabatic elim. of fast qubit A dispersively coupled to slow qubit B^{1}

slow qubit B

The slow/fast dynamics

$$
\frac{d \rho}{d t}=u\left[\sigma_{+}^{A}-\sigma_{-}^{A}, \rho\right]+\kappa\left(\sigma_{-}^{A} \rho \sigma_{+}^{A}-\frac{\sigma_{+}^{A} \sigma_{-}^{A} \rho+\rho \sigma_{+}^{A} \sigma_{-}^{A}}{2}\right)-i \chi\left[\sigma_{z}^{A} \otimes \sigma_{z}^{B}, \rho\right]
$$

Slow dynamics (second order versus $\epsilon=\chi / \kappa$):

$$
\frac{d \rho_{s}}{d t}=i \frac{\chi \kappa^{2}}{\kappa^{2}+8 u^{2}}\left[\sigma_{\boldsymbol{z}}, \rho_{s}\right]+\frac{\left(64 \kappa \chi^{2} u^{2}\right)\left(\kappa^{2}+2 u^{2}\right)}{\left(\kappa^{2}+8 u^{2}\right)^{3}}\left(\sigma_{z} \rho_{s} \sigma_{z}-\rho_{S}\right)
$$

Kraus (CPTP) map : $\rho=\left(\boldsymbol{I}-i \boldsymbol{Q} \otimes \sigma_{\boldsymbol{z}}\right)\left(\bar{\rho}_{\boldsymbol{A}} \otimes \rho_{s}\right)\left(\boldsymbol{I}+i \boldsymbol{Q}^{\dagger} \otimes \sigma_{\boldsymbol{z}}\right)$ with
$\bar{\rho}_{A}=\frac{4 \kappa u}{\kappa^{2}+8 u^{2}} \sigma_{\mathbf{x}}-\frac{\kappa^{2}}{\kappa^{2}+8 u^{2}} \sigma_{\mathbf{z}}+\frac{1}{2} \boldsymbol{I}$ and $\boldsymbol{Q}=\bullet \sigma_{\mathbf{x}}+\bullet \sigma_{\boldsymbol{y}}+\bullet \sigma_{\mathbf{z}}+\bullet \boldsymbol{l}$

1. R. Azouit, F. Chittaro, A. Sarlette, P.R., IFAC world congress 2017.

Two-photon pumping in super-conducting circuits ${ }^{2}$

$$
\left.\tilde{x}_{0}\right\}
$$

$$
\frac{d}{d t} \rho=\mathcal{L}_{A}(\rho)-i\left[\boldsymbol{H}_{\mathrm{int}}, \rho\right]+\mathcal{L}_{B}(\rho) \text { where }
$$

$$
\begin{aligned}
\mathcal{L}_{A}(\rho)= & {\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \rho\right]+\kappa \mathcal{D}_{\mathbf{a}}(\rho) } \\
\boldsymbol{H}_{\text {int }}= & g\left[\boldsymbol{a}\left(\boldsymbol{b}^{\dagger}\right)^{2}+\mathbf{a}^{\dagger} \boldsymbol{b}^{2}, \rho\right] \\
& +\chi\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)\left(\boldsymbol{b}^{\dagger} \boldsymbol{b}\right)+\frac{\chi_{a}}{2}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)^{2} \\
\mathcal{L}_{B}(\rho)= & -i \frac{\chi_{b}}{2}\left[\left(\boldsymbol{b}^{\dagger} \boldsymbol{b}\right)^{2}, \rho\right] \\
\text { with } \kappa \gg & \max \left(|g|,|\chi|,\left|\chi_{a}\right|,\left|\chi_{b}\right|\right) .
\end{aligned}
$$

The slow dynamics (second order approximation, $\alpha=2 u / \kappa$):
$\frac{d}{d t} \rho_{s}=-i\left[\alpha^{2} \chi \boldsymbol{b}^{\dagger} \boldsymbol{b}+\frac{\chi_{b}}{2}\left(\boldsymbol{b}^{\dagger} \boldsymbol{b}\right)^{2}, \rho_{s}\right]-i \alpha \boldsymbol{g}\left[\boldsymbol{b}^{2}+\left(\boldsymbol{b}^{\dagger}\right)^{2}, \rho_{s}\right]+\left(\frac{4 g^{2}}{\kappa}\right) \mathcal{D}_{\boldsymbol{L}_{s}}(\rho)$
with $\boldsymbol{L}_{s}=\boldsymbol{b}^{2}+\frac{\alpha}{g}\left(\chi \boldsymbol{b}^{\dagger} \boldsymbol{b}+\frac{\chi_{a}\left(1+2 \alpha^{2}\right)}{2} \boldsymbol{I}\right)$.
Kraus (CPTP) map : $\rho=(\boldsymbol{I}-\boldsymbol{i} \boldsymbol{M})\left(|\alpha\rangle\langle\alpha| \otimes \rho_{s}\right)\left(\boldsymbol{I}+\boldsymbol{i} \boldsymbol{M}^{\dagger}\right)$ with
$\boldsymbol{M}=\left(\boldsymbol{a}^{\dagger}-\alpha^{*}\right) \otimes\left(\frac{2 g}{\kappa} \boldsymbol{b}^{2}+\frac{2 \alpha \chi}{\kappa} \boldsymbol{b}^{\dagger} \boldsymbol{b}+\frac{2 \alpha\left(1+2 \alpha^{2}\right) \chi_{a}}{\kappa} \boldsymbol{I}\right)+\frac{\alpha^{2} \chi_{a}}{\kappa}\left(\boldsymbol{a}^{\dagger}-\alpha^{*}\right)^{2} \otimes \boldsymbol{I}$.
2. M. Mirrahimi, Z. Leghtas, V.V. Albert, S. Touzard, R.J. Schoelkopf, L. Jiang, and M.H. Devoret. Dynamically protected cat-qubits : a new paradigm for universal quantum computation. New J. of Physics, $16: 045014,2014$.

Outline

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

What is model reduction?

A possible answer for $\frac{d}{d t} x=v(x)$: restriction to an attractive invariant manifold Σ.

Slow/fast systems (coordinate free setting)

Geometric definition independent of coordinates due to Fenichel ${ }^{3}$:

- $x \mapsto v(x)$ close to $x \mapsto \bar{v}(x)$.
- $\bar{v}(x)=0$ define a manifold $\bar{\Sigma}$ of dimension $n_{s}<n=\operatorname{dim}(x)$ of steady-states for $\bar{v}(x)$.
- $n_{f}=n-n_{s}$ eigenvalues of $\left.\frac{\partial \bar{v}}{\partial x}\right|_{\bar{\Sigma}}$ are stable.

3. N. Fenichel : Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equations, 1979, 31, 53-98.

Any slow/fast system, can be put, after a suitable change of coordinates, in to a quasi-vertical vector field v :

$$
\frac{d}{d t} x_{s}=v_{s}\left(x_{s}, x_{f}\right)=\varepsilon \tilde{v}_{s}\left(x_{s}, x_{f}, \varepsilon\right), \quad \frac{d}{d t} x_{f}=v_{f}\left(x_{s}, x_{f}\right)
$$

with $0<\varepsilon \ll 1$.
The reduced system $\frac{d}{d t} x_{s}=v_{s}\left(x_{s}, x_{f}\right)$ with $0=v_{f}\left(x_{s}, x_{f}\right)$ is correct if $\frac{d}{d t} \xi_{f}=v_{f}\left(x_{s}, \xi_{f}\right)$ stable for any fixed x_{s}.
In general, modeling variables x are not Tikhonov variables.

Model reduction with modeling variables

The reduced model of $\frac{d}{d t} x_{s}=v_{s}\left(x_{s}, x_{f}, \epsilon\right), \frac{d}{d t} x_{f}=v_{f}\left(x_{s}, x_{f}, \epsilon\right)$ is ${ }^{4}$

$$
\frac{d}{d t} x_{s}=\left(1+\frac{\partial v_{s}}{\partial x_{f}}\left(\frac{\partial v_{f}}{\partial x_{f}}\right)^{-2} \frac{\partial v_{f}}{\partial x_{s}}\right)^{-1} v_{s}\left(x_{s}, x_{f}, \epsilon\right)+O\left(\epsilon^{2}\right), \quad v_{f}\left(x_{s}, x_{f}, \epsilon\right)=0
$$

4. J. Carr : Application of Center Manifold Theory. Springer, 1981. P. Duchêne, P.R. : Kinetic scheme reduction via geometric singular perturbation techniques. Chem. Eng. Science, 1996, 51, 4661-4672.

Outline

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

Geometric singular perturbations for bipartite open quantum systems ${ }^{5}$

Lindbladian slow dynamics in a copy \mathcal{H}_{s} of \mathcal{H}_{B}

$$
\frac{d}{d t} \rho_{s}=\mathcal{L}_{s}\left(\rho_{s}\right)=\epsilon \mathcal{L}_{s, 1}\left(\rho_{s}\right)+\epsilon^{2} \mathcal{L}_{s, 2}\left(\rho_{s}\right)+\ldots
$$

with Kraus map to recover the physical density operator ρ from ρ_{s} :

$$
\rho=\mathcal{K}\left(\rho_{s}\right)=\mathcal{K}_{0}\left(\rho_{s}\right)+\epsilon \mathcal{K}_{1}\left(\rho_{s}\right)+\ldots
$$

5. R. Azouit et al. IEEE CDC 2016.

An iterative procedure based on center manifold approximation

Plug $\rho=\mathcal{K}\left(\rho_{s}\right)=\bar{\rho}_{A} \otimes \rho_{s}+\epsilon \mathcal{K}_{1}\left(\rho_{s}\right)+\ldots$ and
$\frac{d}{d t} \rho_{s}=\mathcal{L}_{s}\left(\rho_{s}\right)=\epsilon \mathcal{L}_{s, 1}\left(\rho_{s}\right)+\epsilon^{2} \mathcal{L}_{s, 2}\left(\rho_{s}\right)+\ldots$ into the invariance condition

$$
\mathcal{L}_{A}\left(\mathcal{K}\left(\rho_{s}\right)\right)-\epsilon i\left[\boldsymbol{H}_{\mathrm{int}}, \mathcal{K}\left(\rho_{s}\right)\right]+\epsilon \mathcal{L}_{B}\left(\mathcal{K}\left(\rho_{s}\right)\right)=\frac{d}{d t} \rho=\mathcal{K}\left(\mathcal{L}_{s}\left(\rho_{s}\right)\right)
$$

and identify terms of same order :

```
order 1: \mathcal{L}
```


At each order

1. take the trace versus A to get the correction to \mathcal{L}_{s}
2. compute the correction to \mathcal{K} via $-\mathcal{L}_{A}^{-1}$, a super operator for zero-trace operators \boldsymbol{W} on \mathcal{H}_{A}

$$
-\mathcal{L}_{A}^{-1}(\boldsymbol{W})=\int_{0}^{+\infty} e^{t \mathcal{L}_{A}}(\boldsymbol{W}) d t
$$

that coincides with the restriction to zero-trace operators of a completely positive (CP) map.

First order expansion for a bipartite system : Zeno dynamics ${ }^{6}$

The full dynamics

$$
\frac{d}{d t} \rho=\mathcal{L}_{A}(\rho)-i \epsilon\left[\sum_{k=1}^{m} \boldsymbol{A}_{k} \otimes \boldsymbol{B}_{k}^{\dagger}, \rho\right]+\epsilon \mathcal{L}_{B}(\rho)
$$

can be approximated by

$$
\begin{aligned}
\frac{d}{d t} \rho_{s} & =-i \epsilon\left[\sum_{k=1}^{m} \operatorname{tr}\left(\boldsymbol{A}_{k} \bar{\rho}_{A}\right) \boldsymbol{B}_{k}^{\dagger}, \rho_{s}\right]+\epsilon \mathcal{L}_{B}\left(\rho_{s}\right)+O\left(\epsilon^{2}\right) \\
\rho & =(\boldsymbol{I}-\boldsymbol{i} \boldsymbol{\epsilon} \boldsymbol{M})\left(\bar{\rho}_{\boldsymbol{A}} \otimes \rho_{\boldsymbol{s}}\right)\left(\boldsymbol{I}+\boldsymbol{i} \epsilon \boldsymbol{M}^{\dagger}\right)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

where $\boldsymbol{M}=\sum_{k=1}^{m} \boldsymbol{F}_{k} \otimes \boldsymbol{B}_{k}^{\dagger}$ with \boldsymbol{F}_{k} given by

$$
\boldsymbol{F}_{k} \bar{\rho}_{A}=-\mathcal{L}_{A}^{-1}\left(\boldsymbol{A}_{k} \bar{\rho}_{A}-\operatorname{tr}\left(\boldsymbol{A}_{k} \bar{\rho}_{A}\right) \bar{\rho}_{A}\right) .
$$

6. A. Azouit et al. arXiv. 1704.00785

Second order dynamics ${ }^{7}$

The full dynamics

$$
\frac{d}{d t} \rho=\mathcal{L}_{A}(\rho)-i \epsilon\left[\sum_{k=1}^{m} \boldsymbol{A}_{k} \otimes \boldsymbol{B}_{k}^{\dagger}, \rho\right]+\epsilon \mathcal{L}_{B}(\rho)
$$

can be approximated by

$$
\begin{aligned}
\frac{d}{d t} \rho_{s}= & -i\left[\epsilon \sum_{k} \operatorname{tr}\left(\boldsymbol{A}_{k} \bar{\rho}_{A}\right) \boldsymbol{B}_{k}+\epsilon^{2} \sum_{k, j} y_{k, j} \boldsymbol{B}_{k} \boldsymbol{B}_{j}^{\dagger}, \rho_{s}\right] \\
& +\epsilon \mathcal{L}_{B}\left(\rho_{s}\right)+\epsilon^{2} \sum_{k=1}^{m} \mathcal{D}_{L_{k}}\left(\rho_{s}\right)+O\left(\epsilon^{3}\right) \\
\rho= & (\boldsymbol{I}-i \epsilon \boldsymbol{M})\left(\bar{\rho}_{A} \otimes \rho_{s}\right)\left(\boldsymbol{I}+i \epsilon \boldsymbol{M}^{\dagger}\right)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

where $y_{k, j}=\frac{1}{2 i} \operatorname{tr}\left(\boldsymbol{F}_{j} \bar{\rho}_{A} \boldsymbol{A}_{k}^{\dagger}-\boldsymbol{A}_{j} \bar{\rho}_{A} \boldsymbol{F}_{k}^{\dagger}\right)$ and $\boldsymbol{L}_{\boldsymbol{k}}=\sum_{j=1}^{m} \lambda_{j, k} \boldsymbol{B}_{j}$ with $\underline{\text { matrix } \lambda \text { given by } \lambda \lambda^{\dagger}=x \text { and } x_{k, j}=\operatorname{tr}\left(\boldsymbol{F}_{j} \bar{\rho}_{A} \boldsymbol{A}_{k}^{\dagger}+\boldsymbol{A}_{j} \bar{\rho}_{A} \boldsymbol{F}_{k}^{\dagger}\right)}$
7. A. Azouit et al. arXiv. 1704.00785

Conclusion

Interest of such geometric adiabatic elimination preserving the quantum structure (Lindblad master equation, CPTP maps) :

Some non Markovian dynamics might be modeled via a Lindbladian dynamics on a small Hilbert space and via a CPTP map towards the physical Hilbert space of large dimension.
Quantum feedback where the quantum controller is designed faster than the quantum system to be controlled ((S, L, H) theory of Gough/James).
Extension when $\mathcal{H}=\bigoplus_{k} \mathcal{H}_{A_{k}} \otimes \mathcal{H}_{B_{k}}$ and the slow manifold is parameterized via

$$
\rho_{s}=\sum_{k} \bar{\rho}_{A_{k}} \otimes \rho_{s, k} \text { with } \rho_{s, k} \geq 0 \text { and } \operatorname{tr}\left(\rho_{s, k}\right) \in[0,1]
$$

(talk of Katarzyna Macieszczak this Monday).
Conjecture : at any order it is always possible to obtain, up-to higher order terms, Lindbladian dynamics for ρ_{s} and CPTP maps relating ρ to ρ_{s}.

April $16^{\text {th }}$ to July $13^{\text {th }}, 2018$

Organized by:
Etienne Brion, Université Paris-Sud, ENS Paris-Saclay, CNRS Eleni Diamanti, Université Pierre et Marie Curie \& CNRS
Alexei Ourjoumtsev, Collège de France \& CNRS
Pierre Rouchon, Mines ParisTech \& Inria

Measuremenir zand conitiol of quaintum sustemls: theori and experiments

CIRM Pre-school at Marseille
Modeling and control
of open quantum systems
April $16^{\text {th }}-20^{\text {th }} \cdot 2018$

Observability and estimation
in quantum dynamics
May $15^{\text {th }}$ to $17^{\text {th }}, 2018$
Quantum control and feedback: foundations and applications June $5^{\text {th }}$ to $7^{\text {th }}, 2018$

PRACQSYS 2018:

Principles and Applications of Control in Quantum Systems
July $2^{\text {nd }}$ to $6^{\text {th }}, 2018$

Program coordinated by the Centre Emile Borel at IHP

Participation of Postdocs and PhD Students is strongly encouraged Scientific program at: https://sites.google.com/view/mcqs2018/home

Registration is free however mandatory at: www.ihp.fr Deadline for financial support:September 15 ${ }^{\text {h }}, 2017$ Contact:meqs2018@ihp.fr

Sylvie Lhermitte: CEB Manager

