

Adiabatic elimination for bipartite open quantum systems

4th Workshop on Quantum Non-Equilibrium Dynamics 24-26 April 2017, University of Nottingham (UK)

Pierre Rouchon Centre Automatique et Systèmes, Mines ParisTech, PSL Research University Quantic Research Team, Inria

Joint work with R. Azouit, F. Chittaro and A. Sarlette (arXiv.1704.00785)

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

Lambda systems :

E. Brion, L.H. Pedersen, K. Mølmer : Adiabatic elimination in a lambda system Journal of Physics A : Mathematical and Theoretical, 2007, 40, 1033.

M. Mirrahimi, PR :. Singular perturbations and Lindblad-Kossakowski differential equations IEEE Trans. Automatic Control , 2009, 54, 1325-1329

F. Reiter, A. Sørensen : Effective operator formalism for open quantum systems Phys. Rev. A, 2012, 85, 032111-

Slow/fast Lindblad dynamics :

E.M. Kessler : Generalized Schrieffer-Wolff formalism for dissipative systems. Phys. Rev. A, 2012, 86, 012126-

D. Burgarth et al. : Non-Abelian Phases from a Quantum Zeno Dynamics. Phys. Rev. A 88, 042107 (2013) P. Zanardi, L. Campos Venuti : Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems. Phys. Rev. Lett. 113, 240406 (2014)

K. Macieszczak, M. Guta, I. Lesanovsky, J.P. Garrahan : Towards a Theory of Metastability in Open Quantum Dynamics. Phys. Rev. Lett. 116, 240404 (2016)

L. Campos Venuti, P. Zanardi : Dynamical Response Theory for Driven-Dissipative Quantum Systems. Phys. Rev. A 93, 032101 (2016)

Quantum stochastic models :

J. Gough, R. van Handel : Singular perturbation of quantum stochastic differential equations with coupling through an oscillator model. J. Stat. Phys. 2007, 127 pp :575.

L. Bouten, A. Silberfarb : Adiabatic elimination in quantum stochastic model, Commun. Math. Phys., 283, 491-505 (2008)

L. Bouten, R. van Handel, A. Silberfarb : Approximation and limit theorems for quantum stochastic models with unbounded coefficients. Journal of Functional Analysis 254 (2008) 3123-3147.

O. Cernotik, D. Vasilyev, K. Hammerer : Adiabatic elimination of Gaussian subsystems from quantum dynamics under continuous measurement Phys. Rev. A, , 92, 012124 (2015)

Sub-system A with Hilbert space ℋ_A relaxing rapidly towards a unique equilibrium density operator p
_A via the Lindbladian evolution :

$$\frac{d}{dt}\rho_{A} = \mathcal{L}_{A}(\rho_{A}) \text{ with } \lim_{t \mapsto +\infty} \rho_{A}(t) = \overline{\rho}_{A};$$

Sub-system B with Hilbert space HB having a slow Lindbladian evolution

$$\frac{d}{dt}\rho_B = \epsilon \mathcal{L}_B(\rho_B) \text{ with } 0 \le \epsilon \ll 1$$

• Weak (A, B) coupling via the Hamiltonian $\epsilon \sum_{k=1}^{m} A_k \otimes B_k^{\dagger}$

Bipartite Hilbert space (*A*, *B*) with Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ and density operator ρ governed by

$$\frac{d}{dt}\rho = \mathcal{L}_{\mathcal{A}}(\rho) - i\epsilon \left[\sum_{k=1}^{m} \mathbf{A}_{k} \otimes \mathbf{B}_{k}^{\dagger}, \rho\right] + \epsilon \mathcal{L}_{\mathcal{B}}(\rho)$$

Adiabatic elim. of fast qubit A dispersively coupled to slow qubit B^1

The slow/fast dynamics

$$\frac{d\rho}{dt} = u \left[\sigma_{+}^{A} - \sigma_{-}^{A}, \rho \right] + \kappa \left(\sigma_{-}^{A} \rho \sigma_{+}^{A} - \frac{\sigma_{+}^{A} \sigma_{-}^{A} \rho + \rho \sigma_{+}^{A} \sigma_{-}^{A}}{2} \right) - i \chi \left[\sigma_{z}^{A} \otimes \sigma_{z}^{B}, \rho \right]$$

Slow dynamics (second order versus $\epsilon = \chi/\kappa)$:

$$\frac{d\rho_s}{dt} = i_{\frac{\chi\kappa^2}{\kappa^2 + 8u^2}}[\sigma_z, \rho_s] + \frac{(64\kappa\chi^2 u^2)(\kappa^2 + 2u^2)}{(\kappa^2 + 8u^2)^3} (\sigma_z \rho_s \sigma_z - \rho_s)$$

Kraus (CPTP) map : $\rho = (I - i\mathbf{Q} \otimes \sigma_z)(\overline{\rho}_A \otimes \rho_s)(I + i\mathbf{Q}^{\dagger} \otimes \sigma_z)$ with $\overline{\rho}_A = \frac{4\kappa u}{\kappa^2 + 8u^2}\sigma_x - \frac{\kappa^2}{\kappa^2 + 8u^2}\sigma_z + \frac{1}{2}I$ and $\mathbf{Q} = \mathbf{\bullet}\sigma_x + \mathbf{\bullet}\sigma_y + \mathbf{\bullet}\sigma_z + \mathbf{\bullet}I$

1. R. Azouit, F. Chittaro, A. Sarlette, P.R., IFAC world congress 2017.

Two-photon pumping in super-conducting circuits²

M.H. Devoret. Dynamically protected cat-qubits : a new paradigm for universal quantum computation. New J. of Physics, 16 :045014, 2014.

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

Slow/fast systems (coordinate free setting)

Geometric definition independent of coordinates due to Fenichel³:

- $x \mapsto v(x)$ close to $x \mapsto \overline{v}(x)$.

•
$$n_f = n - n_s$$
 eigenvalues of $\frac{\partial \overline{\nu}}{\partial x}\Big|_{\overline{\Sigma}}$ are stable.

3. N. Fenichel : Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equations, 1979, 31, 53-98.

Tikhonov normal form and model reduction

Any slow/fast system, can be put, after a suitable change of coordinates, in to a **quasi-vertical vector field** v:

$$\frac{d}{dt}x_s = v_s(x_s, x_f) = \varepsilon \tilde{v}_s(x_s, x_f, \varepsilon), \qquad \frac{d}{dt}x_f = v_f(x_s, x_f)$$

with $0 < \varepsilon \ll 1$. The reduced system $\frac{d}{dt}x_s = v_s(x_s, x_f)$ with $0 = v_f(x_s, x_f)$ is correct if $\frac{d}{dt}\xi_f = v_f(x_s, \xi_f)$ stable for any fixed x_s . In general, modeling variables *x* are **not** Tikhonov variables.

Model reduction with modeling variables

The reduced model of $\frac{d}{dt}x_s = v_s(x_s, x_f, \epsilon)$, $\frac{d}{dt}x_f = v_f(x_s, x_f, \epsilon)$ is ⁴

$$\frac{d}{dt}x_s = \left(1 + \frac{\partial v_s}{\partial x_f} \left(\frac{\partial v_f}{\partial x_f}\right)^{-2} \frac{\partial v_f}{\partial x_s}\right)^{-1} v_s(x_s, x_f, \epsilon) + O(\epsilon^2), \quad v_f(x_s, x_f, \epsilon) = 0.$$

4. J. Carr : Application of Center Manifold Theory. Springer, 1981. P. Duchêne, P.R. : Kinetic scheme reduction via geometric singular perturbation techniques. Chem. Eng. Science, 1996, 51, 4661-4672.

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

Geometric singular perturbations for bipartite open quantum systems⁵

Lindbladian slow dynamics in a copy \mathcal{H}_s of \mathcal{H}_B

$$\frac{d}{dt}\rho_{s} = \mathcal{L}_{s}(\rho_{s}) = \epsilon \mathcal{L}_{s,1}(\rho_{s}) + \epsilon^{2} \mathcal{L}_{s,2}(\rho_{s}) + \dots$$

with Kraus map to recover the physical density operator ρ from ρ_s :

$$\rho = \mathcal{K}(\rho_s) = \mathcal{K}_0(\rho_s) + \epsilon \mathcal{K}_1(\rho_s) + \dots$$

5. R. Azouit et al. IEEE CDC 2016.

An iterative procedure based on center manifold approximation

Plug $\rho = \mathcal{K}(\rho_s) = \overline{\rho}_A \otimes \rho_s + \epsilon \mathcal{K}_1(\rho_s) + \dots$ and $\frac{d}{dt}\rho_s = \mathcal{L}_s(\rho_s) = \epsilon \mathcal{L}_{s,1}(\rho_s) + \epsilon^2 \mathcal{L}_{s,2}(\rho_s) + \dots$ into the invariance condition

$$\mathcal{L}_{A}(\mathcal{K}(\rho_{s})) - \epsilon i [\mathbf{H}_{int}, \mathcal{K}(\rho_{s})] + \epsilon \mathcal{L}_{B}(\mathcal{K}(\rho_{s})) = \frac{d}{dt} \rho = \mathcal{K}(\mathcal{L}_{s}(\rho_{s}))$$

and identify terms of same order :

order 1 : $\mathcal{L}_{A}(\mathcal{K}_{1}(\rho_{s})) + \mathcal{L}_{int}(\mathcal{K}_{0}(\rho_{s})) + \mathcal{L}_{B}(\mathcal{K}_{0}(\rho_{s})) = \mathcal{K}_{0}(\mathcal{L}_{s,1}(\rho_{s}))$ order 2 : $\mathcal{L}_{A}(\mathcal{K}_{2}(\rho_{s})) + \mathcal{L}_{int}(\mathcal{K}_{1}(\rho_{s})) + \mathcal{L}_{B}(\mathcal{K}_{1}(\rho_{s})) = \mathcal{K}_{0}(\mathcal{L}_{s,2}(\rho_{s})) + \mathcal{K}_{1}(\mathcal{L}_{s,1}(\rho_{s}))$

At each order

. . .

- 1. take the trace versus A to get the correction to \mathcal{L}_s
- 2. compute the correction to \mathcal{K} via $-\mathcal{L}_{A}^{-1}$, a super operator for zero-trace operators \boldsymbol{W} on \mathcal{H}_{A}

$$-\mathcal{L}_{A}^{-1}(\boldsymbol{W}) = \int_{0}^{+\infty} e^{t\mathcal{L}_{A}}(\boldsymbol{W}) dt$$

that coincides with the restriction to zero-trace operators of a completely positive (CP) map.

The full dynamics

$$\frac{d}{dt}\rho = \mathcal{L}_{A}(\rho) - i\epsilon \left[\sum_{k=1}^{m} \mathbf{A}_{k} \otimes \mathbf{B}_{k}^{\dagger}, \rho\right] + \epsilon \mathcal{L}_{B}(\rho)$$

can be approximated by

$$\frac{d}{dt}\rho_{s} = -i\epsilon \left[\sum_{k=1}^{m} \operatorname{tr}(\boldsymbol{A}_{k}\overline{\rho}_{A})\boldsymbol{B}_{k}^{\dagger}, \rho_{s}\right] + \epsilon \mathcal{L}_{B}(\rho_{s}) + O(\epsilon^{2})$$
$$\rho = (\boldsymbol{I} - \boldsymbol{i}\epsilon\boldsymbol{M}) \ (\overline{\boldsymbol{\rho}}_{A} \otimes \boldsymbol{\rho}_{s}) \ (\boldsymbol{I} + \boldsymbol{i}\epsilon\boldsymbol{M}^{\dagger}) + O(\epsilon^{2})$$

where $\boldsymbol{M} = \sum_{k=1}^{m} \boldsymbol{F}_k \otimes \boldsymbol{B}_k^{\dagger}$ with \boldsymbol{F}_k given by

$$\boldsymbol{F}_{k}\overline{\rho}_{A}=-\mathcal{L}_{A}^{-1}\left(\boldsymbol{A}_{k}\ \overline{\rho}_{A}-\mathrm{tr}(\boldsymbol{A}_{k}\ \overline{\rho}_{A})\overline{\rho}_{A}\right).$$

6. A. Azouit et al. arXiv.1704.00785

The full dynamics

$$\frac{d}{dt}\rho = \mathcal{L}_{A}(\rho) - i\epsilon \left[\sum_{k=1}^{m} \mathbf{A}_{k} \otimes \mathbf{B}_{k}^{\dagger}, \rho\right] + \epsilon \mathcal{L}_{B}(\rho)$$

can be approximated by

$$\frac{d}{dt}\rho_{s} = -i\left[\epsilon\sum_{k} \operatorname{tr}(\boldsymbol{A}_{k}\overline{\rho}_{A})\boldsymbol{B}_{k} + \epsilon^{2}\sum_{k,j} y_{k,j} \boldsymbol{B}_{k}\boldsymbol{B}_{j}^{\dagger}, \rho_{s}\right]$$
$$+\epsilon(\rho(\rho_{k}) + \epsilon^{2}\sum_{k} \mathcal{D}_{k}(\rho_{k}) + O(\epsilon^{3})$$

$$\rho = (\mathbf{I} - i\epsilon\mathbf{M}) (\overline{\rho}_{\mathbf{A}} \otimes \rho_{\mathbf{s}}) (\mathbf{I} + i\epsilon\mathbf{M}^{\dagger}) + O(\epsilon^{2})$$

where $\mathbf{y}_{k,j} = \frac{1}{2i} \operatorname{tr} \left(\mathbf{F}_{j} \overline{\rho}_{A} \mathbf{A}_{k}^{\dagger} - \mathbf{A}_{j} \overline{\rho}_{A} \mathbf{F}_{k}^{\dagger} \right)$ and $\mathbf{L}_{k} = \sum_{j=1}^{m} \lambda_{j,k} \mathbf{B}_{j}$ with matrix λ given by $\lambda \lambda^{\dagger} = x$ and $x_{k,j} = \operatorname{tr} \left(\mathbf{F}_{j} \overline{\rho}_{A} \mathbf{A}_{k}^{\dagger} + \mathbf{A}_{j} \overline{\rho}_{A} \mathbf{F}_{k}^{\dagger} \right)$ 7. A. Azouit et al. arXiv.1704.00785

Interest of such geometric adiabatic elimination preserving the quantum structure (Lindblad master equation, CPTP maps) :

Some non Markovian dynamics might be modeled via a Lindbladian dynamics on a small Hilbert space and via a CPTP map towards the physical Hilbert space of large dimension.

Quantum feedback where the quantum controller is designed faster than the quantum system to be controlled ((S, L, H) theory of Gough/James).

Extension when $\mathcal{H} = \bigoplus_k \mathcal{H}_{A_k} \otimes \mathcal{H}_{B_k}$ and the slow manifold is parameterized via

$$\rho_{s} = \sum_{k} \overline{\rho}_{A_{k}} \otimes \rho_{s,k} \text{ with } \rho_{s,k} \ge 0 \text{ and } \operatorname{tr}(\rho_{s,k}) \in [0,1]$$

(talk of Katarzyna Macieszczak this Monday).

Conjecture : at any order it is always possible to obtain, up-to higher order terms, Lindbladian dynamics for ρ_s and CPTP maps relating ρ to ρ_s .

April 16th to July 13th, 2018

Organized by:

Etienne Brion, Université Paris-Sud, ENS Paris-Saclay, CNRS Eleni Diamanti, Université Pierre et Marie Curie & CNRS Alexei Ourjoumtsev, Collège de France & CNRS Pierre Rouchon, Mines ParisTech & Inria

11 rue Pierre et Marie Curie 75231 Paris Cedex os France

CARMIN

S PARIS

Measurement and control of quantum systems: theory and experiments

CIRM Pre-school at Marseille Modeling and control of open quantum systems April 16th- 20th 2018

Observability and estimation in quantum dynamics May 15th to 17th, 2018

Quantum control and feedback: foundations and applications June 5^{th} to 7^{th} , 2018

PRACQSYS 2018: Principles and Applications of Control in Quantum Systems July 2nd to 6th, 2018

Program coordinated by the Centre Emile Borel at IHP Participation of Postdocs and PhD Students is strongly encouraged Scientific program at: https://sites.google.com/view/mcqs2o18/home

Registration is free however mandatory at : www.lhp.fr Deadline for financial support : September 15th, 2017 Contact : mcqs2018@ihp.fr

Sylvie Lhermitte : CEB Manager