
Quantum Filtering and Dynamical Parameter
Estimation

pierre.rouchon@mines-paristech.fr

Isaac Newton Institute, Cambridge, July 2014.

Based on collaborations with
Hadis Amini, Michel Brune, Igor Dotsenko, Serge Haroche,

Zaki Leghtas, Mazyar Mirrahimi, Clément Pellegrini,
Jean-Michel Raimond, Clément Sayrin and Ram Somaraju

1 / 27



The first experimental realization of a quantum state feedback

The LKB photon Box
Group of Serge Haroche, Jean-Michel Raimond and Michel Brune.

1

Stabilization by a measurement-based feedback
of photon-number states (sampling time 80 µs)

Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: I. Dotsenko et al., Physical Review A, 2009, 80: 013805-013813.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
1Animation realized by Igor Dotsenko 2 / 27



Experimental closed-loop data

C. Sayrin et. al., Nature
477, 73-77, Sept. 2011.

Decoherence due to finite
photon life time around
70 ms)

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

The quantum filter takes
into account cavity
decoherence,
measurement imperfections
and delays (Bayes law).

Truncation to 9 photons

Stabilization around 3-photon state
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Ideal model: Markov chain with input u, hidden state ρ and output y

Input: control u = AeıΦ describing the classical EM pulse .
Quantum state : ρ the density operator of the photons .
Output: y ∈ {g,e} measurement of the atom.

ρk+1 =



Duk Mgρk M†gD†uk

Tr
(

Mgρk M†g
) , yk = g with proba. Pg,k = Tr

(
Mgρk M†g

)
Duk Meρk M†eD†uk

Tr
(

Meρk M†e
) , yk = e with proba. Pe,k = Tr

(
Meρk M†e

)

QND measurement operators: Mg = cos
(
φ0(N+1/2)+φR

2

)
et

Me = sin
(
φ0(N+1/2)+φR

2

)
with N = a†a = diag(0,1,2, . . .).

Unitary control operator : Du = eua†−u∗a where a is the photon
annihilation operator.
Goal : stabilize state with exactly n̄ photon(s), ρ̄ = |n̄〉〈n̄|, that are
open-loop stationary state for u = 0.
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Structure of this quantum-state feedback (ideal case)2

Observer-Controller

I Non linear filtering of the measurements k 7→ yk provides an
estimate ρest of ρ:

ρest
k+1 =

Duk Mykρ
est
k M†yk D†uk

Tr
(

Mykρ
est
k M†yk

) .
Quantum filter in the sense of Belavkin.

I The stabilizing feedback uk = f (ρest
k ) ensuring convergence

towards ρ̄ is based on Lyapunov design:

uk = Argmin
u

E
(
V (ρk+1) | ρk = ρest

k , u
)

where V is a well chosen super-martingale constructed with
open-loop martingales attached to the QND process.

2The global convergence proof of such observer/controller for the realistic
case is given in H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
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In the realistic case: |ψk〉, ρk and ρest
k .

QuantumFilter_Controller

PhotonBox

u

y

y

Detector
Coherent

pulse
u

est

est

u
y

The state estimation ρest
k used in the feedback law takes into account, measurement

imperfections, delays and cavity decoherence:
I Derived from Bayes law: depends on past detector outcomes between 0 and k ;

computed recursively from an initial value ρest
0 ;

I Stable and tends to converge towards ρk , the expectation value of |ψk 〉〈ψk |
knowing its initial value |ψ0〉〈ψ0| and the past detector outcomes from 0 to k .
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Outline

Quantum filtering: discrete-time case

Quantum filtering: continuous-time case

Conclusion
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For the photon box, quantum filtering combines

1. Bayes law: P(µ′/µ) = P(µ/µ′)P(µ′) /
(∑

ν′ P(µ/ν′)P(ν′)
)
.

2. Schrödinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and
convergence are induced by the measurement of observables O
with degenerate spectra, O =

∑
µ λµPµ:

I measurement outcome λµ with proba.
Pµ = 〈ψ|Pµ|ψ〉 = Tr (ρPµ) depending |ψ〉, ρ just before the
measurement

I measurement back-action if outcome µ:

|ψ〉 7→ |ψ〉+ =
Pµ|ψ〉√
〈ψ|Pµ|ψ〉

, ρ 7→ ρ+ =
PµρPµ
Tr (ρPµ)

4. Tensor product for the description of composite systems (S,M):
I Hilbert space H = HS ⊗HM
I Hamiltonian H = HS ⊗ IM + Hint + IS ⊗ HM
I observable on sub-system M only: O = IS ⊗OM .
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LKB photon-box: Markov chain in the ideal case (1)

I System S corresponds to a quantized cavity mode:

HS =

{ ∞∑
n=0

ψn|n〉 | (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n
photons inside the cavity

I Meter M is associated to atoms : HM = C2, each atom
admits two energy levels and is described by a wave
function cg |g〉+ ce|e〉 with |cg |2 + |ce|2 = 1; atoms leaving
B are all in state |g〉

I When an atom comes out B, the state |Ψ〉B ∈ HS ⊗HM of
the composite system atom/field is separable

|Ψ〉B = |ψ〉 ⊗ |g〉.
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LKB photon-box: Markov chain in the ideal case (2)

C

B

D

R1
R2

I When an atom comes out B: |Ψ〉B = |ψ〉 ⊗ |g〉.
I Just before the measurement in D, the state is in general

entangled (not separable):

|Ψ〉R2 = USM
(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me|ψ〉

)
⊗ |e〉

where USM is the total unitary transformation (Schrödinger
propagator) defining the linear measurement operators Mg and
Me on HS. Since USM is unitary, M†gMg + M†eMe = I.
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LKB photon-box: Markov chain in the ideal case (3)

Just before the measurement in D, the atom/field state is:

Mg |ψ〉 ⊗ |g〉+ Me|ψ〉 ⊗ |e〉

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability Pµ = 〈ψ|M†µMµ|ψ〉 we get µ. Just after the measurement
outcome µ, the state becomes separable:

|Ψ〉D = 1√
Pµ

(Mµ|ψ〉)⊗ |µ〉 =
(Mµ|ψ〉)⊗ |µ〉√
〈ψ|M†µMµ|ψ〉

.

Markov process (density matrix formulation ρ ∼ |ψ〉〈ψ|)

ρ+ =



MgρM†g

Tr
(

MgρM†g
) , with probability Pg = Tr

(
MgρM†g

)
;

MeρM†e
Tr
(

MeρM†e
) , with probability Pe = Tr

(
MeρM†e

)
.

Kraus map: E (ρ+|ρ) = K(ρ) = MgρM†g + MeρM†e .
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LKB photon-box: Markov process with detection errors (1)

I With pure state ρ = |ψ〉〈ψ|, we have

ρ+ = |ψ+〉〈ψ+| =
1

Tr
(

MµρM†µ
)MµρM†µ

when the atom collapses in µ = g,e with proba. Tr
(
MµρM†µ

)
.

I Detection error rates: P(y = e/µ = g) = ηg ∈ [0,1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/µ = e) = ηe ∈ [0,1] (given by the
contrast of the Ramsey fringes).

Bayes law: expectation ρ+ of |ψ+〉〈ψ+| knowing ρ and the imperfect
detection y .

ρ+ =


(1−ηg)MgρM†g +ηeMeρM†e

Tr((1−ηg)MgρM†g +ηeMeρM†e )
if y = g, prob. Tr

(
(1− ηg)MgρM†g + ηeMeρM†e

)
;

ηgMgρM†g +(1−ηe)MeρM†e
Tr(ηgMgρM†g +(1−ηe)MeρM†e )

if y = e, prob. Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
.

ρ+ does not remain pure: the quantum state ρ+ becomes a mixed
state; |ψ+〉 becomes physically irrelevant (not numerically).
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Photon-box quantum filter: 6× 21 left stochastic matrix (ηµ′,µ)

ρest
k+1 = 1

Tr(
∑
µ ηµ′,µMµρest

k M†µ)

(∑
µ ηµ′,µMµρ

est
k M†µ

)
with

I we have a total of m = 3× 7 = 21 Kraus operators Mµ. The
"jumps" are labeled by µ = (µa, µc) with
µa ∈ {no,g,e,gg,ge,eg,ee} labeling atom related jumps and
µc ∈ {o,+,−} cavity decoherence jumps.

I we have only m′ = 6 real detection possibilities
µ′ ∈ {no,g,e,gg,ge,ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and the
other in e, and a double detection both in e.

µ′ \ µ (no, µc ) (g, µc ) (e, µc ) (gg, µc ) (ee, µc ) (ge, µc ) (eg, µc )

no 1 1 − εd 1 − εd (1 − εd )2 (1 − εd )2 (1 − εd )2

g 0 εd (1 − ηg ) εdηe 2εd (1 − εd )(1 − ηg ) 2εd (1 − εd )ηe εd (1 − εd )(1 − ηg + ηe )

e 0 εdηg εd (1 − ηe ) 2εd (1 − εd )ηg 2εd (1 − εd )(1 − ηe ) εd (1 − εd )(1 − ηe + ηg )

gg 0 0 0 ε2
d
(1 − ηg )2 ε2

d
η2

e
ε2

d
ηe (1 − ηg )

ge 0 0 0 2ε2
d
ηg (1 − ηg ) 2ε2

d
ηe (1 − ηe ) ε2

d
((1 − ηg )(1 − ηe ) + ηgηe )

ee 0 0 0 ε2
d
η2

g
ε2

d
(1 − ηe )2 ε2

d
ηg (1 − ηe )
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The Markov chain with imperfections: |ψk〉 and ρk

Take |ψk+1〉〈ψk+1| = 1
Tr(Mµk |ψk〉〈ψk |M†µk )

(
Mµk |ψk〉〈ψk |M†µk

)
with

measurement imperfections and decoherence described by the left
stochastic matrix η: ηµ′,µ ∈ |0,1] is the probability of having the
imperfect outcome µ′ ∈ {1, . . . ,m′} knowing that the perfect one is
µ ∈ {1, . . . ,m}.

The optimal quantum filter: ρk = E
(
|ψk〉〈ψk |

∣∣∣∣|ψ0〉, µ′0, . . . , µ′k−1

)
can be computed efficiently via the following recurrence

ρk+1 = 1
Tr
(∑m

µ=1 ηµ′k ,µ
Mµρk M†µ

)
 m∑
µ=1

ηµ′k ,µMµρk M†µ


where the detector outcome µ′k takes values µ′ in {1, · · · ,m′} with
probability Pµ′,ρk = Tr

(∑m
µ=1 ηµ′k ,µMµρk M†µ

)
.
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Stability and convergence issues (1)

I The quantum state ρk = E
(
|ψk〉〈ψk |

∣∣∣∣|ψ0〉, µ′0, . . . , µ′k−1

)
is

given by the following optimal Belavkin filtering process

ρk+1 = 1
Tr
(∑m

µ=1 ηµ′k ,µ
Mµρk M†µ

)
 m∑
µ=1

ηµ′k ,µMµρk M†µ


with the perfect initialization: ρ0 = |ψ0〉〈ψ0|.

I Its estimate ρest follows the same recurrence

ρest
k+1 = 1

Tr
(∑m

µ=1 ηµ′k ,µ
Mµρest

k M†µ
)
 m∑
µ=1

ηµ′k ,µMµρ
est
k M†µ


but with imperfect initialization ρest

0 6= |ψ0〉〈ψ0|.

A natural question : ρest
k 7→ ρk when k 7→ +∞ ?
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Stability and convergence issues (2)

Markov chain of state (ρk ,ρ
est
k )

ρk+1 =

∑m
µ=1 ηµ′

k ,µ
Mµρk M†µ

Tr
(∑m

µ=1 ηµ′
k ,µ

Mµρk M†µ
) , ρest

k+1 =

∑m
µ=1 ηµ′

k ,µ
Mµρest

k M†µ

Tr
(∑m

µ=1 ηµ′
k ,µ

Mµρest
k M†µ

)

Proba. to get µ′
k at step k , Tr

(∑m
µ=1 ηµ′

k ,µ
Mµρk M†µ

)
, depends on ρk .

I Convergence of ρest
k towards ρk when k 7→ +∞ is an open

problem.
A partial result (continuous-time) due to R. van Handel: The
stability of quantum Markov filters. Infin. Dimens. Anal.
Quantum Probab. Relat. Top. , 2009, 12, 153-172.

I Stability3: the fidelity F (ρk ,ρ
est
k ) = Tr2 (√√ρkρ

est
k
√
ρk
)

is a
sub-martingale for any η and Mµ:

E (F (ρk+1,ρ
est
k+1)/ρk ,ρ

est
k

)
≥ F (ρk ,ρ

est
k ).

3Somaraju, A.; Dotsenko, I.; Sayrin, C. & PR. Design and Stability of
Discrete-Time Quantum Filters with Measurement Imperfections. American
Control Conference, 2012, 5084-5089.
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The key inequality underlying F (ρ, ρe) is sub-martingale4

For
I any set of m matrices Mµ with

∑m
µ=1 M†µMµ = 1,

I any partition of {1, . . . ,m} into p ≥ 1 sub-sets Pν ,
I any Hermitian non-negative matrices ρ and σ of trace one,

the following inequality holds

ν=p∑
ν=1

Tr

∑
µ∈Pν

MµρM†µ

F

( ∑
µ∈Pν MµσM†µ

Tr
(∑

µ∈Pν MµσM†µ
) , ∑

µ∈Pν MµρM†µ

Tr
(∑

µ∈Pν MµρM†µ
)
)

≥ F (σ, ρ)

where F (σ, ρ) = Tr2
(√√

σρ
√
σ
)

.
Proof combines Cauchy-Schwartz inequalities with a lifting
procedure based on Ulhmann’s theorem.

4PR. Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters. IEEE
Transactions on Automatic Control, 2011, 56, 2743-2747.
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Bayesian parameter estimations5

Consider detector outcomes µ′k corresponding to a parameter value p̄
poorly known. Assume to simplify that either p̄ = a or p̄ = b, with
a 6= b. We can discriminate between a and b and recover p̄ via the
following Bayesian scheme using information contained in the µ′k ’s:

ρ̂est
a,k+1 =

∑
µ η

a
µ′k ,µ

Ma
µρ̂

est
a,k Ma

µ
†

Tr
(∑

p
∑
µ η

p
µ′k ,µ

Mp
µρ̂

est
p,k Mp

µ
†
) , ρ̂est

b,k+1 =

∑
µ η

b
µ′k ,µ

Mb
µρ̂

est
b,k Mb

µ
†

Tr
(∑

p
∑
µ η

p
µ′k ,µ

Mp
µρ̂

est
p,k Mp

µ
†
)

with initialization ρ̂est
a,k+1 = ρ̂est

b,k+1 = ρ̂est
0 /2 where ρ̂est

0 = ρ0 assuming
initial probability of 1

2 to have p̄ = a and p̄ = b. At step k ,

Pa,k = Tr
(
ρ̂est

a,k

)
, Pb,k = Tr

(
ρ̂est

b,k

)
) are the proba. to have p̄ = a,

p̄ = b, knowing the initial state ρ0 and the past detection outcomes.

This dynamical parameter estimation process is stable: if the true
value of the parameter is a then Pa,k is a sub-martingale.

5See Kato, Y. & Yamamoto, N. Decision and Control (CDC), 2013 IEEE 52nd
Annual Conference on, 2013, 1904-1909
Discrete-time translation of
Gambetta, J. & Wiseman, H. M., Phys. Rev. A, 2001, 64, 042105
and of Negretti, A. & Mølmer, K. , New Journal of Physics, 2013, 15, 125002.
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Discrete-time models of open quantum systems

Four features:

1. Bayes law: P(µ′/µ) = P(µ/µ′)P(µ′) /
(∑

ν′ P(µ/ν′)P(ν′)
)
,

2. Schrödinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation
are induced by the measurement of observables with
degenerate spectra.

4. Tensor product for the description of composite systems.

V Discrete-time models: Markov processes of state ρ, (density op.):

ρk+1 =
∑m
µ=1 ηµ′,µMµρk M†µ

Tr(
∑m
µ=1 ηµ′,µMµρk M†µ)

, with proba. Pµ′(ρk ) =
∑m
µ=1 ηµ′,µ Tr

(
Mµρk M†µ

)
associated to Kraus maps (ensemble average, quantum channel)

E (ρk+1|ρk ) = K (ρk ) =
∑
µ

Mµρk M†µ with
∑
µ

M†µMµ = I

and left stochastic matrices (imperfections, decoherences) (ηµ′,µ).
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Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains
ρk+1 =

∑m
µ=1 ηµ′,µMµρk M†µ

Tr(
∑m
µ=1 ηµ′,µMµρk M†µ)

, with proba. Pµ′(ρk ) =
∑m
µ=1 ηµ′,µ Tr

(
Mµρk M†µ

)
with ensemble averages corresponding to Kraus linear maps

E (ρk+1|ρk ) = K (ρk ) =
∑
µ

Mµρk M†µ with
∑
µ

M†µMµ = I

Continuous-time models: stochastic differential systems

dρt =

(
− i

~ [H, ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

driven by Wiener process dWν,t = dyν,t −
√
ην Tr

(
(Lν + L†ν) ρt

)
dt

with measurements yν,t , detection efficiencies ην ∈ [0,1] and
Lindblad-Kossakowski master equations (ην ≡ 0):

d
dt
ρ = − i

~ [H, ρ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)
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Continuous/discrete-time diffusive SME

With a single imperfect measurement
dyt =

√
η Tr

(
(L + L†) ρt

)
dt + dWt and detection efficiency η ∈ [0,1],

the quantum state ρt is usually mixed and obeys to

dρt =
(
− i

~ [H, ρt ] + LρtL† −
1
2

(L†Lρt + ρtL†L)
)

dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt

With Itō rules, it can be written as the following "discrete-time" Markov
model

ρt+dt =
MdytρtM†dyt

+ (1− η)LρtL†dt

Tr
(

MdytρtM†dyt
+ (1− η)LρtL†dt

)
with Mdyt = I +

(
− i

~H− 1
2

(
L†L

))
dt +

√
ηdytL.
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Continuous/discrete-time jump SME

With Poisson process N(t), 〈dN(t)〉 =
(
θ + η Tr

(
VρtV †

) )
dt , and

detection imperfections modeled by θ ≥ 0 and η ∈ [0,1], the quantum
state ρt is usually mixed and obeys to

dρt =
(
−i[H, ρt ] + VρtV † −

1
2

(V †Vρt + ρtV †V )
)

dt

+

(
θρt + ηVρtV †

θ + η Tr (VρtV †)
− ρt

)(
dN(t)−

(
θ + η Tr

(
VρtV †

) )
dt
)

For N(t + dt)− N(t) = 1 we have ρt+dt =
θρt + ηVρtV †

θ + η Tr (VρtV †)
.

For dN(t) = 0 we have

ρt+dt =
M0ρtM

†
0 + (1− η)VρtV †dt

Tr
(

M0ρtM
†
0 + (1− η)VρtV †dt

)
with M0 = I +

(
−iH + 1

2

(
η Tr

(
VρtV †

)
I − V †V

))
dt .
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Continuous/discrete-time diffusive-jump SME

The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] + LρtL† −

1
2
(L†Lρt + ρtL†L) + VρtV † −

1
2
(V †Vρt + ρtV †V )

)
dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

+

(
θρt + ηVρtV †

θ + η Tr (VρtV †)
− ρt

)(
dN(t)−

(
θ + η Tr

(
VρtV †

))
dt
)

For N(t + dt) − N(t) = 1 we have ρt+dt =
θρt + ηVρtV †

θ + η Tr (VρtV †)
.

For dN(t) = 0 we have

ρt+dt =
Mdyt ρtM†dyt

+ (1− η)LρtL†dt + (1− η)VρtV †dt

Tr
(

Mdyt ρtM†dyt
+ (1− η)LρtL†dt + (1− η)VρtV †dt

)
with Mdyt = I +

(
−iH − 1

2 L†L + 1
2

(
η Tr

(
VρtV †

)
I − V †V

))
dt +

√
ηdytL.
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Continuous/discrete-time general diffusive-jump SME
The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] +

∑
ν

Lνρt L
†
ν −

1
2 (L†νLνρt + ρt L

†
νLν ) + Vµρt V

†
µ −

1
2 (V†µVµρt + ρt V

†
µVµ)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρt L

†
ν − Tr

(
(Lν + L†ν )ρt

)
ρt

)
dWν,t

+
∑
µ

 θµρt +
∑
µ′ ηµ,µ′Vµρt V

†
µ

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) − ρt


dNµ(t)−

(
θµ +

∑
µ′
ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) )

dt



where ην ∈ [0, 1], θµ, ηµ,µ′ ≥ 0 with ηµ′ =
∑
µ ηµ,µ′ ≤ 1 are parameters modelling measurements

imperfections.

If, for some µ, Nµ(t + dt) − Nµ(t) = 1, we have ρt+dt =
θµρt +

∑
µ′ ηµ,µ′Vµ′ρt V

†
µ′

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) .

When ∀µ, dNµ(t) = 0, we have

ρt+dt =
Mdyt ρt M

†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt

Tr
(

Mdyt ρt M
†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt
)

with Mdyt = I +
(
−iH − 1

2
∑
ν L†νLν + 1

2
∑
µ

(
ηµ Tr

(
Vµρt V

†
µ

)
I − V†µVµ

))
dt +

∑
ν
√
ηνdyνt Lν and

where dyν,t =
√
ην Tr

(
(Lν + L†ν ) ρt

)
dt + dWν,t .

Could be used as a numerical integration scheme that preserves the positiveness of ρ.
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Continuous-time diffusive SME and quantum filtering

For clarity’sake, take a single measurement yt associated to operator
L and detection efficiency η ∈ [0,1]. Then ρt obeys to the following
diffusive SME

dρt = −i[H, ρt ] dt +
(

LρtL† −
1
2

(L†Lρt + ρtL†L)
)

dt

+
√
η
(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt
)

dWt

driven by the Wiener processes Wt ,

Since dyt =
√
η Tr

(
(L + L†) ρt

)
dt + dWt , the estimate ρest

t is given by

dρest
t = −i[H,ρest

t ] dt +
(

Lρest
t L† − 1

2
(L†Lρest

t + ρest
t L†L)

)
dt

+
√
η
(
Lρest

t + ρest
t L† − Tr

(
(L + L†)ρest

t

)
ρe

t
) (

dyt −
√
η Tr

(
(L + L†)ρest

t

)
dt
)
.

initialized to any density matrix ρest
0 .
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Stability of diffusive quantum filtering6

Assume that (ρ,ρest) obey to

dρt = −i[H, ρt ] dt +
(

LρtL† −
1
2

(L†Lρt + ρtL†L)
)

dt

+
√
η
(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt
)

dWt

dρest
t = −i[H,ρest

t ] dt +
(

Lρest
t L† − 1

2
(L†Lρest

t + ρest
t L†L)

)
dt

+
√
η
(
Lρest

t + ρest
t L† − Tr

(
(L + L†)ρest

t

)
ρest

t

)
dWt

+ η
(
Lρest

t + ρest
t L† − Tr

(
(L + L†)ρest

t

)
ρest

t

)
Tr
(
(L + L†)(ρt − ρest

t )
)

dt︸ ︷︷ ︸
correction terms vanishing when ρt = ρest

t

.

Then for any H, L and η ∈ [0,1], F (ρt ,ρ
est
t ) = Tr2 (√√ρtρ

est
t
√
ρt
)

is a
sub-martingale:

t 7→E (F (ρt ,ρ
est
t )
)

is non-decreasing.

6H. Amini, C. Pellegrini, PR: Stability of continuous-time quantum filters
with measurement imperfections. http://arxiv.org/abs/1312.0418
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Metric for the distance between ρ and its estimate ρest

I 1− F (ρt ,ρ
est
t ) remains a super-martingale for all Belavkin

SMEs and their associated quantum filters when they are
driven simultaneously by several Wiener and Poisson
processes.

I Petz has given, via the theory of operator monotone
functions, a complete characterization of distance that are
contracted for all Lindblad-Kossakovski evolutions7:

d
dt
ρ = −i[H, ρ] +

∑
ν

(
LνρL†ν −

1
2

(L†νLνρ+ ρL†νLν)
)
.

I Could we exploit Petz results to characterize "metrics"
D(ρ,ρest) that are super-martingale for all Belavkin SMEs.
and filters ?

7D. Petz. Monotone metrics on matrix spaces.Linear Algebra and its
Applications, 244:81–96, 1996.
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