

Quantum Filtering and Dynamical Parameter Estimation

pierre.rouchon@mines-paristech.fr

Isaac Newton Institute, Cambridge, July 2014.

Based on collaborations with

Hadis Amini, Michel Brune, Igor Dotsenko, Serge Haroche, Zaki Leghtas, Mazyar Mirrahimi, Clément Pellegrini, Jean-Michel Raimond, Clément Sayrin and Ram Somaraju

The LKB photon Box

Group of Serge Haroche, Jean-Michel Raimond and Michel Brune.

Stabilization by a measurement-based feedback of photon-number states (sampling time 80 μ s) **Experiment:** C. Sayrin et. al., Nature 477, 73-77, September 2011. **Theory:** I. Dotsenko et al., Physical Review A, 2009, 80: 013805-013813. H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

¹Animation realized by Igor Dotsenko

C. Sayrin et. al., Nature 477, 73-77, Sept. 2011.

Decoherence due to finite photon life time around 70 ms)

Detection efficiency 40% Detection error rate 10% Delay 4 sampling periods

The quantum filter takes into account cavity decoherence, measurement imperfections and delays (Bayes law).

Truncation to 9 photons

Ideal model: Markov chain with input u, hidden state ρ and output y

Input: control $u = Ae^{i\Phi}$ describing the classical EM pulse . Quantum state : ρ the density operator of the photons . Output: $y \in \{g, e\}$ measurement of the atom.

$$\rho_{k+1} = \begin{cases} \frac{D_{u_k} M_g \rho_k M_g^{\dagger} D_{u_k}^{\dagger}}{\operatorname{Tr} \left(M_g \rho_k M_g^{\dagger} \right)}, & y_k = g \text{ with proba. } \mathbb{P}_{g,k} = \operatorname{Tr} \left(M_g \rho_k M_g^{\dagger} \right) \\ \frac{D_{u_k} M_e \rho_k M_e^{\dagger} D_{u_k}^{\dagger}}{\operatorname{Tr} \left(M_e \rho_k M_e^{\dagger} \right)}, & y_k = e \text{ with proba. } \mathbb{P}_{e,k} = \operatorname{Tr} \left(M_e \rho_k M_e^{\dagger} \right) \end{cases}$$

QND measurement operators: $M_g = \cos\left(\frac{\phi_0(\mathbf{N}+1/2)+\phi_R}{2}\right)$ et $M_e = \sin\left(\frac{\phi_0(\mathbf{N}+1/2)+\phi_R}{2}\right)$ with $\mathbf{N} = \mathbf{a}^{\dagger}\mathbf{a} = \operatorname{diag}(0, 1, 2, ...)$. Unitary control operator : $D_u = e^{u\mathbf{a}^{\dagger}-u^*\mathbf{a}}$ where \mathbf{a} is the photon

annihilation operator.

Goal : stabilize state with exactly \bar{n} photon(s), $\bar{\rho} = |\bar{n}\rangle\langle\bar{n}|$, that are open-loop stationary state for u = 0.

Observer-Controller

Non linear filtering of the measurements k → yk provides an estimate ρ^{est} of ρ:

$$\rho_{k+1}^{\text{est}} = \frac{D_{u_k} M_{\mathbf{y_k}} \rho_{\mathbf{k}}^{\text{est}} M_{\mathbf{y_k}}^{\dagger} D_{u_k}^{\dagger}}{\text{Tr} \left(M_{\mathbf{y_k}} \rho_{\mathbf{k}}^{\text{est}} M_{\mathbf{y_k}}^{\dagger} \right)^{\dagger}}.$$

Quantum filter in the sense of Belavkin.

► The stabilizing feedback u_k = f(ρ^{est}_k) ensuring convergence towards p̄ is based on Lyapunov design:

$$u_{k} = \underset{u}{\operatorname{Argmin}} \quad \mathbb{E}\left(V(\rho_{k+1}) \mid \rho_{k} = \rho_{k}^{\operatorname{est}}, u\right)$$

where V is a well chosen super-martingale constructed with open-loop martingales attached to the QND process.

²The global convergence proof of such observer/controller for the realistic case is given in H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

The state estimation ρ_k^{est} used in the feedback law takes into account, measurement imperfections, delays and cavity decoherence:

- Derived from Bayes law: depends on past detector outcomes between 0 and k; computed recursively from an initial value \u03c6₀^{est};
- Stable and tends to converge towards ρ_k, the expectation value of |ψ_k \ ψ_k| knowing its initial value |ψ₀ \ ψ₀| and the past detector outcomes from 0 to k.

Quantum filtering: discrete-time case

Quantum filtering: continuous-time case

Conclusion

- 1. Bayes law: $\mathbb{P}(\mu'/\mu) = \mathbb{P}(\mu/\mu')\mathbb{P}(\mu') / (\sum_{\nu'} \mathbb{P}(\mu/\nu')\mathbb{P}(\nu')).$
- 2. Schrödinger equations defining unitary transformations.
- 3. Partial collapse of the wave packet: irreversibility and convergence are induced by the measurement of observables \mathcal{O} with degenerate spectra, $\mathcal{O} = \sum_{\mu} \lambda_{\mu} P_{\mu}$:
 - measurement outcome λ_{μ} with proba. $\mathbb{P}_{\mu} = \langle \psi | P_{\mu} | \psi \rangle = \text{Tr} (\rho P_{\mu})$ depending $|\psi\rangle$, ρ just before the measurement
 - measurement back-action if outcome µ:

$$|\psi\rangle \mapsto |\psi\rangle + = \frac{P_{\mu}|\psi\rangle}{\sqrt{\langle \psi|P_{\mu}|\psi\rangle}}, \quad \rho \mapsto \rho_{+} = \frac{P_{\mu}\rho P_{\mu}}{\text{Tr}\left(\rho P_{\mu}\right)}$$

- 4. Tensor product for the description of composite systems (S, M):
 - Hilbert space $\mathcal{H} = \mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{M}}$
 - Hamiltonian $H = H_S \otimes \mathbb{I}_M + H_{int} + \mathbb{I}_S \otimes H_M$
 - observable on sub-system *M* only: $\mathcal{O} = \mathbb{I}_S \otimes \mathcal{O}_M$.

LKB photon-box: Markov chain in the ideal case (1)

System *S* corresponds to a quantized cavity mode:

$$\mathcal{H}_{\mathcal{S}} = \left\{ \sum_{n=0}^{\infty} \psi^n | n \rangle \mid (\psi^n)_{n=0}^{\infty} \in l^2(\mathbb{C}) \right\},\,$$

where $|n\rangle$ represents the Fock state associated to exactly *n* photons inside the cavity

- Meter *M* is associated to atoms : *H_M* = C², each atom admits two energy levels and is described by a wave function *c_g*|*g*⟩ + *c_e*|*e*⟩ with |*c_g*|² + |*c_e*|² = 1; atoms leaving *B* are all in state |*g*⟩
- When an atom comes out B, the state |Ψ⟩_B ∈ H_S ⊗ H_M of the composite system atom/field is separable

$$|\Psi\rangle_{B} = |\psi\rangle \otimes |g\rangle.$$

- When an atom comes out $B: |\Psi\rangle_B = |\psi\rangle \otimes |g\rangle$.
- Just before the measurement in D, the state is in general entangled (not separable):

$$|\Psi
angle_{ extsf{R_2}} = U_{ extsf{SM}}ig||\psi
angle\otimes|g
angleig) = ig(M_g|\psi
angleig)\otimes|g
angle + ig(M_e|\psi
angleig)\otimes|e
angle$$

where U_{SM} is the total unitary transformation (Schrödinger propagator) defining the linear measurement operators M_g and M_e on \mathcal{H}_S . Since U_{SM} is unitary, $M_g^{\dagger}M_g + M_e^{\dagger}M_e = \mathbb{I}$.

Just before the measurement in *D*, the atom/field state is:

 $M_{g}|\psi
angle\otimes|g
angle+M_{e}|\psi
angle\otimes|e
angle$

Denote by $\mu \in \{g, e\}$ the measurement outcome in detector *D*: with probability $\mathbb{P}_{\mu} = \langle \psi | M_{\mu}^{\dagger} M_{\mu} | \psi \rangle$ we get μ . Just after the measurement outcome μ , the state becomes separable:

$$|\Psi
angle_{\mathcal{D}}=rac{1}{\sqrt{\mathbb{P}_{\mu}}}\left(\textit{M}_{\mu}|\psi
angle
ight)\otimes|\mu
angle=rac{\left(\textit{M}_{\mu}|\psi
angle
ight)\otimes|\mu
angle}{\sqrt{\langle\psi|\textit{M}_{\mu}^{\dagger}\textit{M}_{\mu}|\psi
angle}}.$$

Markov process (density matrix formulation $\rho \sim |\psi\rangle\langle\psi|$)

$$\rho_{+} = \begin{cases} \frac{M_{g}\rho M_{g}^{\dagger}}{\operatorname{Tr}\left(M_{g}\rho M_{g}^{\dagger}\right)}, & \text{with probability } \mathbb{P}_{g} = \operatorname{Tr}\left(M_{g}\rho M_{g}^{\dagger}\right); \\ \frac{M_{e}\rho M_{e}^{\dagger}}{\operatorname{Tr}\left(M_{e}\rho M_{e}^{\dagger}\right)}, & \text{with probability } \mathbb{P}_{e} = \operatorname{Tr}\left(M_{e}\rho M_{e}^{\dagger}\right). \end{cases}$$

Kraus map: $\mathbb{E}(\rho_+|\rho) = \mathbf{K}(\rho) = M_g \rho M_g^{\dagger} + M_e \rho M_e^{\dagger}$.

• With pure state $\rho = |\psi\rangle\langle\psi|$, we have

$$\rho_{+} = |\psi_{+}\rangle\langle\psi_{+}| = \frac{1}{\operatorname{Tr}\left(M_{\mu}\rho M_{\mu}^{\dagger}\right)}M_{\mu}\rho M_{\mu}^{\dagger}$$

when the atom collapses in $\mu = g$, *e* with proba. Tr $(M_{\mu}\rho M_{\mu}^{\dagger})$.

Detection error rates: P(y = e/μ = g) = η_g ∈ [0, 1] the probability of erroneous assignation to e when the atom collapses in g; P(y = g/μ = e) = η_e ∈ [0, 1] (given by the contrast of the Ramsey fringes).

Bayes law: expectation ρ_+ of $|\psi_+\rangle\langle\psi_+|$ knowing ρ and the imperfect detection *y*.

$$\rho_{+} = \begin{cases} \frac{(1-\eta_{g})M_{g}\rho M_{g}^{\dagger} + \eta_{e}M_{e}\rho M_{e}^{\dagger}}{\mathrm{Tr}\big((1-\eta_{g})M_{g}\rho M_{g}^{\dagger} + \eta_{e}M_{e}\rho M_{e}^{\dagger}\big)} \text{if } y = g, \text{ prob. } \mathrm{Tr}\left((1-\eta_{g})M_{g}\rho M_{g}^{\dagger} + \eta_{e}M_{e}\rho M_{e}^{\dagger}\right); \\ \frac{\eta_{g}M_{g}\rho M_{g}^{\dagger} + (1-\eta_{e})M_{e}\rho M_{e}^{\dagger}}{\mathrm{Tr}\big(\eta_{g}M_{g}\rho M_{g}^{\dagger} + (1-\eta_{e})M_{e}\rho M_{e}^{\dagger}\big)} \text{if } y = e, \text{ prob. } \mathrm{Tr}\left(\eta_{g}M_{g}\rho M_{g}^{\dagger} + (1-\eta_{e})M_{e}\rho M_{e}^{\dagger}\right). \end{cases}$$

 ρ_+ does not remain pure: the quantum state ρ_+ becomes a mixed state; $|\psi_+\rangle$ becomes physically irrelevant (not numerically).

Photon-box quantum filter: 6×21 left stochastic matrix $(\eta_{\mu',\mu})$

$$\rho_{k+1}^{\text{est}} = \frac{1}{\text{Tr}(\sum_{\mu} \eta_{\mu',\mu} M_{\mu} \rho_{k}^{\text{est}} M_{\mu}^{\dagger})} \left(\sum_{\mu} \eta_{\mu',\mu} M_{\mu} \rho_{k}^{\text{est}} M_{\mu}^{\dagger} \right) \text{ with }$$

- ▶ we have a total of $m = 3 \times 7 = 21$ Kraus operators M_{μ} . The "jumps" are labeled by $\mu = (\mu^a, \mu^c)$ with $\mu^a \in \{no, g, e, gg, ge, eg, ee\}$ labeling atom related jumps and $\mu^c \in \{o, +, -\}$ cavity decoherence jumps.
- ▶ we have only m' = 6 real detection possibilities $\mu' \in \{no, g, e, gg, ge, ee\}$ corresponding respectively to no detection, a single detection in g, a single detection in e, a double detection both in g, a double detection one in g and the other in e, and a double detection both in e.

$\mu' \setminus \mu$	(no, μ^c)	(g, μ°)	(e, μ^{c})	(gg,μ^{c})	(ee, μ°)	(ge,μ^{c}) (eg,μ^{c})
no	1	$1 - \epsilon_d$	$1 - \epsilon_d$	$(1 - \epsilon_d)^2$	$(1 - \epsilon_d)^2$	$(1 - \epsilon_d)^2$
g	0	$\epsilon_d(1 - \eta_g)$	$\epsilon_d \eta_o$	$2\epsilon_d(1-\epsilon_d)(1-\eta_g)$	$2\epsilon_d(1-\epsilon_d)\eta_o$	$\epsilon_d(1 - \epsilon_d)(1 - \eta_g + \eta_s)$
e	0	$\epsilon_d \eta_g$	$\epsilon_d(1 - \eta_e)$	$2\epsilon_d(1-\epsilon_d)\eta_g$	$2\epsilon_d(1-\epsilon_d)(1-\eta_o)$	$\epsilon_d(1-\epsilon_d)(1-\eta_s+\eta_g)$
<i>gg</i>	0	0	0	$\epsilon_g^2(1 - \eta_g)^2$	$\epsilon_d^2 \eta_o^2$	$\epsilon_{_{g}}^{^{2}}\eta_{_{g}}(1-\eta_{_{g}})$
ge	0	0	0	$2\epsilon_g^2\eta_g(1-\eta_g)$	$2\epsilon_{_d}^2\eta_s(1-\eta_s)$	$\epsilon_d^2((1-\eta_g)(1-\eta_s)+\eta_g\eta_s)$
66	0	0	0	$\epsilon_{_d}^2\eta_{_g}^2$	$\epsilon_{_d}^2(1 - \eta_o)^2$	$\epsilon_{_d}^2\eta_g(1-\eta_o)$

Take
$$|\psi_{k+1}\rangle\langle\psi_{k+1}| = \frac{1}{\operatorname{Tr}(M_{\mu_k}|\psi_k\rangle\langle\psi_k|M_{\mu_k}^{\dagger})} \left(M_{\mu_k}|\psi_k\rangle\langle\psi_k|M_{\mu_k}^{\dagger}\right)$$
 with

measurement imperfections and decoherence described by the left stochastic matrix η : $\eta_{\mu',\mu} \in [0, 1]$ is the probability of having the imperfect outcome $\mu' \in \{1, \ldots, m'\}$ knowing that the perfect one is $\mu \in \{1, \ldots, m\}$.

The optimal quantum filter: $\rho_k = \mathbb{E}\left(|\psi_k\rangle\langle\psi_k| | |\psi_0\rangle, \mu'_0, \dots, \mu'_{k-1}\right)$ can be computed efficiently via the following recurrence

$$\rho_{k+1} = \frac{1}{\operatorname{Tr}\left(\sum_{\mu=1}^{m} \eta_{\mu'_{k},\mu} M_{\mu} \rho_{k} M_{\mu}^{\dagger}\right)} \left(\sum_{\mu=1}^{m} \eta_{\mu'_{k},\mu} M_{\mu} \rho_{k} M_{\mu}^{\dagger}\right)$$

where the detector outcome μ'_k takes values μ' in $\{1, \dots, m'\}$ with probability $\mathbb{P}_{\mu',\rho_k} = \operatorname{Tr}\left(\sum_{\mu=1}^m \eta_{\mu'_k,\mu} M_\mu \rho_k M_\mu^\dagger\right)$.

► The quantum state $\rho_k = \mathbb{E}\left(|\psi_k\rangle\langle\psi_k| | |\psi_0\rangle, \mu'_0, \dots, \mu'_{k-1}\right)$ is given by the following optimal Belavkin filtering process

$$\rho_{k+1} = \frac{1}{\operatorname{Tr}\left(\sum_{\mu=1}^{m} \eta_{\mu'_{k},\mu} M_{\mu} \rho_{k} M_{\mu}^{\dagger}\right)} \left(\sum_{\mu=1}^{m} \eta_{\mu'_{k},\mu} M_{\mu} \rho_{k} M_{\mu}^{\dagger}\right)$$

with the perfect initialization: $\rho_0 = |\psi_0\rangle \langle \psi_0|$.

• Its estimate ρ^{est} follows the same recurrence

$$\boldsymbol{\rho}_{\boldsymbol{k+1}}^{\text{est}} = \frac{1}{\text{Tr}\left(\sum_{\mu=1}^{m} \eta_{\boldsymbol{\mu}_{\boldsymbol{k}}^{\prime},\mu} \boldsymbol{M}_{\mu} \boldsymbol{\rho}_{\boldsymbol{k}}^{\text{est}} \boldsymbol{M}_{\mu}^{\dagger}\right)} \left(\sum_{\mu=1}^{m} \eta_{\boldsymbol{\mu}_{\boldsymbol{k}}^{\prime},\mu} \boldsymbol{M}_{\mu} \boldsymbol{\rho}_{\boldsymbol{k}}^{\text{est}} \boldsymbol{M}_{\mu}^{\dagger}\right)$$

but with imperfect initialization $\rho_0^{\text{est}} \neq |\psi_0\rangle \langle \psi_0|$.

A natural question : $\rho_k^{\text{est}} \mapsto \rho_k$ when $k \mapsto +\infty$?

Markov chain of state (ρ_k, ρ_k^{est})

$$\rho_{k+1} = \frac{\sum_{\mu=1}^{m} \eta_{\boldsymbol{\mu}_{\boldsymbol{k}}^{\prime},\mu} M_{\mu} \rho_{k} M_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu=1}^{m} \eta_{\boldsymbol{\mu}_{\boldsymbol{k}}^{\prime},\mu} M_{\mu} \rho_{k} M_{\mu}^{\dagger}\right)}, \quad \boldsymbol{\rho}_{\boldsymbol{k+1}}^{\operatorname{est}} = \frac{\sum_{\mu=1}^{m} \eta_{\boldsymbol{\mu}_{\boldsymbol{k}}^{\prime},\mu} M_{\mu} \rho_{k}^{\operatorname{est}} M_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu=1}^{m} \eta_{\boldsymbol{\mu}_{\boldsymbol{k}}^{\prime},\mu} M_{\mu} \rho_{k}^{\operatorname{est}} M_{\mu}^{\dagger}\right)}$$

Proba. to get μ'_{k} at step k, Tr $\left(\sum_{\mu=1}^{m} \eta_{\mu'_{k},\mu} M_{\mu} \rho_{k} M_{\mu}^{\dagger}\right)$, depends on ρ_{k} .

Convergence of ρ^{est} towards ρ_k when k → +∞ is an open problem.

A partial result (continuous-time) due to R. van Handel: The stability of quantum Markov filters. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2009, 12, 153-172.

Stability³: the fidelity $F(\rho_k, \rho_k^{est}) = \text{Tr}^2(\sqrt{\sqrt{\rho_k}\rho_k^{est}}\sqrt{\rho_k})$ is a sub-martingale for any η and M_{μ} :

$$\mathbb{E}\left(F(\rho_{k+1}, \boldsymbol{\rho}_{k+1}^{\text{est}})/\rho_{k}, \boldsymbol{\rho}_{k}^{\text{est}}\right) \geq F(\rho_{k}, \boldsymbol{\rho}_{k}^{\text{est}}).$$

³Somaraju, A.; Dotsenko, I.; Sayrin, C. & PR. Design and Stability of Discrete-Time Quantum Filters with Measurement Imperfections. American Control Conference, 2012, 5084-5089.

For

- any set of *m* matrices M_{μ} with $\sum_{\mu=1}^{m} M_{\mu}^{\dagger} M_{\mu} = 1$,
- any partition of $\{1, \ldots, m\}$ into $p \ge 1$ sub-sets \mathcal{P}_{ν} ,

• any Hermitian non-negative matrices ρ and σ of trace one, the following inequality holds

$$\sum_{\nu=1}^{\nu=\rho} \operatorname{Tr}\left(\sum_{\mu\in\mathcal{P}_{\nu}} M_{\mu}\rho M_{\mu}^{\dagger}\right) F\left(\frac{\sum_{\mu\in\mathcal{P}_{\nu}} M_{\mu}\sigma M_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu\in\mathcal{P}_{\nu}} M_{\mu}\sigma M_{\mu}^{\dagger}\right)}, \frac{\sum_{\mu\in\mathcal{P}_{\nu}} M_{\mu}\rho M_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu\in\mathcal{P}_{\nu}} M_{\mu}\rho M_{\mu}^{\dagger}\right)}\right) \ge F(\sigma, \rho)$$

where
$$F(\sigma, \rho) = \operatorname{Tr}^2\left(\sqrt{\sqrt{\sigma}\rho\sqrt{\sigma}}\right)$$
.

Proof combines Cauchy-Schwartz inequalities with a lifting procedure based on Ulhmann's theorem.

⁴PR. Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters. IEEE Transactions on Automatic Control, 2011, 56, 2743-2747.

Bayesian parameter estimations⁵

MINES ParisTech

Consider detector outcomes μ'_k corresponding to a parameter value \bar{p} poorly known. Assume to simplify that either $\bar{p} = a$ or $\bar{p} = b$, with $a \neq b$. We can discriminate between *a* and *b* and recover \bar{p} via the following Bayesian scheme using information contained in the μ'_k 's:

$$\widehat{\rho}_{\boldsymbol{a},\boldsymbol{k}+1}^{\text{est}} = \frac{\sum_{\mu} \eta_{\mu_{k}',\mu}^{a} M_{\mu}^{a} \widehat{\rho}_{\boldsymbol{a},\boldsymbol{k}}^{\text{est}} M_{\mu}^{a\dagger}}{\text{Tr}\left(\sum_{\boldsymbol{p}} \sum_{\mu} \eta_{\mu_{k}',\mu}^{p} M_{\mu}^{p} \widehat{\rho}_{\boldsymbol{p},\boldsymbol{k}}^{\text{est}} M_{\mu}^{p\dagger}\right)}, \quad \widehat{\rho}_{\boldsymbol{b},\boldsymbol{k}+1}^{\text{est}} = \frac{\sum_{\mu} \eta_{\mu_{k}',\mu}^{b} M_{\mu}^{b} \widehat{\rho}_{\boldsymbol{b},\boldsymbol{k}}^{\text{est}} M_{\mu}^{b\dagger}}{\text{Tr}\left(\sum_{\boldsymbol{p}} \sum_{\mu} \eta_{\mu_{k}',\mu}^{p} M_{\mu}^{p} \widehat{\rho}_{\boldsymbol{p},\boldsymbol{k}}^{\text{est}} M_{\mu}^{p\dagger}\right)}$$

with initialization $\hat{\rho}_{a,k+1}^{\text{est}} = \hat{\rho}_{b,k+1}^{\text{est}} = \hat{\rho}_{0}^{\text{est}}/2$ where $\hat{\rho}_{0}^{\text{est}} = \rho_{0}$ assuming initial probability of $\frac{1}{2}$ to have $\bar{p} = a$ and $\bar{p} = b$. At step k, $\mathbb{P}_{a,k} = \operatorname{Tr}\left(\hat{\rho}_{a,k}^{\text{est}}\right), \mathbb{P}_{b,k} = \operatorname{Tr}\left(\hat{\rho}_{b,k}^{\text{est}}\right)$ are the proba. to have $\bar{p} = a$, $\bar{p} = b$, knowing the initial state ρ_{0} and the past detection outcomes.

This dynamical parameter estimation process is stable: if the true value of the parameter is *a* then $\mathbb{P}_{a,k}$ is a sub-martingale.

⁵See Kato, Y. & Yamamoto, N. Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, 2013, 1904-1909 Discrete-time translation of Gambetta, J. & Wiseman, H. M., Phys. Rev. A, 2001, 64, 042105 and of Negretti, A. & Mølmer, K., New Journal of Physics, 2013, 15, 125002. Discrete-time models of open quantum systems

Four features:

1. Bayes law: $\mathbb{P}(\mu'/\mu) = \mathbb{P}(\mu/\mu')\mathbb{P}(\mu') / (\sum_{\nu'} \mathbb{P}(\mu/\nu')\mathbb{P}(\nu')),$

- 2. Schrödinger equations defining unitary transformations.
- 3. Partial collapse of the wave packet: irreversibility and dissipation are induced by the measurement of observables with degenerate spectra.
- 4. Tensor product for the description of composite systems.

 $\Rightarrow \textbf{Discrete-time models:} Markov processes of state <math>\rho$, (density op.): $\rho_{k+1} = \frac{\sum_{\mu=1}^{m} \eta_{\mu',\mu} \mathbf{M}_{\mu} \rho_k \mathbf{M}_{\mu}^{\dagger}}{\text{Tr}(\sum_{\mu=1}^{m} \eta_{\mu',\mu} \mathbf{M}_{\mu} \rho_k \mathbf{M}_{\mu}^{\dagger})}, \text{ with proba. } \mathbb{P}_{\mu'}(\rho_k) = \sum_{\mu=1}^{m} \eta_{\mu',\mu} \text{Tr}\left(\mathbf{M}_{\mu} \rho_k \mathbf{M}_{\mu}^{\dagger}\right) \text{ associated to Kraus maps (ensemble average, quantum channel)}$

$$\mathbb{E}\left(\rho_{k+1}|\rho_{k}\right) = \boldsymbol{K}(\rho_{k}) = \sum_{\mu} \boldsymbol{M}_{\mu}\rho_{k}\boldsymbol{M}_{\mu}^{\dagger} \quad \text{with} \quad \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger}\boldsymbol{M}_{\mu} = \boldsymbol{I}$$

and left stochastic matrices (imperfections, decoherences) $(\eta_{\mu',\mu})$.

Discrete-time models: Markov chains $\rho_{k+1} = \frac{\sum_{\mu=1}^{m} \eta_{\mu',\mu} \mathbf{M}_{\mu} \rho_k \mathbf{M}_{\mu}^{\dagger}}{\text{Tr}(\sum_{\mu=1}^{m} \eta_{\mu',\mu} \mathbf{M}_{\mu} \rho_k \mathbf{M}_{\mu}^{\dagger})}, \text{ with proba. } \mathbb{P}_{\mu'}(\rho_k) = \sum_{\mu=1}^{m} \eta_{\mu',\mu} \text{ Tr}\left(\mathbf{M}_{\mu} \rho_k \mathbf{M}_{\mu}^{\dagger}\right)$

with ensemble averages corresponding to Kraus linear maps

$$\mathbb{E}\left(\rho_{k+1}|\rho_{k}\right) = \boldsymbol{K}(\rho_{k}) = \sum_{\mu} \boldsymbol{M}_{\mu}\rho_{k}\boldsymbol{M}_{\mu}^{\dagger} \quad \text{with} \quad \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger}\boldsymbol{M}_{\mu} = \boldsymbol{I}$$

Continuous-time models: stochastic differential systems

$$d\rho_{t} = \left(-\frac{i}{\hbar}[\mathbf{H},\rho_{t}] + \sum_{\nu} \mathbf{L}_{\nu}\rho_{t}\mathbf{L}_{\nu}^{\dagger} - \frac{1}{2}(\mathbf{L}_{\nu}^{\dagger}\mathbf{L}_{\nu}\rho_{t} + \rho_{t}\mathbf{L}_{\nu}^{\dagger}\mathbf{L}_{\nu})\right)dt + \sum_{\nu}\sqrt{\eta_{\nu}}\left(\mathbf{L}_{\nu}\rho_{t} + \rho_{t}\mathbf{L}_{\nu}^{\dagger} - \operatorname{Tr}\left((\mathbf{L}_{\nu} + \mathbf{L}_{\nu}^{\dagger})\rho_{t}\right)\rho_{t}\right)dW_{\nu,t}$$

driven by Wiener process $dW_{\nu,t} = dy_{\nu,t} - \sqrt{\eta_{\nu}} \operatorname{Tr} \left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger}) \rho_t \right) dt$ with measurements $y_{\nu,t}$, detection efficiencies $\eta_{\nu} \in [0, 1]$ and Lindblad-Kossakowski master equations $(\eta_{\nu} \equiv 0)$:

$$\frac{d}{dt}\rho = -\frac{i}{\hbar}[\mathbf{H},\rho] + \sum_{\nu} \mathbf{L}_{\nu}\rho_{t}\mathbf{L}_{\nu}^{\dagger} - \frac{1}{2}(\mathbf{L}_{\nu}^{\dagger}\mathbf{L}_{\nu}\rho_{t} + \rho_{t}\mathbf{L}_{\nu}^{\dagger}\mathbf{L}_{\nu})$$

With a single imperfect measurement $dy_t = \sqrt{\eta} \operatorname{Tr} \left((\boldsymbol{L} + \boldsymbol{L}^{\dagger}) \rho_t \right) dt + dW_t$ and detection efficiency $\eta \in [0, 1]$, the quantum state ρ_t is usually mixed and obeys to

$$d\rho_{t} = \left(-\frac{i}{\hbar}[\mathbf{H},\rho_{t}] + \mathbf{L}\rho_{t}\mathbf{L}^{\dagger} - \frac{1}{2}(\mathbf{L}^{\dagger}\mathbf{L}\rho_{t} + \rho_{t}\mathbf{L}^{\dagger}\mathbf{L})\right)dt + \sqrt{\eta}\left(\mathbf{L}\rho_{t} + \rho_{t}\mathbf{L}^{\dagger} - \operatorname{Tr}\left((\mathbf{L} + \mathbf{L}^{\dagger})\rho_{t}\right)\rho_{t}\right)dW_{t}$$

driven by the Wiener process dW_t

With Ito rules, it can be written as the following "discrete-time" Markov model

$$\rho_{t+dt} = \frac{\boldsymbol{M}_{dy_{t}}\rho_{t}\boldsymbol{M}_{dy_{t}}^{\dagger} + (1-\eta)\boldsymbol{L}\rho_{t}\boldsymbol{L}^{\dagger}dt}{\operatorname{Tr}\left(\boldsymbol{M}_{dy_{t}}\rho_{t}\boldsymbol{M}_{dy_{t}}^{\dagger} + (1-\eta)\boldsymbol{L}\rho_{t}\boldsymbol{L}^{\dagger}dt\right)}$$

with $\boldsymbol{M}_{dy_{t}} = \boldsymbol{I} + \left(-\frac{i}{\hbar}\boldsymbol{H} - \frac{1}{2}\left(\boldsymbol{L}^{\dagger}\boldsymbol{L}\right)\right)dt + \sqrt{\eta}dy_{t}\boldsymbol{L}.$

Continuous/discrete-time jump SME

With Poisson process N(t), $\langle dN(t) \rangle = (\overline{\theta} + \overline{\eta} \operatorname{Tr} (V_{\rho_t} V^{\dagger})) dt$, and detection imperfections modeled by $\overline{\theta} \ge 0$ and $\overline{\eta} \in [0, 1]$, the quantum state ρ_t is usually mixed and obeys to

$$d\rho_{t} = \left(-i[H,\rho_{t}] + V\rho_{t}V^{\dagger} - \frac{1}{2}(V^{\dagger}V\rho_{t} + \rho_{t}V^{\dagger}V)\right) dt \\ + \left(\frac{\overline{\theta}\rho_{t} + \overline{\eta}V\rho_{t}V^{\dagger}}{\overline{\theta} + \overline{\eta}\operatorname{Tr}(V\rho_{t}V^{\dagger})} - \rho_{t}\right) \left(dN(t) - \left(\overline{\theta} + \overline{\eta}\operatorname{Tr}(V\rho_{t}V^{\dagger})\right) dt\right)$$

For N(t + dt) - N(t) = 1 we have $\rho_{t+dt} = \frac{\overline{\theta}\rho_t + \overline{\eta} V \rho_t V^{\dagger}}{\overline{\theta} + \overline{\eta} \operatorname{Tr} (V \rho_t V^{\dagger})}$. For dN(t) = 0 we have

$$\rho_{t+dt} = \frac{M_0 \rho_t M_0^{\dagger} + (1 - \overline{\eta}) V \rho_t V^{\dagger} dt}{\operatorname{Tr} \left(M_0 \rho_t M_0^{\dagger} + (1 - \overline{\eta}) V \rho_t V^{\dagger} dt \right)}$$

with $M_0 = I + \left(-iH + \frac{1}{2}\left(\overline{\eta} \operatorname{Tr}\left(V\rho_t V^{\dagger}\right)I - V^{\dagger}V\right)\right) dt.$

Continuous/discrete-time diffusive-jump SME

The quantum state ρ_t is usually mixed and obeys to

$$d\rho_{t} = \left(-i[H,\rho_{t}] + L\rho_{t}L^{\dagger} - \frac{1}{2}(L^{\dagger}L\rho_{t} + \rho_{t}L^{\dagger}L) + V\rho_{t}V^{\dagger} - \frac{1}{2}(V^{\dagger}V\rho_{t} + \rho_{t}V^{\dagger}V)\right) dt$$
$$+ \sqrt{\eta}\left(L\rho_{t} + \rho_{t}L^{\dagger} - \operatorname{Tr}\left((L + L^{\dagger})\rho_{t}\right)\rho_{t}\right)dW_{t}$$
$$+ \left(\frac{\overline{\theta}\rho_{t} + \overline{\eta}V\rho_{t}V^{\dagger}}{\overline{\theta} + \overline{\eta}\operatorname{Tr}(V\rho_{t}V^{\dagger})} - \rho_{t}\right)\left(dN(t) - \left(\overline{\theta} + \overline{\eta}\operatorname{Tr}\left(V\rho_{t}V^{\dagger}\right)\right)dt\right)$$

For N(t + dt) - N(t) = 1 we have $\rho_{t+dt} = \frac{\overline{\theta}\rho_t + \overline{\eta}V\rho_tV^{\dagger}}{\overline{\theta} + \overline{\eta}\operatorname{Tr}(V\rho_tV^{\dagger})}$. For dN(t) = 0 we have

$$\rho_{t+dt} = \frac{M_{dy_t}\rho_t M_{dy_t}^{\dagger} + (1-\eta)L\rho_t L^{\dagger} dt + (1-\overline{\eta})V\rho_t V^{\dagger} dt}{\operatorname{Tr}\left(M_{dy_t}\rho_t M_{dy_t}^{\dagger} + (1-\eta)L\rho_t L^{\dagger} dt + (1-\overline{\eta})V\rho_t V^{\dagger} dt\right)}$$

with $M_{dy_t} = I + \left(-iH - \frac{1}{2}L^{\dagger}L + \frac{1}{2}\left(\overline{\eta}\operatorname{Tr}\left(V\rho_t V^{\dagger}\right)I - V^{\dagger}V\right)\right) dt + \sqrt{\eta}dy_t L.$

Continuous/discrete-time general diffusive-jump SME

The quantum state ρ_t is usually mixed and obeys to

$$d\rho_{t} = \left(-i[H,\rho_{t}] + \sum_{\nu} L_{\nu}\rho_{t}L_{\nu}^{\dagger} - \frac{1}{2}(L_{\nu}^{\dagger}L_{\nu}\rho_{t} + \rho_{t}L_{\nu}^{\dagger}L_{\nu}) + V_{\mu}\rho_{t}V_{\mu}^{\dagger} - \frac{1}{2}(V_{\mu}^{\dagger}V_{\mu}\rho_{t} + \rho_{t}V_{\mu}^{\dagger}V_{\mu})\right) dt$$
$$+ \sum_{\nu} \sqrt{\eta_{\nu}} \left(L_{\nu}\rho_{t} + \rho_{t}L_{\nu}^{\dagger} - \operatorname{Tr}\left((L_{\nu} + L_{\nu}^{\dagger})\rho_{t}\right)\rho_{t}\right) dW_{\nu,t}$$
$$+ \sum_{\mu} \left(\frac{\overline{\theta}_{\mu}\rho_{t} + \sum_{\mu'}\overline{\eta}_{\mu,\mu'}V_{\mu}\rho_{t}V_{\mu}^{\dagger}}{\overline{\theta}_{\mu} + \sum_{\mu'}\overline{\eta}_{\mu,\mu'}\operatorname{Tr}\left(V_{\mu'}\rho_{t}V_{\mu'}^{\dagger}\right) - \rho_{t}\right) \left(dN_{\mu}(t) - \left(\overline{\theta}_{\mu} + \sum_{\mu'}\overline{\eta}_{\mu,\mu'}\operatorname{Tr}\left(V_{\mu'}\rho_{t}V_{\mu'}^{\dagger}\right)\right) dt\right)$$

where $\eta_{\nu} \in [0, 1], \overline{\theta}_{\mu}, \overline{\eta}_{\mu, \mu'} \ge 0$ with $\overline{\eta}_{\mu'} = \sum_{\mu} \overline{\eta}_{\mu, \mu'} \le 1$ are parameters modelling measurements imperfections.

If, for some
$$\mu$$
, $N_{\mu}(t + dt) - N_{\mu}(t) = 1$, we have $\rho_{t+dt} = \frac{\overline{\theta}_{\mu}\rho_t + \sum_{\mu'} \overline{\eta}_{\mu,\mu'} V_{\mu'} \rho_t V_{\mu'}^{\dagger}}{\overline{\theta}_{\mu} + \sum_{\mu'} \overline{\eta}_{\mu,\mu'} \operatorname{Tr} \left(V_{\mu'} \rho_t V_{\mu'}^{\dagger} \right)}$.

$$\rho_{t+dt} = \frac{M_{dy_t} \rho_t M_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \rho_t L_{\nu}^{\dagger} dt + \sum_{\mu} (1 - \overline{\eta}_{\mu}) V_{\mu} \rho_t V_{\mu}^{\dagger} dt}{\text{Tr} \left(M_{dy_t} \rho_t M_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \rho_t L_{\nu}^{\dagger} dt + \sum_{\mu} (1 - \overline{\eta}_{\mu}) V_{\mu} \rho_t V_{\mu}^{\dagger} dt \right)}$$

with $M_{dy_t} = I + \left(-iH - \frac{1}{2} \sum_{\nu} L_{\nu}^{\dagger} L_{\nu} + \frac{1}{2} \sum_{\mu} \left(\overline{\eta}_{\mu} \operatorname{Tr} \left(V_{\mu} \rho_t V_{\mu}^{\dagger} \right) I - V_{\mu}^{\dagger} V_{\mu} \right) \right) dt + \sum_{\nu} \sqrt{\eta_{\nu}} dy_{\nu t} L_{\nu}$ and where $dy_{\nu,t} = \sqrt{\eta_{\nu}} \operatorname{Tr} \left((L_{\nu} + L_{\nu}^{\dagger}) \rho_t \right) dt + dW_{\nu,t}$.

Could be used as a numerical integration scheme that preserves the positiveness of ρ .

For clarity'sake, take a single measurement y_t associated to operator L and detection efficiency $\eta \in [0, 1]$. Then ρ_t obeys to the following diffusive SME

$$d\rho_t = -i[H, \rho_t] dt + \left(L\rho_t L^{\dagger} - \frac{1}{2}(L^{\dagger}L\rho_t + \rho_t L^{\dagger}L)\right) dt + \sqrt{\eta} \left(L\rho_t + \rho_t L^{\dagger} - \operatorname{Tr}\left((L + L^{\dagger})\rho_t\right)\rho_t\right) dW_t$$

driven by the Wiener processes W_t ,

Since $dy_t = \sqrt{\eta} \operatorname{Tr} ((L + L^{\dagger}) \rho_t) dt + dW_t$, the estimate ρ_t^{est} is given by

$$\begin{aligned} d\boldsymbol{\rho}_{t}^{\text{est}} &= -i[H, \boldsymbol{\rho}_{t}^{\text{est}}] \, dt + \left(L \boldsymbol{\rho}_{t}^{\text{est}} L^{\dagger} - \frac{1}{2} (L^{\dagger} L \boldsymbol{\rho}_{t}^{\text{est}} + \boldsymbol{\rho}_{t}^{\text{est}} L^{\dagger} L) \right) \, dt \\ &+ \sqrt{\eta} \left(L \boldsymbol{\rho}_{t}^{\text{est}} + \boldsymbol{\rho}_{t}^{\text{est}} L^{\dagger} - \, \operatorname{Tr} \left((L + L^{\dagger}) \boldsymbol{\rho}_{t}^{\text{est}} \right) \, \boldsymbol{\rho}_{t}^{\text{e}} \right) \left(\mathbf{dy}_{t} - \sqrt{\eta} \, \operatorname{Tr} \left((L + L^{\dagger}) \boldsymbol{\rho}_{t}^{\text{est}} \right) \, dt \right). \end{aligned}$$

initialized to any density matrix ρ_0^{est} .

Assume that (ρ, ρ^{est}) obey to $d\rho_t = -i[H, \rho_t] dt + \left(L\rho_t L^{\dagger} - \frac{1}{2}(L^{\dagger}L\rho_t + \rho_t L^{\dagger}L)\right) dt$ $+\sqrt{\eta} \left(L\rho_t + \rho_t L^{\dagger} - \text{Tr} \left((L + L^{\dagger})\rho_t\right)\rho_t\right) dW_t$ $d\rho_t^{\text{est}} = -i[H, \rho_t^{\text{est}}] dt + \left(L\rho_t^{\text{est}}L^{\dagger} - \frac{1}{2}(L^{\dagger}L\rho_t^{\text{est}} + \rho_t^{\text{est}}L^{\dagger}L)\right) dt$ $+\sqrt{\eta} \left(L\rho_{\star}^{\text{est}} + \rho_{\star}^{\text{est}}L^{\dagger} - \text{Tr}\left((L+L^{\dagger})\rho_{\star}^{\text{est}}\right)\rho_{\star}^{\text{est}}\right) dW_{t}$ $+ \eta \left(L \rho_t^{\text{est}} + \rho_t^{\text{est}} L^{\dagger} - \operatorname{Tr} \left((L + L^{\dagger}) \rho_t^{\text{est}} \right) \rho_t^{\text{est}} \right) \operatorname{Tr} \left((L + L^{\dagger}) (\rho_t - \rho_t^{\text{est}}) \right) dt.$ correction terms vanishing when $\rho_t = \rho_t^{\text{est}}$

Then for any *H*, *L* and $\eta \in [0, 1]$, $F(\rho_t, \rho_t^{est}) = \operatorname{Tr}^2(\sqrt{\sqrt{\rho_t}\rho_t^{est}}\sqrt{\rho_t})$ is a sub-martingale:

 $t \mapsto \mathbb{E}\left(F(\rho_t, \boldsymbol{\rho}_t^{\text{est}})\right)$ is non-decreasing.

⁶H. Amini, C. Pellegrini, PR: Stability of continuous-time quantum filters with measurement imperfections. http://arxiv.org/abs/1312.0418

- ► 1 F(ρ_t, ρ^{est}) remains a super-martingale for all Belavkin SMEs and their associated quantum filters when they are driven simultaneously by several Wiener and Poisson processes.
- Petz has given, via the theory of operator monotone functions, a complete characterization of distance that are contracted for all Lindblad-Kossakovski evolutions⁷:

$$\frac{d}{dt}\rho = -i[H,\rho] + \sum_{\nu} \left(L_{\nu}\rho L_{\nu}^{\dagger} - \frac{1}{2}(L_{\nu}^{\dagger}L_{\nu}\rho + \rho L_{\nu}^{\dagger}L_{\nu}) \right).$$

Could we exploit Petz results to characterize "metrics" D(ρ, ρ^{est}) that are super-martingale for all Belavkin SMEs. and filters ?

⁷D. Petz. Monotone metrics on matrix spaces.*Linear Algebra and its Applications*, 244:81–96, 1996.