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Quantum state tomography based on POVM,
∑

j πj = I

I Tomography of ρ via N independent measurements Y associated to
POVM: probability Tr (ρπj ) of each measurement outcome j given by πj ;
for Nj the number of j outcomes, Y ≡ (Nj) with

∑
j Nj = N, the number

of measurements.
I Several estimation methods:

MaxEnt: ρME maximizes − Tr (ρ log(ρ)) under the constraints
| Tr (ρπj )− Nj/N| ≤ ε (Bužek et al, Ann. Phys. 1996).

Compress Sensing: ρCS minimizes Tr (ρ) under the constraints
| Tr (ρπj )− Nj/N| ≤ ε (Gross et al PRL2010)

MaxLike: ρML maximizes the likelihood function,
ρ 7→ P(Y | ρ) =

∏
j

(
Tr (ρπj )

)Nj (see, e.g.,
Lvovsky/Raymer RMP 2009)

Bayesian Mean: ρBM ∝
∫
ρP(Y | ρ)P0(ρ)dρ where P0 is some prior

distribution P0(ρ)dρ (see, e.g., Blume-Kohout
NJP2010).

Low rank, high dimensional systems: see, e.g, PhD thesis "Efficient
and Robust Methods for Quantum Tomography" of
Charles Heber Baldwin, University of New Mexico,
December 2016.
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Quantum filtering / tomography with quantum trajectories Y =
(

y (n)
t

)
Filtering: estimation of the quantum state ρt at time t > 0 from the

measurement trajectory [0, t [3 τ 7→ yτ and the initial state ρ0;
see Belavkin semilar contributions (links with Monte-Carlo
quantum-trajectories).

State tomography: estimation of the initial state ρ0 = ρ from a collection of N
measurement trajectories: Y =

(
y (n)

t

)
with n ∈ {1, . . . ,N}

and t ∈ [0,T ].

Process tomography: estimation of a parameter p from a known initial state
ρ and a collection of N measurement trajectories Y .

This talk: MaxLike estimation with decoherence and measurement
imperfections (PhD thesis of Pierre Six, November 2016):

1. How to compute the likelihood function P
(
Y/ρ,p

)
and its gradient from

the stochastic master equation governing filtering (P. Six et al. PRA
2016).

2. For state estimation: variance computation based on asymptotic
expansions of Laplace integrals for low rank MaxLike estimates (P. Six
/PR, chapter in Lecture Notes in Control and Information Sciences no
473, April 2017).
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Regular MaxLike estimation of a parameter p

Log-likelihood function f (p) = log
(
P(Y | p)

)
admits a unique

maximum at pML (∇f (pML) = 0) with a negative definite Hessian
(∇2f (pML) < 0).

f coming from N independent realisations: f (p) ≡ Nf̄ (p) with
asymptotics for N 7→ +∞ of the Laplace integrals connecting

I Bayesian Mean pBM and MaxLike estimation pML:

pBM =

∫
p eNf̄ (p)P0(p)dp∫
eNf̄ (p)P0(p)dp

= pML + O(1/N).

with any smooth prior distribution P0(p)dp

I Bayesian variance and Fisher information F ML = −∇2f (pML):∫
‖p − pML‖2 eNf̄ (p)P0(p)dp∫

eNf̄ (p)P0(p)dp
= Tr

((
F ML

)−1
)
/(2N) + O(1/N2).

Confidence intervals based on −∇2f (pML).
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Discrete-time models of open quantum systems

Four features1:

1. Bayes law: P(µ′/µ) = P(µ/µ′)P(µ′) /
(∑

ν′ P(µ/ν′)P(ν′)
)
,

2. Schrödinger equations defining unitary transformations.

3. Randomness, irreversibility and dissipation induced by the
measurement of observables with degenerate spectra.

4. Entanglement and tensor product for composite systems.

V Discrete-time models
Take a set of operators Mµ satisfying

∑
µ M†µMµ = I and a left

stochastic matrices (ηyt ,µ). Consider the following Markov process of
state ρ (density op.) and measured output y :

ρt+1 =
K yt (ρt )

Tr(K yt (ρt ))
, with proba. Pyt (ρt ) = Tr (K yt (ρt ))

with K y (ρ) =
∑m
µ=1 ηy,µMµρM†µ. It is associated to the Kraus map

(ensemble average, quantum channel)

E (ρt+1|ρt ) = K (ρt ) =
∑

y

K y (ρt ) =
∑
µ

MµρtM†µ.

1See the book of S. Haroche and J.M. Raimond.
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Computation of the likelihood function via the adjoint state (1)

I Denote by Pn(ρ,p) the probability of getting measurement
trajectory n, (y (n)

t )t=0,...,T , knowing the initial state ρ(n)
0 = ρ and

parameter p.

I Since ρ(n)
t+1 =

K p

y(n)t

(
ρ

(n)
t

)
Tr

(
K p

y(n)t

(
ρ

(n)
t

)) with Tr
(

K p
y (n)

t

(
ρ

(n)
t

))
the

probability of having detected y (n)
t knowing ρ(n)

t and p, a direct
use of Bayes law yields

Pn(ρ,p) =
T∏

t=0

Tr
(

K p
y (n)

t

(
ρ

(n)
t

))
= Tr

(
K p

y (n)
T

◦ . . . ◦ K p
y (n)

0

(ρ)

)
.
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Computation of the likelihood function via the adjoint state (2)

I With adjoint map K p∗
y (∀A,B, Tr

(
K p

y (A)B
)
≡ Tr

(
AK p∗

y (B)
)
):

Pn(ρ,p) = Tr
(

K p
y (n)

T

◦ . . . ◦ K p
y (n)

0

(ρ) I
)

= Tr
(
ρ K p∗

y (n)
0

◦ . . . ◦ K p∗
y (n)

T

(I)
)
.

I Normalized adjoint quantum filter2 E (n)
t =

K p∗

y(n)t

(
E (n)

t+1

)
Tr

(
K p∗

y(n)t

(
E (n)

t+1

)) with

E (n)
T +1 = I/ Tr (I), we get

Pn(ρ,p) =
0∏

t=T

Tr
(

K p∗
y (n)

t

(
E (n)

t+1

))
Tr
(
ρE (n)

0

)
, gn(Y ,p) Tr

(
ρE (n)

0

)
.

I A simple expression of the gradients:

∇ρ logPn =
E (n)

0

Tr
(
ρE (n)

0

) , ∇p logPn·δp =
T∑

t=0

Tr
(

E (n)
t+1 ∇pK p

y (n)
t

(
ρ

(n)
t

)
· δp

)
Tr
(

E (n)
t+1 K p

y (n)
t

(
ρ

(n)
t

)) ,

2M. Tsang. Time-symmetric quantum theory of smoothing. PRL 2009.
S. Gammelmark, B. Julsgaard, and K. Mølmer. Past quantum states of a
monitored system. PRL 2013.
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MaxLike tomography based on N trajectories data Y =
(

y (n)
t

)
From Pn(ρ,p) = gn(Y ,p) Tr

(
ρE (n)

0

)
we have

P(ρ,p) ,
N∏

n=1

Pn(ρ,p) =

(
N∏

n=1

gn(Y ,p)

)(
N∏

n=1

Tr
(
ρE (n)

0

))
.

I MaxLike state tomography: p is known and ρML maximizes

ρ 7→
N∑

n=1

log
(

Tr
(
ρE (n)

0

))
a concave function on the convex set of density operators ρ:
a well structured convex optimization problem.

I MaxLike process tomography: ρ is known and pML maximizes
p 7→ f (p) = logP(ρ,p) those gradient is given by

∇pf (p) · δp =
∑N

n=1
∑T

t=0

Tr

(
E (n)

t+1 ∇pK p

y(n)t

(
ρ

(n)
t

)
·δp

)

Tr

(
E (n)

t+1 K p

y(n)t

(
ρ

(n)
t

)) ,

The Hessian ∇2
pf can be computed similarly (Fisher information).
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Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains ρt+1 =
K yt (ρt )

Tr(K yt (ρt ))
, with

K yt (ρt ) =
∑m
µ=1 ηyt ,µMµρtM†µ, and proba. Pyt (ρt ) = Tr (K yt (ρt )).

Ensemble averages correspond to Kraus linear maps

E (ρt+1|ρt ) = K (ρt ) =
∑

y

K y (ρt ) =
∑
µ

MµρtM†µ with
∑
µ

M†µMµ = I

Continuous-time models: stochastic differential systems (see, e.g.,
Barchielli/Gregoratti, 2009)

dρt =

(
− i

~ [H, ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

driven by Wiener processes dWν,t , with measurements dyν,t ,
dyν,t =

√
ην Tr

(
(Lν + L†ν) ρt

)
dt + dWν,t , detection efficiencies

ην ∈ [0,1] and Lindblad-Kossakowski master equations (ην ≡ 0):

d
dt
ρ = − i

~ [H, ρ] +
∑
ν

LνρL†ν −
1
2

(L†νLνρ+ ρL†νLν)
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Continuous/discrete-time diffusive SME

The Belavkin quantum filter

dρt =

(
− i

~ [H, ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

with dWν,t = dyν,t −
√
ην Tr

(
(Lν + L†ν) ρt

)
dt given by the

measurement signal dyν,t , is always a stable filtering process.3

Using Itō rules, it can be written as a "discrete-time" Markov model4

ρt+dt = K dyt (ρt )/ Tr (K dyt (ρt ))

with partial Kraus maps K dyt (ρt ) = MdytρtM†dyt
+
∑
ν(1− ην)LνρtL†νdt

Mdyt = I +
(
− i

~H − 1
2

(∑
ν L†νLν

))
dt +

∑
ν

√
ηνdyν,tL

where the probability of outcome dyt = (dyν,t ) reads:
P
(

dyt ∈
∏
ν [ξν , ξν + dξν ]

/
ρt

)
= Tr (K ξ(ρt ))

∏
ν e−ξ

2
ν/2dt dξν√

2πdt
3H. Amini et al., Russian J. of Math. Physics, 2014, 21, 297-315.
4PR, J. Ralph PRA2015; see also PhD thesis of Ph. Campagne-Ibracq

(2015) and of P. Six (2016).
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QND measurement of photons

C

B

D

R 1
R 2

I The probability P(y | φR ,n) to get y ∈ {g,e} knowing the
Ramsey angle φR and the number of photon(s) n ∈ {0,1,2, . . .}:

P(y | φR ,n) = 1+εy
(
A+Bc(n) cosφR+Bs(n) sinφR

)
with εe/g = ±1.

depends on the parameters p = (Bc(n),Bs(n))n∈{0,1,...,}.

I The Kraus maps K p
y based on known cavity decay and thermal

photons.
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A priori calibration5 (black dots) versus MaxLike (blue dots)
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Photon number, n

P (e 0 , n )

MaxLike estimation of 32 parameters p based on N = 8000
trajectories of T = 6000 outcome measurements.

5T. Rybarczyk, B. Peaudecerf, M. Penasa, S. Gerlich, B. Julsgaard, K.
Mølmer, S. Gleyzes, M. Brune, J. M. Raimond, S. Haroche, and I. Dotsenko.
Forward-backward analysis of the photon-number evolution in a cavity. PRA
2015.
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A quantum Maxwell demon experiment arXiv:1702.01917v1

(a) After preparation in a thermal or quantum state the system S (superconducting
qubit) state is recorded into the demon’s quantum memory D (microwave cavity) via a
pulse that populates the cavity mode only if the qubit is in the ground state. This
information is used to extract work which charges a battery with one extra photon:
system S emits this photon only when the demon’s cavity is empty. The memory reset
is performed by cavity relaxation.
(b) When the system starts in a quantum superposition of the demon and system are
entangled after the record step. 16 / 27



Tomography of the demon after the work extraction step

rank 2

rank 6rank 4

rank 4

Computations are
based on a truncation
to 20 photons
How to define the
confidence intervals
for low rank ρML?
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Asymptotic when ρML is on the boundary

I To bypass boundary problem, consider Bayesian estimate instead of
MaxLike ones

ρBM =

∫
ρ P(Y | ρ)P0(ρ)dρ∫
P(Y | ρ)P0(ρ)dρ

with some prior distribution P0(ρ)dρ.
I When the likelihood exp(f (ρ)) ≡ P(Y | ρ) is concentrated (f = N f̄ with

N � 1) around its maximum ρML that lies on the boundary (ρML not full
rank), how to compute the first terms of an asymptotic expansion versus
N of ∫

Tr (ρA)r exp(N f̄ (ρ))P0(ρ)dρ

for any operator A and exponent r and for some prior distribution
P0(ρ)dρ (e.g., Gausssian unitary ensemble).

I Since all functions are analytic such an asymptotic expansion versus N
always exists: Integration by parts, Watson’s lemma, Laplace’s method,
stationary phase, steepest descents, Hironaka’s resolution of
singularities 6, "singular learning" 7

6An important reference: V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko.
Singularities of Differentiable Maps, Vol. II. Birkhäuser, Boston, 1985

7S. Watanabe: Algebraic Geometry and Statistical Learning Theory, Cambridge
University Press, 2009.
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Geometric optimality condition for the log-likelihood function

Assume that ρML is an argument of the maximum of

f : D 3 ρ 7→
∑
µ∈M

log
(

Tr
(
ρE (µ)

))
∈ [−∞,0]

over D (the set of density operators, E (µ) ∈ D.). Then necessarily,
ρML satisfies the following conditions:

I Tr
(
ρMLE (µ)

)
> 0 for each µ ∈M;

I
[
ρML , ∇f |ρML

]
= 0, where ∇f |ρML

=
∑
µ∈M

E (µ)

Tr(ρMLE (µ))
is the

gradient of f at ρML for the Frobenius scalar product;

I there exists λML > 0 such that λMLPML = PML ∇f |ρML
and

∇f |ρML
≤ λMLI, where PML is the orthogonal projector on the

range of ρML and I is the identity operator.

These conditions are also sufficient and characterize the unique
maximum when, additionally, the vector space spanned by the E (µ)’s
coincides with the set of Hermitian matrices.
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Geometric asymptotic expansions of Bayesian mean and variance

For any Hermitian operator A, its Bayesian mean and variance read:

IA(N) =

∫
D Tr (ρA) eNf (ρ) P0(ρ) dρ∫

D eNf (ρ) P0(ρ) dρ
, VA(N) =

∫
D

(
Tr (ρA)− IA(N)

)2
eNf (ρ) P0(ρ) dρ∫

D eNf (ρ) P0(ρ) dρ
.

Denote by ρML the unique maximum of f on D and by PML the orthogonal
projector on its range. In addition to the necessary and sufficient geometric
conditions above, assume that ker

(
λMLI − ∇f |ρML

)
= ker(I − PML).

IA(N) = Tr (AρML)+O(1/N), VA(N) = Tr
(

A‖ (FML)
−1(A‖)

)
/N+O(1/N2)

where B‖ is an orthogonal projection

B‖ = B − Tr (BPML)

Tr (PML)
PML − (I − PML)B(I − PML);

and where FML is a linear super-operator, corresponds to the Hessian at ρML

of some restriction of f and generalizes the Fisher information matrix:

FML(X ) =
∑
µ

Tr
(

XE (µ)
‖

)
Tr2 (ρMLE (µ))

E (µ)
‖ +

(
λMLI − ∇f |ρML

)
Xρ+

ML + ρ+
MLX

(
λMLI − ∇f |ρML

)
with ρ+

ML the Moore-Penrose pseudo-inverse of ρML.
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Concluding remarks

I Low-rank approximations and efficient numerical schemes for
computations of ρML, the adjoint states E (n), . . .

I Asymptotics when the log-likelihood function is not strongly
concave, when ker

(
λMLI − ∇f |ρML

)
6= ker(I − PML) . . .

I Process tomography: log-likelihood function not concave . . .

I Parameter estimation along quantum trajectories (in real-time)
. . .

I Thematic quarter at Institut Henri Poincaré in Paris next Spring
2018 gathering experimental physicists and theoreticians.
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Asymptotics for multi-dimension Laplace integrals (1)

Theorem (interior max) Ig(N) =
∫

z∈(−1,1)n g(z) exp (Nf (z)) dz
with f and g analytic functions of z on a compact neighbourhood of
D, the closure of D. Assume that f admits a unique maximum on D at
z = 0 with ∂2f

∂z2

∣∣∣
0

negative definite.

If g(0) 6= 0, we have the following dominant term in the asymptotic
expansion of Ig(N) for large N:

Ig(N) =

g(0) (2π)n/2 eNf (0)N−n/2√∣∣∣det
(
∂2f
∂z2

∣∣∣
0

)∣∣∣
+ O

(
eNf (0)N−n/2−1

)
.

If g(0) = 0, with ∂g
∂z

∣∣∣
0

= 0, then we have:

Ig(N) =

 Tr
(
− ∂2g

∂z2

∣∣∣
0

(
∂2f
∂z2

∣∣∣
0

)−1
)

(2π)n/2

2
√∣∣∣det

(
∂2f
∂z2

∣∣∣
0

)∣∣∣
eNf (0)N−n/2−1

+ O
(

eNf (0)N−n/2−2
)
.
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Asymptotics for Bayesian integrals (1’)

Corollary (interior max): Assume that f admits a unique maximum
on D at z = 0 with ∂2f

∂z2

∣∣∣
0

negative definite. Then we have the

following asymptotic for any analytic function g(z):

Mg(N) ,

∫
z∈(−1,1)n g(z) exp (Nf (z)) dz∫

z∈(−1,1)n exp (Nf (z)) dz
= g(0) + O(N−1)

We have also:

Vg(N) ,

∫
z∈(−1,1)n

(
g(z)−Mg(N)

)2
exp (Nf (z)) dz∫

z∈(−1,1)n exp (Nf (z)) dz

=

Tr
(
− ∂2g

∂z2

∣∣∣
0

(
∂2f
∂z2

∣∣∣
0

)−1
)

2N
+ O

(
N−2).
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Asymptotics for multi-dimension Laplace integrals (2)

Theorem (boundary max):
Ig(N) =

∫
x∈(0,1)

∫
z∈(−1,1)n xmg(x, z) exp (Nf (x, z)) dx dz with f and g

analytic functions of (x , z) on a compact neighbourhood of D, the closure of
D. Assume that f admits a unique maximum on D at (x , z) = (0, 0), with
∂2f
∂z2

∣∣∣
(0,0)

negative definite and ∂f
∂x

∣∣
(0,0) < 0. If g(0, 0) 6= 0, we have the

following dominant term in the asymptotic expansion of Ig(N) for large N:

Ig(N) =

g(0, 0) m! (2π)n/2 eNf (0,0)N−m−n/2−1√∣∣∣∣det
(
∂2f
∂z2

∣∣∣
(0,0)

)∣∣∣∣ (− ∂f
∂x

∣∣
(0,0)

)m+1

+ O
(

eNf (0,0)N−m−n/2−2
)
.

If g(0, 0) = 0, with ∂g
∂x

∣∣∣
(0,0)

= 0 and ∂g
∂z

∣∣∣
(0,0)

= 0, then we have:

Ig(N) =


Tr

(
− ∂2g

∂z2

∣∣∣
(0,0)

(
∂2f
∂z2

∣∣∣
(0,0)

)−1
)

m! (2π)n/2

2

√∣∣∣∣det
(
∂2f
∂z2

∣∣∣
(0,0)

)∣∣∣∣ (− ∂f
∂x

∣∣
(0,0)

)m+1

 eNf (0,0))N−m−n/2−2

+ O
(

eNf (0,0))N−m−n/2−3
)
. 26 / 27



Asymptotics for Bayesian integrals (2’)

Corollary (boundary max): Assume that f admits a unique maximum on D
at (x , z) = (0, 0), with ∂2f

∂z2

∣∣∣
(0,0)

negative definite and ∂f
∂x

∣∣
(0,0)

< 0. Then, we

have the following asymptotic for any analytic function g(x , z):

Mg(N) ,

∫
x∈(0,1)

∫
z∈(−1,1)n xmg(x , z) exp (Nf (x , z)) dx dz∫

x∈(0,1)

∫
z∈(−1,1)n xm exp (Nf (x , z)) dx dz

= g(0, 0)+O(N−1)

We have also:

Vg(N) ,

∫
x∈(0,1)

∫
z∈(−1,1)n xm

(
g(x , z)−Mg(N)

)2
exp (Nf (x , z)) dx dz∫

x∈(0,1)

∫
z∈(−1,1)n xm exp (Nf (x , z)) dx dz

=

Tr

(
− ∂2g

∂z2

∣∣∣
(0,0)

(
∂2f
∂z2

∣∣∣
(0,0)

)−1
)

2N
+ O

(
N−2).
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