

Quantum tomography based on quantum trajectories

Quantum Control Theory: Mathematical Aspects and Physical Applications TUM-IAS, Garching, April 3-5, 2017

Pierre Rouchon Centre Automatique et Systèmes, Mines ParisTech, PSL Research University Quantic Research Team, Inria

Quantum tomography versus quantum filtering

Likelihood function calculations via adjoint states Discrete time case Continuous time case

MaxLike estimations with experimental data

Process tomography for QND measurement of photons State tomography of a quantum Maxwell demon

Fisher information and low-rank MaxLike estimates

Appendix: asymptotics for multi-dimension Laplace integrals and boundary corrections

Quantum state tomography based on POVM, $\sum_{i} \pi_{j} = I$

- ► Tomography of ρ via *N* independent measurements *Y* associated to POVM: probability Tr $(\rho \pi_j)$ of each measurement outcome *j* given by π_j ; for N_j the number of *j* outcomes, $Y \equiv (N_j)$ with $\sum_j N_j = N$, the number of measurements.
- Several estimation methods:

 $\begin{array}{l} \mbox{MaxEnt: } \rho_{ME} \mbox{ maximizes} - \mbox{Tr} \left(\rho \log(\rho)\right) \mbox{ under the constraints } \\ |\mbox{Tr} \left(\rho\pi_{j}\right) - N_{j}/N| \leq \epsilon \mbox{ (Bužek et al, Ann. Phys. 1996).} \\ \mbox{Compress Sensing: } \rho_{CS} \mbox{ minimizes Tr} \left(\rho\right) \mbox{ under the constraints } \\ |\mbox{Tr} \left(\rho\pi_{j}\right) - N_{j}/N| \leq \epsilon \mbox{ (Gross et al PRL2010)} \\ \mbox{MaxLike: } \rho_{ML} \mbox{ maximizes the likelihood function, } \\ \rho \mapsto \mathbb{P}(\mathbf{Y} \mid \rho) = \prod_{j} \left(\mbox{Tr} \left(\rho\pi_{j}\right) \right)^{N_{j}} \mbox{ (see, e.g., Lvovsky/Raymer RMP 2009)} \\ \mbox{Bayesian Mean: } \rho_{BM} \propto \int \rho \mathbb{P}(\mathbf{Y} \mid \rho) \mathbb{P}_{0}(\rho) d\rho \mbox{ where } \mathbb{P}_{0} \mbox{ is some prior distribution } \mathbb{P}_{0}(\rho) d\rho \mbox{ (see, e.g., Blume-Kohout NJP2010).} \\ \mbox{Low rank, high dimensional systems: see, e.g, PhD thesis "Efficient and Robust Methods for Quantum Tomography" of \\ \end{array}$

Charles Heber Baldwin, University of New Mexico, December 2016. Quantum filtering / tomography with quantum trajectories $\mathbf{Y} = \left(\mathbf{y}_t^{(n)}
ight)$

Filtering: estimation of the quantum state ρ_t at time t > 0 from the measurement trajectory $[0, t] \ni \tau \mapsto y_{\tau}$ and the initial state ρ_0 ; see Belavkin semilar contributions (links with Monte-Carlo quantum-trajectories).

State tomography: estimation of the initial state $\rho_0 = \rho$ from a collection of *N* measurement trajectories: $\mathbf{Y} = (\mathbf{y}_t^{(n)})$ with $n \in \{1, ..., N\}$ and $t \in [0, T]$.

Process tomography: estimation of a parameter **p** from a known initial state ρ and a collection of *N* measurement trajectories **Y**.

This talk: MaxLike estimation with decoherence and measurement imperfections (PhD thesis of Pierre Six, November 2016):

- 1. How to compute the likelihood function $\mathbb{P}(Y/\rho, p)$ and its gradient from the stochastic master equation governing filtering (P. Six et al. PRA 2016).
- For state estimation: variance computation based on asymptotic expansions of Laplace integrals for low rank MaxLike estimates (P. Six /PR, chapter in Lecture Notes in Control and Information Sciences no 473, April 2017).

Log-likelihood function $f(p) = \log (\mathbb{P}(Y | p))$ admits a unique maximum at p_{ML} ($\nabla f(p_{ML}) = 0$) with a negative definite Hessian ($\nabla^2 f(p_{ML}) < 0$).

f coming from *N* independent realisations: $f(p) \equiv N\overline{f}(p)$ with asymptotics for $N \mapsto +\infty$ of the Laplace integrals connecting

Bayesian Mean p_{BM} and MaxLike estimation p_{ML}:

$$p_{BM} = rac{\int p \; e^{N ar{f}(p)} \mathbb{P}_0(p) dp}{\int e^{N ar{f}(p)} \mathbb{P}_0(p) dp} = p_{ML} + O(1/N).$$

with any smooth prior distribution $\mathbb{P}_0(p)dp$

▶ Bayesian variance and Fisher information $\overline{F}_{ML} = -\nabla^2 \overline{f}(p_{ML})$:

$$\frac{\int \|\boldsymbol{p} - \boldsymbol{p}_{ML}\|^2 \ \boldsymbol{e}^{N\bar{f}(\boldsymbol{p})} \mathbb{P}_0(\boldsymbol{p}) d\boldsymbol{p}}{\int \boldsymbol{e}^{N\bar{f}(\boldsymbol{p})} \mathbb{P}_0(\boldsymbol{p}) d\boldsymbol{p}} = \operatorname{Tr}\left(\left(\overline{F}_{ML}\right)^{-1}\right) / (2N) + O(1/N^2).$$

Confidence intervals based on $-\nabla^2 f(p_{ML})$.

Quantum tomography versus quantum filtering

Likelihood function calculations via adjoint states Discrete time case Continuous time case

MaxLike estimations with experimental data

Process tomography for QND measurement of photons State tomography of a quantum Maxwell demon

Fisher information and low-rank MaxLike estimates

Appendix: asymptotics for multi-dimension Laplace integrals and boundary corrections

Four features¹:

- 1. Bayes law: $\mathbb{P}(\mu'/\mu) = \mathbb{P}(\mu/\mu')\mathbb{P}(\mu') / (\sum_{\nu'} \mathbb{P}(\mu/\nu')\mathbb{P}(\nu')),$
- 2. Schrödinger equations defining unitary transformations.
- 3. Randomness, irreversibility and dissipation induced by the measurement of observables with degenerate spectra.
- 4. Entanglement and tensor product for composite systems.

\Rightarrow Discrete-time models

Take a set of operators \mathbf{M}_{μ} satisfying $\sum_{\mu} \mathbf{M}_{\mu}^{\dagger} \mathbf{M}_{\mu} = \mathbf{I}$ and a left stochastic matrices $(\eta_{\mathbf{y}_{t,\mu}})$. Consider the following Markov process of state ρ (density op.) and measured output \mathbf{y} :

$$\rho_{t+1} = \frac{K_{y_t}(\rho_t)}{\operatorname{Tr}(K_{y_t}(\rho_t))}, \text{ with proba. } \mathbb{P}_{y_t}(\rho_t) = \operatorname{Tr}(K_{y_t}(\rho_t))$$

with $\mathbf{K}_{\mathbf{y}}(\rho) = \sum_{\mu=1}^{m} \eta_{\mathbf{y},\mu} \mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger}$. It is associated to the Kraus map (ensemble average, quantum channel)

$$\mathbb{E}\left(\rho_{t+1}|\rho_{t}\right) = \boldsymbol{K}(\rho_{t}) = \sum_{\boldsymbol{y}} \boldsymbol{K}_{\boldsymbol{y}}(\rho_{t}) = \sum_{\mu} \boldsymbol{M}_{\mu} \rho_{t} \boldsymbol{M}_{\mu}^{\dagger}.$$

¹See the book of S. Haroche and J.M. Raimond.

Computation of the likelihood function via the adjoint state (1)

Denote by P_n(ρ, p) the probability of getting measurement trajectory n, (y_t⁽ⁿ⁾)_{t=0,...,T}, knowing the initial state ρ₀⁽ⁿ⁾ = ρ and parameter p.

• Since
$$\rho_{t+1}^{(n)} = \frac{\boldsymbol{\kappa}_{\boldsymbol{y}_t^{(n)}}^{\mathsf{p}}(\rho_t^{(n)})}{\operatorname{Tr}\left(\boldsymbol{\kappa}_{\boldsymbol{y}_t^{(n)}}^{\mathsf{p}}(\rho_t^{(n)})\right)}$$
 with $\operatorname{Tr}\left(\boldsymbol{\kappa}_{\boldsymbol{y}_t^{(n)}}^{\mathsf{p}}(\rho_t^{(n)})\right)$ the

probability of having detected $y_t^{(n)}$ knowing $\rho_t^{(n)}$ and **p**, a direct use of Bayes law yields

$$\mathbb{P}_{n}(\boldsymbol{\rho},\boldsymbol{p}) = \prod_{t=0}^{T} \operatorname{Tr}\left(\boldsymbol{K}_{\boldsymbol{y}_{t}^{(n)}}^{\boldsymbol{p}}\left(\boldsymbol{\rho}_{t}^{(n)}\right)\right) = \operatorname{Tr}\left(\boldsymbol{K}_{\boldsymbol{y}_{t}^{(n)}}^{\boldsymbol{p}}\circ\ldots\circ\boldsymbol{K}_{\boldsymbol{y}_{0}^{(n)}}^{\boldsymbol{p}}\left(\boldsymbol{\rho}\right)\right).$$

Computation of the likelihood function via the adjoint state (2)

Normalized adjoint quantum filter²
$$E_t^{(n)} = \frac{\kappa_{y_t^{(n)}}^{p*}(E_{t+1}^{(n)})}{\text{Tr}\left(\kappa_{y_t^{(n)}}^{p*}(E_{t+1}^{(n)})\right)}$$
 with

$$E_{T+1}^{(n)} = \mathbf{I}/\operatorname{Tr}(\mathbf{I}), \text{ we get}$$
$$\mathbb{P}_n(\boldsymbol{\rho}, \mathbf{p}) = \prod_{t=T}^0 \operatorname{Tr}\left(\mathbf{K}_{\mathbf{y}_t^{(n)}}^{\mathbf{p}*}\left(E_{t+1}^{(n)}\right)\right) \operatorname{Tr}\left(\boldsymbol{\rho} E_0^{(n)}\right) \triangleq g_n(\mathbf{Y}, \mathbf{p}) \operatorname{Tr}\left(\boldsymbol{\rho} E_0^{(n)}\right).$$

A simple expression of the gradients:

$$\nabla \boldsymbol{\rho} \log \mathbb{P}_{n} = \frac{\boldsymbol{E}_{0}^{(n)}}{\operatorname{Tr}\left(\boldsymbol{\rho}\boldsymbol{E}_{0}^{(n)}\right)}, \quad \nabla_{\mathbf{p}} \log \mathbb{P}_{n} \cdot \delta \mathbf{p} = \sum_{t=0}^{T} \frac{\operatorname{Tr}\left(\boldsymbol{E}_{t+1}^{(n)} \nabla_{\mathbf{p}} \boldsymbol{K}_{\boldsymbol{y}_{t}^{(n)}}^{\mathbf{p}}\left(\boldsymbol{\rho}_{t}^{(n)}\right) \cdot \delta \mathbf{p}\right)}{\operatorname{Tr}\left(\boldsymbol{E}_{t+1}^{(n)} \boldsymbol{K}_{\boldsymbol{y}_{t}^{(n)}}^{\mathbf{p}}\left(\boldsymbol{\rho}_{t}^{(n)}\right)\right)},$$

²M. Tsang. Time-symmetric quantum theory of smoothing. PRL 2009.

MaxLike tomography based on N trajectories data $\mathbf{Y} = (\mathbf{y}_t^{(n)})$

From
$$\mathbb{P}_{n}(\boldsymbol{\rho}, \mathbf{p}) = g_{n}(\mathbf{Y}, \mathbf{p}) \operatorname{Tr}\left(\boldsymbol{\rho} E_{0}^{(n)}\right)$$
 we have
 $\mathbb{P}(\boldsymbol{\rho}, \mathbf{p}) \triangleq \prod_{n=1}^{N} \mathbb{P}_{n}(\boldsymbol{\rho}, \mathbf{p}) = \left(\prod_{n=1}^{N} g_{n}(\mathbf{Y}, \mathbf{p})\right) \left(\prod_{n=1}^{N} \operatorname{Tr}\left(\boldsymbol{\rho} E_{0}^{(n)}\right)\right).$

MaxLike state tomography: p is known and ρ_{ML} maximizes

$$\boldsymbol{\rho}\mapsto \sum_{n=1}^{N}\log\left(\ \mathrm{Tr}\left(\boldsymbol{\rho}\boldsymbol{E}_{0}^{\left(n\right)}\right)\right)$$

a concave function on the convex set of density operators ρ : a well structured convex optimization problem.

MaxLike process tomography: ρ is known and p_{ML} maximizes p → f(p) = log P(ρ, p) those gradient is given by

$$abla_{\mathbf{p}} f(\mathbf{p}) \cdot \delta \mathbf{p} = \sum_{n=1}^{N} \sum_{t=0}^{T} \frac{\operatorname{Tr} \left(E_{t+1}^{(n)} \nabla_{\mathbf{p}} \mathbf{K}_{\mathbf{y}_{t}^{(n)}}^{\mathbf{p}} \left(\rho_{t}^{(n)} \right) \cdot \delta \mathbf{p} \right)}{\operatorname{Tr} \left(E_{t+1}^{(n)} \mathbf{K}_{\mathbf{y}_{t}^{(n)}}^{\mathbf{p}} \left(\rho_{t}^{(n)} \right) \right)},$$

The Hessian $\nabla_{\mathbf{p}}^2 f$ can be computed similarly (Fisher information).

Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains $\rho_{t+1} = \frac{\mathbf{K}_{y_t}(\rho_t)}{\text{Tr}(\mathbf{K}_{y_t}(\rho_t))}$, with $\mathbf{K}_{y_t}(\rho_t) = \sum_{\mu=1}^m \eta_{y_{t,\mu}} \mathbf{M}_{\mu} \rho_t \mathbf{M}_{\mu}^{\dagger}$, and proba. $\mathbb{P}_{y_t}(\rho_t) = \text{Tr}(\mathbf{K}_{y_t}(\rho_t))$. Ensemble averages correspond to Kraus linear maps

$$\mathbb{E}\left(\rho_{t+1}|\rho_{t}\right) = \boldsymbol{K}(\rho_{t}) = \sum_{\boldsymbol{y}} \boldsymbol{K}_{\boldsymbol{y}}(\rho_{t}) = \sum_{\mu} \boldsymbol{M}_{\mu}\rho_{t}\boldsymbol{M}_{\mu}^{\dagger} \quad \text{with} \quad \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger}\boldsymbol{M}_{\mu} = \boldsymbol{I}$$

Continuous-time models: stochastic differential systems (see, e.g., Barchielli/Gregoratti, 2009)

$$d\rho_{t} = \left(-\frac{i}{\hbar}[\boldsymbol{H},\rho_{t}] + \sum_{\nu} \boldsymbol{L}_{\nu}\rho_{t}\boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\rho_{t} + \rho_{t}\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu})\right)dt \\ + \sum_{\nu}\sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu}\rho_{t} + \rho_{t}\boldsymbol{L}_{\nu}^{\dagger} - \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\rho_{t}\right)\rho_{t}\right)dW_{\nu,t}$$

driven by Wiener processes $dW_{\nu,t}$, with measurements $dy_{\nu,t}$, $dy_{\nu,t} = \sqrt{\eta_{\nu}} \operatorname{Tr} \left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger}) \rho_{t} \right) dt + dW_{\nu,t}$, detection efficiencies $\eta_{\nu} \in [0, 1]$ and Lindblad-Kossakowski master equations $(\eta_{\nu} \equiv 0)$: $\frac{d}{dt}\rho = -\frac{i}{\hbar}[\boldsymbol{H}, \rho] + \sum_{\nu} \boldsymbol{L}_{\nu}\rho \boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\rho + \rho \boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu})$

The Belavkin quantum filter

$$d\rho_{t} = \left(-\frac{i}{\hbar}[\boldsymbol{H},\rho_{t}] + \sum_{\nu} \boldsymbol{L}_{\nu}\rho_{t}\boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\rho_{t} + \rho_{t}\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu})\right)dt + \sum_{\nu}\sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu}\rho_{t} + \rho_{t}\boldsymbol{L}_{\nu}^{\dagger} - \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\rho_{t}\right)\rho_{t}\right)d\boldsymbol{W}_{\nu,t}$$

with
$$dW_{\nu,t} = dy_{\nu,t} - \sqrt{\eta_{\nu}} \operatorname{Tr}\left((L_{\nu} + L_{\nu}^{\dagger})\rho_{t}\right) dt$$
 given by the

measurement signal $dy_{\nu,t}$, is always a stable filtering process.³ Using Itō rules, it can be written as a "discrete-time" Markov model⁴

 $\rho_{t+dt} = \boldsymbol{K}_{dy_t}(\rho_t) / \operatorname{Tr}(\boldsymbol{K}_{dy_t}(\rho_t))$

with partial Kraus maps $\mathbf{K}_{dy_t}(\rho_t) = \mathbf{M}_{dy_t}\rho_t \mathbf{M}_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) \mathbf{L}_{\nu}\rho_t \mathbf{L}_{\nu}^{\dagger} dt$

$$\boldsymbol{M}_{\boldsymbol{dy}_{t}} = \boldsymbol{I} + \left(-\frac{i}{\hbar}\boldsymbol{H} - \frac{1}{2}\left(\sum_{\nu}\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\right)\right)\boldsymbol{dt} + \sum_{\nu}\sqrt{\eta_{\nu}}\boldsymbol{dy}_{\nu,t}\boldsymbol{L}$$
where the probability of outcome $\boldsymbol{dy}_{t} = (\boldsymbol{dy}_{\nu,t})$ reads:

 $\frac{\mathbb{P}\left(\frac{dy_{t}}{(\frac{p_{t}}{2})} \in \prod_{\nu} [\xi_{\nu}, \xi_{\nu} + d\xi_{\nu}] / \rho_{t}\right)}{^{3}\text{H. Amini et al., Russian J. of Math. Physics, 2014, 21, 297-315.} = \operatorname{Tr}\left(\mathbf{K}_{\xi}(\rho_{t})\right) \prod_{\nu} e^{-\xi_{\nu}^{2}/2dt} \frac{d\xi_{\nu}}{\sqrt{2\pi dt}}$ $^{4}\text{PR, J. Ralph PRA2015; see also PhD thesis of Ph. Campagne-Ibracq}$ (2015) and of P. Six (2016).

Quantum tomography versus quantum filtering

Likelihood function calculations via adjoint states Discrete time case Continuous time case

MaxLike estimations with experimental data Process tomography for QND measurement of photons State tomography of a quantum Maxwell demon

Fisher information and low-rank MaxLike estimates

Appendix: asymptotics for multi-dimension Laplace integrals and boundary corrections

QND measurement of photons

► The probability $\mathbb{P}(y \mid \phi_R, n)$ to get $y \in \{g, e\}$ knowing the Ramsey angle ϕ_R and the number of photon(s) $n \in \{0, 1, 2, ...\}$:

 $\mathbb{P}(y \mid \phi_R, n) = 1 + \epsilon_y \left(A + \frac{B_c(n)}{\cos \phi_R} + \frac{B_s(n)}{\sin \phi_R} \right) \text{ with } \epsilon_{e/g} = \pm 1.$

depends on the parameters $\mathbf{p} = (B_c(n), B_s(n))_{n \in \{0,1,\ldots,\}}$.

The Kraus maps K^p_y based on known cavity decay and thermal photons.

MaxLike estimation of 32 parameters **p** based on N = 8000trajectories of T = 6000 outcome measurements.

⁵T. Rybarczyk, B. Peaudecerf, M. Penasa, S. Gerlich, B. Julsgaard, K. Mølmer, S. Gleyzes, M. Brune, J. M. Raimond, S. Haroche, and I. Dotsenko. Forward-backward analysis of the photon-number evolution in a cavity. PRA 2015.

A quantum Maxwell demon experiment arXiv:1702.01917v1

(a) After preparation in a thermal or quantum state the system S (superconducting qubit) state is recorded into the demon's quantum memory D (microwave cavity) via a pulse that populates the cavity mode only if the qubit is in the ground state. This information is used to extract work which charges a battery with one extra photon: system S emits this photon only when the demon's cavity is empty. The memory reset is performed by cavity relaxation.

(b) When the system starts in a quantum superposition of the demon and system are entangled after the record step.

Tomography of the demon after the work extraction step

Computations are based on a truncation to 20 photons How to define the confidence intervals for low rank ρ_{ML} ?

Quantum tomography versus quantum filtering

Likelihood function calculations via adjoint states Discrete time case Continuous time case

MaxLike estimations with experimental data

Process tomography for QND measurement of photons State tomography of a quantum Maxwell demon

Fisher information and low-rank MaxLike estimates

Appendix: asymptotics for multi-dimension Laplace integrals and boundary corrections

 To bypass boundary problem, consider Bayesian estimate instead of MaxLike ones

$$\rho_{BM} = \frac{\int \rho \mathbb{P}(\mathbf{Y} \mid \rho) \mathbb{P}_{0}(\rho) d\rho}{\int \mathbb{P}(\mathbf{Y} \mid \rho) \mathbb{P}_{0}(\rho) d\rho}$$

with some prior distribution $\mathbb{P}_0(\rho) d\rho$.

▶ When the likelihood $\exp(f(\rho)) \equiv \mathbb{P}(\mathbf{Y} \mid \rho)$ is concentrated $(f = N\overline{f}$ with $N \gg 1$) around its maximum ρ_{ML} that lies on the boundary (ρ_{ML} not full rank), how to compute the first terms of an asymptotic expansion versus N of

$$\int \operatorname{Tr}(\rho A)^{r} \exp(N\overline{f}(\rho)) \mathbb{P}_{0}(\rho) d\rho$$

for any operator *A* and exponent *r* and for some prior distribution $\mathbb{P}_0(\rho)d\rho$ (e.g., Gausssian unitary ensemble).

Since all functions are analytic such an asymptotic expansion versus *N* always exists: Integration by parts, Watson's lemma, Laplace's method, stationary phase, steepest descents, Hironaka's resolution of singularities ⁶, "singular learning" ⁷

⁶An important reference: V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko. Singularities of Differentiable Maps, Vol. II. Birkhäuser, Boston, 1985

⁷S. Watanabe: Algebraic Geometry and Statistical Learning Theory, Cambridge University Press, 2009.

Assume that ρ_{ML} is an argument of the maximum of

$$f: \mathcal{D} \ni \rho \mapsto \sum_{\mu \in \mathcal{M}} \log \left(\operatorname{Tr} \left(\rho E^{(\mu)} \right) \right) \in [-\infty, \mathbf{0}]$$

over \mathcal{D} (the set of density operators, $E^{(\mu)} \in \mathcal{D}$.). Then necessarily, ρ_{ML} satisfies the following conditions:

• Tr
$$(\rho_{ML} E^{(\mu)}) > 0$$
 for each $\mu \in \mathcal{M}$;

•
$$\left[\rho_{ML}, \nabla f|_{\rho_{ML}}\right] = 0$$
, where $\nabla f|_{\rho_{ML}} = \sum_{\mu \in \mathcal{M}} \frac{E^{(\mu)}}{\text{Tr}(\rho_{ML}E^{(\mu)})}$ is the gradient of *f* at ρ_{ML} for the Frobenius scalar product;

► there exists $\lambda_{ML} > 0$ such that $\lambda_{ML}P_{ML} = P_{ML} \nabla f|_{\rho_{ML}}$ and $\nabla f|_{\rho_{ML}} \leq \lambda_{ML}I$, where P_{ML} is the orthogonal projector on the range of ρ_{ML} and *I* is the identity operator.

These conditions are also sufficient and characterize the unique maximum when, additionally, the vector space spanned by the $E^{(\mu)}$'s coincides with the set of Hermitian matrices.

Geometric asymptotic expansions of Bayesian mean and variance

For any Hermitian operator A, its Bayesian mean and variance read:

$$I_{A}(N) = \frac{\int_{\mathcal{D}} \operatorname{Tr}(\rho A) e^{Nf(\rho)} \mathbb{P}_{0}(\rho) d\rho}{\int_{\mathcal{D}} e^{Nf(\rho)} \mathbb{P}_{0}(\rho) d\rho}, \quad V_{A}(N) = \frac{\int_{\mathcal{D}} \left(\operatorname{Tr}(\rho A) - I_{A}(N) \right)^{2} e^{Nf(\rho)} \mathbb{P}_{0}(\rho) d\rho}{\int_{\mathcal{D}} e^{Nf(\rho)} \mathbb{P}_{0}(\rho) d\rho}$$

Denote by ρ_{ML} the unique maximum of f on \mathcal{D} and by P_{ML} the orthogonal projector on its range. In addition to the necessary and sufficient geometric conditions above, assume that ker $\left(\lambda_{ML}I - \nabla f|_{\rho_{ML}}\right) = \text{ker}(I - P_{ML})$.

 $I_{A}(N) = \operatorname{Tr}(A_{\rho_{ML}}) + O(1/N), \quad V_{A}(N) = \operatorname{Tr}\left(A_{\parallel} (F_{ML})^{-1}(A_{\parallel})\right) / N + O(1/N^{2})$

where B_{\parallel} is an orthogonal projection

$$B_{\parallel}=B-rac{{\operatorname{Tr}}\left(BP_{ML}
ight)}{{\operatorname{Tr}}\left(P_{ML}
ight)}P_{ML}-(I-P_{ML})B(I-P_{ML});$$

and where F_{ML} is a linear super-operator, corresponds to the Hessian at ρ_{ML} of some restriction of *f* and generalizes the Fisher information matrix:

$$\boldsymbol{F}_{\boldsymbol{ML}}(\boldsymbol{X}) = \sum_{\mu} \frac{\operatorname{Tr}\left(\boldsymbol{X}\boldsymbol{E}_{\parallel}^{(\mu)}\right)}{\operatorname{Tr}^{2}\left(\rho_{\boldsymbol{ML}}\boldsymbol{E}^{(\mu)}\right)} \boldsymbol{E}_{\parallel}^{(\mu)} + \left(\lambda_{\boldsymbol{ML}}\boldsymbol{I} - \nabla \boldsymbol{f}\right|_{\rho_{\boldsymbol{ML}}}\right) \boldsymbol{X}\rho_{\boldsymbol{ML}}^{+} + \rho_{\boldsymbol{ML}}^{+} \boldsymbol{X}\left(\lambda_{\boldsymbol{ML}}\boldsymbol{I} - \nabla \boldsymbol{f}\right|_{\rho_{\boldsymbol{ML}}}\right)$$

with ρ_{ML}^+ the Moore-Penrose pseudo-inverse of ρ_{ML} .

- Low-rank approximations and efficient numerical schemes for computations of ρ_{ML}, the adjoint states E⁽ⁿ⁾, ...
- ► Asymptotics when the log-likelihood function is not strongly concave, when ker $(\lambda_{ML}I \nabla f|_{\rho_{ML}}) \neq \text{ker}(I P_{ML}) \dots$
- Process tomography: log-likelihood function not concave ...
- Parameter estimation along quantum trajectories (in real-time)
- Thematic quarter at Institut Henri Poincaré in Paris next Spring 2018 gathering experimental physicists and theoreticians.

April 16th to July 13th, 2018

Organized by:

Etienne Brion, Université Paris-Sud, ENS Paris-Saclay, CNRS Eleni Diamanti, Université Pierre et Marie Curie & CNRS Alexei Ourjoumtsev, Collège de France & CNRS Pierre Rouchon, Mines ParisTech & Inria

11 rue Pierre et Marie Curie 75231 Paris Cedex os France

CARMIN

Measurement and control of quantum systems: theory and experiments

CIRM Pre-school at Marseille Modeling and control of open quantum systems April 16th- 20th 2018

Observability and estimation in quantum dynamics May 15th to 17th, 2018

Quantum control and feedback: foundations and applications June 5^{th} to 7^{th} , 2018

PRACQSYS 2018: Principles and Applications of Control in Quantum Systems July 2nd to 6th, 2018

Program coordinated by the Centre Emile Borel at IHP Participation of Postdocs and PhD Students is strongly encouraged Scientific program at: https://sites.google.com/view/mcqs2o18/home

Registration is free however mandatory at : www.lhp.fr Deadline for financial support : September 15th, 2017 Contact : mcqs2018@ihp.fr

Sylvie Lhermitte : CEB Manager

Theorem (interior max) $\mathcal{I}_g(N) = \int_{z \in (-1,1)^n} g(z) \exp(Nf(z)) dz$ with *f* and *g* analytic functions of *z* on a compact neighbourhood of $\overline{\mathcal{D}}$, the closure of \mathcal{D} . Assume that *f* admits a unique maximum on $\overline{\mathcal{D}}$ at z = 0 with $\frac{\partial^2 f}{\partial z^2} \Big|_0$ negative definite.

If $g(0) \neq 0$, we have the following dominant term in the asymptotic expansion of $\mathcal{I}_g(N)$ for large *N*:

$$\begin{split} \mathcal{I}_{g}(N) &= \left(\frac{g(0) \ (2\pi)^{n/2} \ e^{Nf(0)} N^{-n/2}}{\sqrt{\left|\det\left(\frac{\partial^{2}f}{\partial z^{2}}\right|_{0}\right)\right|}} \right) + O\left(e^{Nf(0)} N^{-n/2-1}\right). \end{split}$$

If $g(0) &= 0$, with $\left. \frac{\partial g}{\partial z} \right|_{0} = 0$, then we have:
$$\mathcal{I}_{g}(N) &= \left(\frac{\operatorname{Tr}\left(-\frac{\partial^{2}g}{\partial z^{2}}\right|_{0} \left(\frac{\partial^{2}f}{\partial z^{2}}\right|_{0}\right)^{-1}\right) (2\pi)^{n/2}}{2 \sqrt{\left|\det\left(\frac{\partial^{2}f}{\partial z^{2}}\right|_{0}\right)\right|}} \right) e^{Nf(0)} N^{-n/2-1} + O\left(e^{Nf(0)} N^{-n/2-2}\right). \end{split}$$

Corollary (interior max): Assume that *f* admits a unique maximum on \overline{D} at z = 0 with $\frac{\partial^2 f}{\partial z^2}\Big|_0$ negative definite. Then we have the following asymptotic for any analytic function g(z):

$$\mathcal{M}_g(N) \triangleq \frac{\int_{z \in (-1,1)^n} g(z) \exp\left(Nf(z)\right) \mathrm{d}z}{\int_{z \in (-1,1)^n} \exp\left(Nf(z)\right) \mathrm{d}z} = g(0) + O(N^{-1})$$

We have also:

$$\mathcal{V}_{g}(N) \triangleq \frac{\int_{z \in (-1,1)^{n}} \left(g(z) - \mathcal{M}_{g}(N)\right)^{2} \exp\left(Nf(z)\right) \, \mathrm{d}z}{\int_{z \in (-1,1)^{n}} \exp\left(Nf(z)\right) \, \mathrm{d}z} = \frac{\mathrm{Tr}\left(-\frac{\partial^{2}g}{\partial z^{2}}\Big|_{0} \left(\frac{\partial^{2}f}{\partial z^{2}}\Big|_{0}\right)^{-1}\right)}{2N} + O(N^{-2}).$$

Theorem (boundary max):

 $\mathcal{I}_{g}(\mathbf{N}) = \int_{x \in (0,1)} \int_{z \in (-1,1)^{n}} x^{m} g(x, z) \exp(Nf(x, z)) dx dz \text{ with } f \text{ and } g$ analytic functions of (x, z) on a compact neighbourhood of $\overline{\mathcal{D}}$, the closure of \mathcal{D} . Assume that f admits a unique maximum on $\overline{\mathcal{D}}$ at (x, z) = (0, 0), with $\frac{\partial^{2} f}{\partial z^{2}}\Big|_{(0,0)}$ negative definite and $\frac{\partial f}{\partial x}\Big|_{(0,0)} < 0$. If $g(0,0) \neq 0$, we have the following dominant term in the asymptotic expansion of $\mathcal{I}_{g}(N)$ for large N:

$$\begin{aligned} \mathcal{I}_{g}(N) &= \left(\frac{g(0,0) \ m! \ (2\pi)^{n/2} \ e^{Nf(0,0)} N^{-m-n/2-1}}{\sqrt{\left|\det\left(\frac{\partial^{2}f}{\partial z^{2}}\Big|_{(0,0)}\right)\right|} \ \left(-\frac{\partial f}{\partial x}\Big|_{(0,0)}\right)^{m+1}} \right) + O\left(e^{Nf(0,0)} N^{-m-n/2-2}\right). \end{aligned}$$
If $g(0,0) &= 0$, with $\frac{\partial g}{\partial x}\Big|_{(0,0)} = 0$ and $\frac{\partial g}{\partial z}\Big|_{(0,0)} = 0$, then we have:

$$\mathcal{I}_{g}(N) &= \left(\frac{\operatorname{Tr}\left(-\frac{\partial^{2}g}{\partial z^{2}}\Big|_{(0,0)} \left(\frac{\partial^{2}f}{\partial z^{2}}\Big|_{(0,0)}\right)^{-1}\right) \ m! \ (2\pi)^{n/2}}{2\sqrt{\left|\det\left(\frac{\partial^{2}f}{\partial z^{2}}\Big|_{(0,0)}\right)\right|} \ \left(-\frac{\partial f}{\partial x}\Big|_{(0,0)}\right)^{m+1}}\right) e^{Nf(0,0)} N^{-m-n/2-2}} + O\left(e^{Nf(0,0)} N^{-m-n/2-3}\right). \end{aligned}$$

Corollary (boundary max): Assume that *f* admits a unique maximum on \overline{D} at (x, z) = (0, 0), with $\frac{\partial^2 f}{\partial z^2}\Big|_{(0,0)}$ negative definite and $\frac{\partial f}{\partial x}\Big|_{(0,0)} < 0$. Then, we have the following asymptotic for any analytic function g(x, z):

$$\mathcal{M}_{g}(N) \triangleq \frac{\int_{x \in (0,1)} \int_{z \in (-1,1)^{n}} x^{m} g(x,z) \exp\left(Nf(x,z)\right) \, \mathrm{d}x \, \mathrm{d}z}{\int_{x \in (0,1)} \int_{z \in (-1,1)^{n}} x^{m} \exp\left(Nf(x,z)\right) \, \mathrm{d}x \, \mathrm{d}z} = g(0,0) + O(N^{-1})$$

We have also:

$$\mathcal{V}_{g}(N) \triangleq \frac{\int_{x \in (0,1)} \int_{z \in (-1,1)^{n}} x^{m} (g(x,z) - \mathcal{M}_{g}(N))^{2} \exp(Nf(x,z)) \, dx \, dz}{\int_{x \in (0,1)} \int_{z \in (-1,1)^{n}} x^{m} \exp(Nf(x,z)) \, dx \, dz} = \frac{\operatorname{Tr} \left(-\frac{\partial^{2}g}{\partial z^{2}} \Big|_{(0,0)} \left(\frac{\partial^{2}f}{\partial z^{2}} \Big|_{(0,0)} \right)^{-1} \right)}{2N} + O(N^{-2}).$$