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A positivity preserving numerical scheme: diffusive case 1

With a single imperfect measure dyt =
√
η Tr

(
(L + L†) ρt

)
dt + dWt and detection

efficiency η ∈ [0, 1], the quantum state ρt is usually mixed and obeys to

dρt =

(
− i

~ [H, ρt ] + Lρt L† −
1
2

(
L†Lρt + ρt L†L

))
dt

+
√
η

(
Lρt + ρt L† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt (Gaussian law of mean 0 and variance dt).

With Itō rules, it can be written as the following "discrete-time" Markov model

ρt+dt =
Mdyt ρt M

†
dyt

+ (1− η)Lρt L†dt

Tr
(

Mdyt ρt M
†
dyt

+ (1− η)Lρt L†dt
)

with Mdyt = I +
(
− i

~H − 1
2

(
L†L

))
dt +

√
ηdyt L. The probability to detect dyt is

given by the following density

P
(

dyt ∈ [s, s + ds]

)
=

Tr
(

Msρt M
†
s + (1− η)Lρt L†dt

)
√

2π
e−

s2
2dt ds

close to a Gaussian law of variance dt and mean
√
η Tr

(
(L + L†) ρt

)
dt .

1H. Amini, M. Mirrahimi, P.R. IEEE CDC, 2011. P.R., J. Ralph PRA 2015.
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A positivity preserving numerical scheme: diffusive/jump case 2

The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] +

∑
ν

Lνρt L
†
ν −

1
2 (L†νLνρt + ρt L

†
νLν ) + Vµρt V

†
µ −

1
2 (V†

µVµρt + ρt V
†
µVµ)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρt L

†
ν − Tr

(
(Lν + L†ν )ρt

)
ρt

)
dWν,t

+
∑
µ

 θµρt +
∑
µ′ ηµ,µ′Vµρt V

†
µ

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) − ρt


dNµ(t)−

(
θµ +

∑
µ′
ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) )

dt



where ην ∈ [0, 1], θµ, ηµ,µ′ ≥ 0 with ηµ′ =
∑
µ ηµ,µ′ ≤ 1 are parameters modelling measurements

imperfections.

If, for some µ, Nµ(t + dt)− Nµ(t) = 1, we have ρt+dt =
θµρt +

∑
µ′ ηµ,µ′Vµ′ρt V

†
µ′

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) .

When ∀µ, dNµ(t) = 0, we have

ρt+dt =
Mdyt ρt M

†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt

Tr
(

Mdyt ρt M
†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt
)

with Mdyt = I +
(
−iH − 1

2
∑
ν L†νLν + 1

2
∑
µ

(
ηµ Tr

(
Vµρt V

†
µ

)
I − V†

µVµ
))

dt +
∑
ν
√
ηνdyνt Lν and

where dyν,t =
√
ην Tr

(
(Lν + L†ν ) ρt

)
dt + dWν,t .

2
H. Amini, C. Pellegrini, P.R.: Russian Journal of Mathematical Physics, 2014.

P.R:. Proceedings of International Congress of Mathematicians, Seoul 2014 (arXiv:1407.7810).
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The deterministic surface3

The SME (γ1 = 1 here)

dρt =

(
σ-ρσ+ −

σ+σ-ρ+ ρσ+σ-

2

)
dt

+
√
η
2

(
σ-ρ+ ρσ+ − Tr (σxρ) ρ

)
dWI +

√
η
2

(
iσ-ρ− iρσ+ − Tr (σyρ) ρ

)
dWQ

reads with the Bloch coordinates (x , y , z)

dxt = − 1
2 xt dt +

√
η
2

(
(1 + zt − x2

t )dWI − xt yt dWQ

)
dyt = − 1

2 yt dt +
√
η
2

(
− xt yt dWI + (1 + zt − y2

t )dWQ

)
dzt = −(1 + zt ) dt −

√
η
2 (1 + zt )

(
xt dWI + yt dWQ

)
For any realization of starting from the same initial point (x0, y0, z0) we have

1
2

(
x2

t + y2
t
)

+ ct (1 + zt )
2 − (1 + zt ) = 0

where ct = (c0 − η
2 ) et + η

2 remains in [ 1
2 ,+∞) and c0 =

x2
0 +y2

0
2(1+z0)2 + 1

1+z0
.

3Ph. Campagne-Ibarcq et al. PRX 2016.
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The quantum filter is "solvable by elementary quadratures" 4

The solution of

dxt = − 1
2 xt dt +

√
η
2

(
(1 + zt − x2

t )dWI − xt yt dWQ

)
dyt = − 1

2 yt dt +
√
η
2

(
− xt yt dWI + (1 + zt − y2

t )dWQ

)
dzt = −(1 + zt ) dt −

√
η
2 (1 + zt )

(
xt dWI + yt dWQ

)
can be computed from simple integrals of the signals dIt =

√
η
2 xt dt + dWI and

dQt =
√
η
2 yt dt + dWQ . This results from

d
(

x
1+z

)
= 1

2

(
xt

1+zt

)
dt +

√
η
2 dIt , d

(
y

1+z

)
= 1

2

(
yt

1+zt

)
dt +

√
η
2 dQt

This provides a completion of 1
2

(
x2

t + y2
t
)

+ ct (1 + zt )
2 − (1 + zt ) = 0 with

xt
1+zt

= et/2
(

x0
1+z0

+
√
η
2

∫ t

0
e−τ/2dIτ

)
, yt

1+zt
= et/2

(
y0

1+z0
+
√
η
2

∫ t

0
e−τ/2dQτ

)
.

Related to Picard-Vessiot and Liouvillian extensions of differential fields: the solution of
the quantum filter is an algebraic function of some integrals and exponentials of integral
of its two inputs It andQt .

4Ph. Campagne-Ibarcq et al. PRX 2016.
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The second case where the qubit is confined to a deterministic surface5

Superconducting qubit
dispersively coupled to
a cavity traversed by a
microwave signal (in-
put/output theory). The
back-action on the qubit
state of a single measure-
ment of both output field
quadratures It and Qt is
described by a simple
SME for the qubit density
operator. (M. Hatridge et
al.: Science, 2013).

dρt =
(
γ(σzρσz − ρt )

)
dt +

√
ηγ
2

(
σzρt + ρtσz − 2 Tr (σzρt ) ρt

)
dWI + i

√
ηγ
2 [σz , ρt ]dWQ

with dIt =
√
ηγ
2 Tr (2σzρt ) dt + dWI and dQt = dWQ , where γ ≥ 0 is related to the

measurement strength and η ∈ [0, 1] is the detection efficiency.
The deterministic surface is given here by another ellipsoid of revolution axis z:

x2
t + y2

t + bt (z2
t − 1) = 0 where bt = b0 e−2(1−η)t and b0 =

x2
0 + y2

0

1− z2
0
.

5A. Sarlette, P.R.: preprint 2016 (arXiv:1603.05402).
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There are only two cases where the qubit is confined on an evolving surface

σz case σ- case
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Theorem [A. Sarlette, P.R.: arXiv:1603.05402] For any initial state ρ0, the qubit state
ρt , solution of the SME (ην ∈ (0, 1))

dρt =

(∑
ν

Lνρt L†ν − 1
2 (L†νLνρt + ρt L†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρt L†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t ,

is restricted to a deterministically evolving 2-dimensional manifold if, and only if,
I either exist βν , αν ∈ C and U ∈ U(2) such that Lν = βν Vσz V † + αν , ∀ν
I or exist βν ∈ C and V ∈ U(2) such that Lν = βν Vσ-V †, ∀ν.
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Sketch of the proof (1)

Stroock-Varadhan theorem6

Consider a stochastic differential equation

dxt = F (xt ) dt +
m∑

j=1

Gj (x) ◦ dW j
t ,

with xt ∈ RN the state, dW 1
t , dW 2

t , ..., dW m
t independent Wiener processes, x0 fixed

and the dynamics to be understood in the Stratonovitch sense (we therefore put the ◦
symbol).
The support of the distribution of xt can be described as the closure, for the natural
Banach topology on C([0, 1],RN ), of the set of solutions of the following controlled
system:

dx̃t = F (x̃t ) dt +
m∑

j=1

Gj (x̃) duj
t ,

with x̃0 = x0, for all possible control signals u1
t , u

2
t , ..., u

m
t in H1([0, 1],Rm).

6D.W. Stroock and S.R.S. Varadhan, "On the support of diffusion processes with
applications to the strong maximum principle", Proc. 6th Berkeley Symp. Mathematical
Statistics and Probability vol.3, pp.333-359, 1972.
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Sketch of the proof (2)

I Strong accessibility theorem7 The control system
d
dt x = F (x) +

∑m
j=1 Gj(x) uj with analytic vector fields F ,G1, ...,Gm is strongly

accessible at x0 if, and only if, the drift-preserved Lie algebra GF
8 has full

dimension N at x0.
Moreover, if GF has dimension at most N − n < N for all x0, then the system
stays on a (time-dependent) manifold of dimension N − n, independently of the
control inputs.

I Stratonovitch form of the SME:

dρt =
∑
ν

(1− ην )
(

Lνρt L
†
ν −

1
2 (L†νLνρt + ρt L

†
νLν )

)
dt

−
(∑
ν

ην
2

(
L†νLνρ + ρL†νLν + (Lν )2

ρ + ρ(L†ν )2
))

dt

+

(∑
ν

ην
2 Tr

(
L†νLνρ + ρL†νLν + (Lν )2

ρ + ρ(L†ν )2
)
ρ

)
dt

+

(∑
ν

ην Tr
(

Lνρ + ρL†ν
)

(Lνρ + ρL†ν )− ην
(

Tr
(

Lνρ + ρL†ν
))2

ρ

)
dt

+
∑
ν

√
ην

(
Lνρt + ρt L†

ν − Tr
(
(Lν + L†

ν )ρt
)
ρt

)
◦ dWν,t .

7A. Isidori, Nonlinear Control Systems: An Introduction, Springer, Berlin, 1985
8GF is the smallest Lie algebra containing G (the Lie algebra generated by vector

fields G1,G2, ...,Gm) and closed under Lie brackets with F , i.e. for any G ∈ GF we
have [F ,G] ∈ GF .
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Concluding remarks

1. Stochastic master equations govern the dynamics of open quantum systems by
taking into account measurement back-action and decoherence (unread
measurement).

2. Future work could investigate how general confinement of the density operator to
submanifolds is in higher-dimensional Hilbert spaces.

3. Interest of continuous fluorescence signals (dIt , dQt ) for the characterization of a
dephasing noise ξt :

dxt =
(
− γ2

2 xt + ξt yt − v(t)zt
)
dt +

√
ηγ1

2

(
(1 + zt − x2

t )dWI − xt yt dWQ

)
dyt =

(
− ξt xt − γ2

2 yt + u(t)zt
)
dt +

√
ηγ1

2

(
− xt yt dWI + (1 + zt − y2

t )dWQ

)
dzt =

(
v(t)xt − u(t)yt − γ1(1 + zt )

)
dt −

√
ηγ1

2 (1 + zt )
(

xt dWI + yt dWQ

)
dIt =

√
ηγ1

2 xt dt + dWI

dQt ==
√
ηγ1

2 yt dt + dWQ

where u(t) and v(t) are well chosen open-loop controls (see Lorenza Viola
presentation and work).
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