Singular perturbations and Lindblad-Kossakowski differential equations

Pierre Rouchon
In collaboration with Mazyar Mirrahimi
Mines ParisTech
Centre Automatique et Systèmes
Mathématiques et Systèmes
pierre.rouchon@mines-paristech.fr
http://cas.ensmp.fr/~rouchon/index.html

IMA, Minneapolis
March 2-6, 2009

Outline

The main result on \wedge-systems

Optical pumping and coherence population trapping

Extension to V-systems

Proof of the main result

Concluding remarks

Open quantum systems

The Lindbald-Kossakowski equation

$$
\frac{d}{d t} \rho=-\frac{\imath}{\hbar}[H, \rho]+\sum_{k=1}^{N} \frac{1}{2}\left(2 L_{k} \rho L_{k}^{\dagger}-L_{k}^{\dagger} L_{k} \rho-\rho L_{k}^{\dagger} L_{k}\right)
$$

is the master equation associated to an ensemble average of quantum trajectories (stochastic jump dynamics of a single quantum system where the "environment is watching"1).
Contribution: when the Lindblad operators L_{k} are associated to highly unstable excited states, we propose a systematic method to eliminate the resulting fast and asymptotically stable dynamics. The obtained slow dynamics

$$
\frac{d}{d t} \rho_{s}=-\frac{\imath}{\hbar}\left[H_{s}, \rho_{s}\right]+\sum_{k=1}^{N} \frac{1}{2}\left(2 L_{s, k} \rho_{s} L_{s, k}^{\dagger}-L_{s, k}^{\dagger} L_{s, k} \rho_{s}-\rho_{s} L_{s, k}^{\dagger} L_{s, k}\right)
$$

is still of Lindbald-Kossakowski form $\left(\left(\rho_{s}, H_{s}, L_{s, k}\right)=\operatorname{fnct}\left(\rho, H, L_{k}\right)\right)$.
${ }^{1}$ H.-P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Clarendon-Press, Oxford, 2006. S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006=

Prototype of open quantum system: \wedge-systems.

N stable states $\left|g_{k}\right\rangle$, $k=1, \ldots, N$.
Unstable state |eो Quasi resonant laser transition, $\left|g_{k}\right\rangle \leftrightarrows|e\rangle$ with de-tuning δ_{k} and Rabi pulsations $\Omega_{k} \in \mathbb{C}$.
Spontaneous emission rate $|e\rangle \mapsto\left|g_{k}\right\rangle: \Gamma_{k}$.

Lindbald-Kossakowski master-equation for the density matrix ρ

$$
\frac{d}{d t} \rho=-\frac{\imath}{\hbar}[H, \rho]+\sum_{k=1}^{N} \frac{1}{2}\left(2 L_{k} \rho L_{k}^{\dagger}-L_{k}^{\dagger} L_{k} \rho-\rho L_{k}^{\dagger} L_{k}\right)
$$

$\frac{H}{\hbar}=\sum_{k=1}^{N} \delta_{k}\left|g_{k}\right\rangle\left\langle g_{k}\right|+\Omega_{k}\left|g_{k}\right\rangle\langle e|+\Omega_{k}^{*}|e\rangle\left\langle g_{k}\right|$,
$L_{k}=\sqrt{\Gamma_{k}}\left|g_{k}\right\rangle\langle e|$. Photon flux (measure): $y=\sum_{k=1}^{N} \operatorname{tr}\left(L_{k}^{\dagger} L_{k} \rho\right)$.
Two time-scales: $\left|\delta_{k}\right|,\left|\Omega_{k}\right| \ll \Gamma_{k}$.

Main result: adiabatic elimination of the unstable state $|e\rangle^{2}$
The slow/fast dynamics

$$
\frac{d}{d t} \rho=-\frac{\imath}{\hbar}[H, \rho]+\sum_{k=1}^{N} \frac{1}{2}\left(2 L_{k} \rho L_{k}^{\dagger}-L_{k}^{\dagger} L_{k} \rho-\rho L_{k}^{\dagger} L_{k}\right)
$$

with $L_{k}=\sqrt{\Gamma_{k}}\left|g_{k}\right\rangle\langle e|, \Gamma=\left(\sum_{k} \Gamma_{k}\right)$ much larger than $\frac{H}{\hbar}$,
$y=\sum_{k} \operatorname{tr}\left(L_{k}^{\dagger} L_{k} \rho\right)$, is approximated by the slow dynamics
$\frac{d}{d t} \rho_{s}=-\frac{i}{\hbar}\left[H_{s}, \rho_{s}\right]+\sum_{k=1}^{N} \frac{1}{2}\left(2 L_{s, k} \rho_{s} L_{s, k}^{\dagger}-L_{s, k}^{\dagger} L_{s, k} \rho_{s}-\rho_{s} L_{s, k}^{\dagger} L_{s, k}\right)$
with $\rho_{s}=(1-P) \rho(1-P)$ the slow density operator,
$H_{s}=(1-P) H(1-P)$ the slow Hamiltonian and
$L_{s, k}=2 \frac{L_{k}}{\Gamma} \frac{H}{\hbar}(1-P)$ the slow jump operators $(P=|e\rangle\langle e|)$. The slow approximation of y is still given by the standard formula

$$
y_{s}=\sum_{k=1}^{n} \operatorname{tr}\left(L_{s, k}^{\dagger} L_{s, k} \rho_{s}\right) .
$$

${ }^{2}$ See, Mirrahimi-R, CDC 2006 and IEEE AC to appear in2009.

Application to the 3-level system (coherence population trapping ${ }^{3}$)

Input: $\Omega_{1}, \Omega_{2} \in \mathbb{C}$ and $\frac{d}{d t} \Delta$
Output: photo-detector click times corresponding to jumps from $|e\rangle$ to $\left|g_{1}\right\rangle$ or $\left|g_{2}\right\rangle$.
Two time-scales: $\left|\Omega_{1}\right|,\left|\Omega_{2}\right|,\left|\Delta_{e}\right|,|\Delta| \ll \Gamma_{1}, \Gamma_{2}$

[^0]
The slow/fast master equation

Master equation of the Λ-system

$$
\frac{d}{d t} \rho=-\frac{\imath}{\hbar}[H, \rho]+\frac{1}{2} \sum_{k=1}^{2}\left(2 L_{k} \rho L_{k}^{\dagger}-L_{k}^{\dagger} L_{k} \rho-\rho L_{k}^{\dagger} L_{k}\right)
$$

with jump operators $L_{k}=\sqrt{\Gamma_{k}}\left|g_{k}\right\rangle\langle e|$ and Hamiltonian

$$
\begin{aligned}
\frac{H}{\hbar}= & \frac{\Delta}{2} \\
& \left(\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|\right)-\left(\Delta_{e}+\frac{\Delta}{2}\right)|e\rangle\langle e| \\
& +\Omega_{1}\left|g_{1}\right\rangle\langle e|+\Omega_{1}^{*}|e\rangle\left\langle g_{1}\right|+\Omega_{2}\left|g_{2}\right\rangle\langle e|+\Omega_{2}^{*}|e\rangle\left\langle g_{2}\right| .
\end{aligned}
$$

Since $\left|\Omega_{1}\right|,\left|\Omega_{2}\right|,\left|\Delta_{e}\right|,|\Delta| \ll \Gamma_{1}, \Gamma_{2}$ we have two time-scales: a fast exponential decay for " $|e\rangle$ " and a slow evolution for " $\left(\left|g_{1}\right\rangle,\left|g_{2}\right\rangle\right)$ ".

The slow master equation with bright and dark states.
The above general result leads to a reduced master equation that is still of Lindblad type with a slow Hamiltonian H_{s} and slow jump operators $L_{s, k}$:
$\frac{d}{d t} \rho_{s}=-\frac{\imath}{\hbar}\left[H_{s}, \rho_{s}\right]+\frac{1}{2} \sum_{k=1}^{2}\left(2 L_{s, k} \rho_{s} L_{s, k}^{\dagger}-L_{s, k}^{\dagger} L_{s, k} \rho_{s}-\rho_{s} L_{s, k}^{\dagger} L_{s, k}\right)$,
with $H_{s}=\frac{\Delta}{2} \sigma_{z}=\frac{\Delta\left(\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|\right)}{2}, L_{s, k}=\sqrt{\gamma_{k}}\left|g_{k}\right\rangle\left\langle b_{\Omega}\right|$ where $\gamma_{k}=4 \frac{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}{\left(\Gamma_{1}+\Gamma_{2}\right)^{2}} \Gamma_{k}$ and $\left|b_{\Omega}\right\rangle$ is the bright state:

$$
\left|b_{\Omega}\right\rangle=\frac{\Omega_{1}}{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}}\left|g_{1}\right\rangle+\frac{\Omega_{2}}{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}}\left|g_{2}\right\rangle
$$

For $\Delta=0, \rho_{s}$ converges towards the dark state $\left|d_{\Omega}\right\rangle$:

$$
\left|d_{\Omega}\right\rangle=-\frac{\Omega_{2}^{*}}{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}}\left|g_{1}\right\rangle+\frac{\Omega_{1}^{*}}{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}}\left|g_{2}\right\rangle .
$$

Extension to V-systems: Dehmelt's electron shelving scheme ${ }^{4}$

A stable state $\left|g_{1}\right\rangle$. A quasi-stable state: $\left|g_{2}\right\rangle$ with a long life time $1 / \gamma$.
An unstable state: $|e\rangle$ with a short life time $1 / \Gamma$.
Quasi resonant transitions:

- $\left|g_{1}\right\rangle \leftrightarrows|e\rangle$ with de-tuning Δ and Rabi pulsation $\Omega \in \mathbb{C}$.
- $\left|g_{1}\right\rangle \leftrightarrows\left|g_{2}\right\rangle$ with de-tuning δ and Rabi pulsation $\omega \in \mathbb{C}$.

Lindbald-Kossakowski master-equation for the density matrix ρ

$$
\begin{aligned}
\frac{d}{d t} \rho & =-\frac{\imath}{\hbar}[H, \rho]+\frac{1}{2}\left(2 L \rho L^{\dagger}-L^{\dagger} L \rho-\rho L^{\dagger} L\right)+\frac{1}{2}\left(2 l \rho \rho^{\dagger}-I^{\dagger} I \rho-\rho I^{\dagger} l\right) \\
\frac{H}{\hbar} & =\Delta|e\rangle\langle e|+\Omega\left|g_{1}\right\rangle\langle e|+\Omega^{*}|e\rangle\left\langle g_{1}\right|+\delta\left|g_{2}\right\rangle\left\langle g_{2}\right|+\omega\left|g_{1}\right\rangle\left\langle g_{2}\right|+\omega^{*}\left|g_{2}\right\rangle\left\langle g_{1}\right| \\
L & =\sqrt{\Gamma}\left|g_{1}\right\rangle\langle e|, \quad I=\sqrt{\gamma}\left|g_{1}\right\rangle\left\langle g_{2}\right|
\end{aligned}
$$

Photon flux (measure): $y=\operatorname{tr}\left(L^{\dagger} L \rho\right)+\operatorname{tr}\left(I^{\dagger} \mid \rho\right) .(|\delta|,|\omega|,|\Omega|, \gamma \ll \Gamma)$.
${ }^{4}$ See, e.g., Cohen-Tannoudji-Dalibard: Europhys. Lett., 1986.

The slow master equation

The slow dynamics is still of Lindblad type with a slow Hamiltonian H_{s}, slow jump operators L_{s} and $I_{s}=I$:

$$
\begin{aligned}
\frac{d}{d t} \rho_{s}=- & \frac{l}{\hbar}\left[H_{s}, \rho_{s}\right]+\frac{1}{2}\left(2 L_{s} \rho_{s} L_{s}^{\dagger}-L_{s}^{\dagger} L_{s} \rho_{s}-\rho_{s} L_{s}^{\dagger} L_{s}\right) \\
& +\frac{1}{2}\left(2 I_{s} \rho_{s} \dagger_{s}^{\dagger}-l_{s}^{\dagger} s_{s} \rho_{s}-\rho_{s} s_{s}^{\dagger} /_{s}\right) \\
\frac{H_{s}}{\hbar}= & \delta\left|g_{2}\right\rangle\left\langle g_{2}\right|+\omega\left|g_{1}\right\rangle\left\langle g_{2}\right|+\omega^{*}\left|g_{2}\right\rangle\left\langle g_{1}\right| \\
L_{s}= & 2 \sqrt{\frac{|\Omega|^{2}}{\Gamma}}\left|g_{1}\right\rangle\left\langle g_{1}\right|, \quad I_{s}=I=\sqrt{\gamma}\left|g_{1}\right\rangle\left\langle g_{2}\right|
\end{aligned}
$$

Photon flux (measure): $y=\operatorname{tr}\left(L_{s}^{\dagger} L_{s} \rho_{s}\right)+\operatorname{tr}\left(I_{s}^{\dagger} I_{s} \rho_{s}\right)$.

Slow/fast systems in Tikhonov normal form

$$
\left(\Sigma^{\varepsilon}\right)\left\{\begin{aligned}
\frac{d x}{d t} & =f(x, z, \varepsilon) \\
\varepsilon \frac{d z}{d t} & =g(x, z, \varepsilon)
\end{aligned}\right.
$$

with $x \in \mathbb{R}^{n}, z \in \mathbb{R}^{p}$,
$0<\varepsilon \ll 1$ a small parameter , f and g regular functions.

Slow approximation (zero order in ε)

As soon as $g(x, z, 0)=0$ admits a solution, $z=\rho(x)$, with ρ
smooth function of x and $\frac{\partial g}{\partial z}(x, \rho(x), 0)$ is a stable matrix, the approximation of

$$
\left(\Sigma^{\varepsilon}\right)\left\{\begin{array} { r l }
{ \frac { d x } { d t } } & { = f (x , z , \varepsilon) } \\
{ \varepsilon \frac { d z } { d t } } & { = g (x , z , \varepsilon) }
\end{array} \quad \text { by } \quad (\Sigma ^ { 0 }) \left\{\begin{array}{rl}
\frac{d x}{d t} & =f(x, z, 0) \\
0 & =g(x, z, 0)
\end{array}\right.\right.
$$

is valid for time intervals of length 1.
For longer intervals of length $1 / \varepsilon$, correction terms of order 1 in ε should be included in Σ^{0}. They can be computed via center manifold techniques and Carr's approximation lemma ${ }^{5}$.

[^1]
Proof based on matrix computations only ${ }^{6}$

With $Q_{k}=\left|g_{k}\right\rangle\langle e|, \Gamma_{k}=\frac{\Gamma_{k}}{\varepsilon}$ and $0<\varepsilon \ll 1$ the slow/fast master equation reads

$$
\frac{d}{d t} \rho=-\frac{i}{\hbar}[H, \rho]+\sum_{k=1}^{N} \frac{\bar{\Gamma}_{k}}{2 \varepsilon}\left(2 Q_{k} \rho Q_{k}^{\dagger}-Q_{k}^{\dagger} Q_{k} \rho-\rho Q_{k}^{\dagger} Q_{k}\right)
$$

Change of variables $\rho \mapsto\left(\rho_{f}, \rho_{s}\right)$ to put the system in Tikhonov normal form $(P=|e\rangle\langle e|): \rho_{f}=P \rho+\rho P-P \rho P$,
$\rho_{s}=(1-P) \rho(1-P)+\frac{1}{\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right)} \sum_{k=1}^{N} \bar{\Gamma}_{k} Q_{k} \rho Q_{k}^{\dagger}$, with inverse
$\rho=\rho_{s}+\rho_{f}-\frac{1}{\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right)} \sum_{k=1}^{N} \bar{\Gamma}_{k} Q_{k} \rho_{f} Q_{k}^{\dagger}$.
The dynamics in $\left(\rho_{s}, \rho_{f}\right)$ "Tikhonov coordinates":

$$
\begin{aligned}
& \frac{d}{d t} \rho_{s}=(1-P)\left[\frac{-\imath H}{\hbar}, \rho\right](1-P)+\frac{1}{\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right)} \sum_{k=1}^{N} \bar{\Gamma}_{k} Q_{k}\left[\frac{-\imath H}{\hbar}, \rho\right] Q_{k}^{\dagger} \\
& \varepsilon \frac{d}{d t} \rho_{f}=-\frac{\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right)}{2}\left(\rho_{f}+P \rho_{f} P\right)-\frac{\varepsilon \imath}{\hbar}(P[H, \rho]+[H, \rho] P-P[H, \rho] P) .
\end{aligned}
$$

${ }^{6}$ See, Mirrahimi-R, CDC 2006 and IEEE AC to appear in2009:

Order zero approximation in ε

- Setting ε to 0 in

$$
\begin{aligned}
\frac{d}{d t} \rho_{s} & =(1-P)\left[\frac{-\imath H}{\hbar}, \rho\right](1-P)+\frac{1}{\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right)} \sum_{k=1}^{N} \bar{\Gamma}_{k} Q_{k}\left[\frac{-\imath H}{\hbar}, \rho\right] Q_{k}^{\dagger} \\
\varepsilon \frac{d}{d t} \rho_{f} & =-\frac{\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right)}{2}\left(\rho_{f}+P \rho_{f} P\right)-\frac{\varepsilon \imath}{\hbar}(P[H, \rho]+[H, \rho] P-P[H, \rho] P) .
\end{aligned}
$$

yields to the coherent dynamics

$$
\begin{aligned}
\imath \hbar \frac{d}{d t} \rho_{s} & =\left[(1-P) H(1-P), \rho_{s}\right] \\
\rho_{f} & =0
\end{aligned}
$$

with $y=0$.

- Need for higher order corrections terms in ε

High order approximation via center manifold techniques ${ }^{7}$
Consider the slow/fast system (f and g are regular functions)

$$
\frac{d}{d t} x=f(x, z), \quad \varepsilon \frac{d}{d t} z=-A z+\varepsilon g(x, z)
$$

where all the eigenvalues of the matrix A have strictly positive real parts, and $0<\varepsilon \ll 1$. The slow invariant attractive manifold admits for equation (boundary layer)

$$
z=\varepsilon A^{-1} g(x, 0)+O\left(\varepsilon^{2}\right)
$$

and the restriction of the dynamics on this slow invariant manifold reads

$$
\frac{d}{d t} x=f\left(x, \varepsilon A^{-1} g(x, 0)\right)+O\left(\varepsilon^{2}\right)=f(x, 0)+\left.\varepsilon \frac{\partial f}{\partial z}\right|_{(x, 0)} A^{-1} g(x, 0)+O\left(\varepsilon^{2}\right)
$$

Center-manifold approximations yield to second order terms in the expansion of z :

$$
z=\varepsilon A^{-1} g(x, 0)+\varepsilon^{2} A^{-1}\left(\left.\frac{\partial g}{\partial z}\right|_{(x, 0)} A^{-1} g(x, 0)-\left.A^{-1} \frac{\partial g}{\partial x}\right|_{(x, 0)} f(x, 0)\right)+O\left(\varepsilon^{3}\right)
$$

${ }^{7}$ See, e.g., Fenichel J. Diff. Eq. 1979 or Duchêne-R Chem. Eng. Sci. 1996.

Order one approximation in ε

 Addition of first order correction terms in ε are related to decoherence and thus to Lindblad terms:$\frac{d}{d t} \rho_{s}=-\frac{\imath}{\hbar}\left[H_{s}, \rho_{s}\right]+2 \varepsilon \sum_{k=1}^{N} \bar{\Gamma}_{k}\left(2 Q_{s, k} \rho_{s} Q_{s, k}^{\dagger}-Q_{s, k}^{\dagger} Q_{s, k} \rho_{s}-\rho_{s} Q_{s, k}^{\dagger} Q_{s, k}\right)$
where
$H_{s}=(1-P) H(1-P) \quad$ and $\quad Q_{s, k}=\frac{1}{\hbar\left(\sum_{l=1}^{N} \bar{\Gamma}_{l}\right)}(1-P) Q_{k} H(1-P)$.
The boundary layer reads

$$
\rho_{f}=\frac{-2 \imath \varepsilon}{\hbar\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right)}\left(P H \rho_{s}-\rho_{s} H P\right)+O\left(\varepsilon^{2}\right) .
$$

and the output (measure)

$$
y(t)=4 \varepsilon\left(\sum_{k=1}^{N} \bar{\Gamma}_{k}\right) \operatorname{tr}\left(\bar{P} \rho_{s}\right)+O\left(\varepsilon^{2}\right)
$$

Concluding remarks

- The proposed adiabatic reduction mixing non commutative computations with operators and dynamical systems theory (geometric singular perturbations theory, invariant manifold) preserves the "physics" (CPT slow dynamics).
- In the slow master equation, the decoherence terms depend on the control input Ω_{k} : influence on controllability and optimal control? ${ }^{8}$
- Straightforward extensions to: several unstable states $\left|e_{r}\right\rangle$ with fast relaxation to stable states $\left|g_{k}\right\rangle$; slow decoherence between the "stable" states $\left|g_{k}\right\rangle$.
- A method to approximate slow/fast quantum trajectories by slow quantum trajectories where the jumps from $|e\rangle$ to $\left|g_{k}\right\rangle$ are replaced by jumps inside the "slow space"9
${ }^{8}$ See, e.g., Altafini and Bonnard-Chyba-Sugny for the recent results on controllability and optimal control of such dissipative systems.
${ }^{9}$ For mathematical justifications see: Bouten-Silberfarb: Commun. Math. Phys., 2008; Bouten-vanHandel-Silberfarb: Journal of Functional Analysis, 2008; Gough-vanHandel: J. Stat. Phys., 2007.

Quantum trajectories ${ }^{10}$ associated to the slow master equation

Set $\gamma_{k}=4 \frac{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}{\left(\Gamma_{1}+\Gamma_{2}\right)^{2}} \Gamma_{k}$ for $k=1,2$.
At each infinitesimal time step $d t$,

- ρ_{s} jumps
- towards the state $\left|g_{1}\right\rangle\left\langle g_{1}\right|$ with a jump probability given by: $\left\langle b_{\Omega}\right| \rho_{s}\left|b_{\Omega}\right\rangle \gamma_{1} d t$.
- or towards the state $\left|g_{2}\right\rangle\left\langle g_{2}\right|$ with a jump probability given by: $\left\langle b_{\Omega}\right| \rho_{s}\left|b_{\Omega}\right\rangle \gamma_{2} d t$.
- or ρ_{s} does not jump with probability

$$
1-\left\langle b_{\Omega}\right| \rho_{s}\left|b_{\Omega}\right\rangle\left(\gamma_{1}+\gamma_{2}\right) d t
$$

and then evolves on the Bloch sphere according to

$$
\begin{aligned}
\frac{1}{\gamma} \frac{d}{d t} \rho_{s} & =-\imath \frac{\Delta}{2 \gamma}\left[\sigma_{z}, \rho_{s}\right]-\frac{\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}+\rho_{s}\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right|}{2}+\left\langle b_{\Omega}\right| \rho_{s}\left|b_{\Omega}\right\rangle \rho_{s} . \\
\text { with } \gamma & =\gamma_{1}+\gamma_{2} .
\end{aligned}
$$

${ }^{10}$ See, e.g., Haroche-Raimond book, 2006.

Quantum trajectories in Bloch-sphere coordinates

Set $\beta=2 \arg \left(\Omega_{1}+\imath \Omega_{2}\right)$ and
$\rho_{s}=\frac{1+X(|b\rangle\langle d|+|d\rangle\langle b|)+Y\left({ }_{\imath}|b\rangle\langle d|-\imath|d\rangle\langle b|\right)+Z(|d\rangle\langle d|-|b\rangle\langle b|)}{2}$
At each infinitesimal time step $d t$, the point $(X, Y, Z) \in \mathbb{S}^{2}$,

- jumps
- towards the state $(\sin \beta, 0, \cos \beta)$ with a jump probability given by: $\frac{(1-Z)}{2} \gamma_{1} d t$.
- or towards the state $(-\sin \beta, 0,-\cos \beta)$ with a jump probability given by: $\frac{(1-Z)}{2} \gamma_{2} d t$.
- or does not jump with probability $1-\frac{(1-Z)}{2}\left(\gamma_{1}+\gamma_{2}\right) d t$ and then evolves according to

$$
\begin{aligned}
& \frac{d}{d t} X=-\Delta \cos \beta Y-\gamma \frac{X Z}{2} \\
& \frac{d}{d t} Y=\Delta \cos \beta X-\Delta \sin \beta Z-\gamma \frac{Y Z}{2} \\
& \frac{d}{d t} Z=\Delta \sin \beta Y+\frac{\gamma\left(1-Z^{2}\right)}{2}
\end{aligned}
$$

Convergence of the no-jump dynamics

For $|\Delta|<\frac{\gamma}{2}$, the nonlinear system in \mathbb{S}^{2}

$$
\begin{aligned}
& \frac{d}{d t} X=-\Delta \cos \beta Y-\gamma \frac{X Z}{2} \\
& \frac{d}{d t} Y=\Delta \cos \beta X-\Delta \sin \beta Z-\gamma \frac{Y Z}{2} \\
& \frac{d}{d t} Z=\Delta \sin \beta Y+\frac{\gamma\left(1-Z^{2}\right)}{2}
\end{aligned}
$$

admits a two equilibirum points, one is unstable and the other one is quasi-global asymptotically stable.
Proof: based on Poincaré-Bendixon on the sphere. ${ }^{11}$
${ }^{11}$ See, Mirrahimi-R, 2008, arxiv:0806.1392v1

[^0]: ${ }^{3}$ See, e.g., Arimondo: Progr. Optics, 35:257, 1996.

[^1]: ${ }^{5}$ See, e.g., J. Carr: Application of Center Manifold Theory. Springer $=1981$.

