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Outline :

• The poly-propylene reactor PP2 (Feluy).

• Filtering the solid fraction and choice of unit (mass-fraction

or volume-fraction)...

• Invariant filtering algorithm independent of the unit: sym-

metries, invariant errors and observers.

• Conclusion: open issue; a geometric look on least square

parameter estimation.
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Loop reactors PP2 and PP3 (Feluy)
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reactor loop PP2

Catalyst
liquid+solid
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Control objectives

Control (manipulated) variables (input) : catalyst, C3 input flow,

H2 input flow.

Controlled variables (output): production flow (measured via

energy balance around the cooling jacket), solid fraction inside

the reactor (measured with noise) , Melt-index (not measured) .

Goal: maximum production, solid fraction under a maximum

hydrodynamic limit, melt-index at set-point.
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Online results: production set-points tracking

Production

P
Pr

FCata
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Online results: solid mass fraction set-point tracking

Densité R1 et R2

x1
x1r
x2
x2r

FC3 R1 et FC3 R2

R1
R2
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Online results: melt-index via H2 inside the reactor

Hydrogène R1

y1
y1r

FH2 R1
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A dynamic model (DAE) of R1

Catalyst:
d

dt
MCata = FCata −

MCata

MP + MPP
F

Monomer:
d

dt
MP = FP − P − MP

MP + MPP
F

Hydrogen:
d

dt
MH2

= FH2
− MH2

MP + MPP
F

Polymer:
d

dt
MPP = P − MPP

MP + MPP
F

Constant volume: V =
MP

ρP
+

MPP

ρPP

Catalyst activity: P = A MCata

solid mass-fraction: x =
MPP

MP + MPP
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The control design for the first reactor R1

Use the triangular structure to have SISO sub-problem.

Compensate non-linearity via feedback (feedback linearization

where the flat output are the controlled variables) and use PI

controller on the linearized error dynamics.

Estimate unmeasured quantities (H2 inside the reactor) and elim-

inate noise from the measurements (solid mass-fraction inside

the reactor).
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Online results: noise elimination, solid mass-fraction.

Densité R1

mesure
estimation
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Dynamics of the solid mass-fraction x

d

dt
MP = FP − P − MP

MP + MPP
F

d

dt
MPP = P − MPP

MP + MPP
F

V =
MP

ρP
+

MPP

ρPP

x =
MPP

MP + MPP

Eliminate F (derivation of V ):

d

dt
x =

1

V

(
1

ρP
+ x

(
1

ρPP
− 1

ρP

))
(P − xFP )
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Noiseless estimation x̂ of x via an asymptotic observer

d

dt
x̂ =

1

V

(
1

ρP
+ x̂

(
1

ρPP
− 1

ρP

))
(P (t)− x̂FP (t)) + C(x(t), x̂)

where x(t) is the noisy measure of x and C(x, x̂) is the correction

such that C(x, x) ≡ 0 (no correction when the estimate x̂ is equal

to the measure x).

Classically (extended Kalman filter) one takes C(x, x̂) = k(x− x̂)

with a gain k > 0 that can vary...

Problem: such design for C depends on the unit you choose to

define the solid fraction.
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Dynamics of the solid volume-fraction X

d

dt
VP = F vol

P − P vol − ρPVP

ρPVP + ρPPVPP
F vol

d

dt
VPP =

ρP

ρPP

(
P vol − ρPPVPP

ρPVP + ρPPVPP
F vol

)

V = VP + VPP

X =
VPP

VP + VPP

Eliminate F vol (derivation of V ):

d

dt
X =

1

V

(
1

ρP
+ X

(
1

ρPP
− 1

ρP

)) (
X(P vol − F vol

P ) + (1−X)
ρP

ρPP
P vol

)
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Solid mass-fraction x or solid volume-fraction X ?

X =
x

x + ρP
ρPP

(1− x)
, x =

X

X + ρPP
ρP

(1−X)

and the dynamics with X reads

d

dt
X =

1

V

(
1

ρP
+ X

(
1

ρPP
− 1

ρP

)) (
X(P vol − F vol

P ) + (1−X)
ρP

ρPP
P vol

)

a different expression than the dynamics with x:

d

dt
x =

1

V

(
1

ρP
+ x

(
1

ρPP
− 1

ρP

))
(P − xFP )

Problem: an extended Kalman filter with x does not correspond

to an extended Kalman filter with X...

14



Group of transformations {gµ}µ>0

The map gµ

[0,1] 3 x
gµ−→ X =

x

x + µ(1− x)
∈ [0,1]

has gµ−1 as inverse

[0,1] 3 X
g
µ−1−→ x =

X

X + µ−1(1−X)
∈ [0,1]

The set {gµ}µ>0 is a one parameter group of transformations on

[0,1], isomorph to multiplicative group G = R+∗:

gµ ◦ gν = gµν
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The invariant error E(x, x̂)

Consider the function E

]0,1[×]0,1[3 (x, x̂) 7→ E(x, x̂) = log

(
x(1− x̂)

x̂(1− x)

)
∈ R

Then:

E(x, x̂) = E

(
x

x + µ(1− x)
,

x̂

x̂ + µ(1− x̂)

)

for any µ > 0 and E(x, x̂) = 0 means that x = x̂.

This is no the case of (x, x̂) 7→ x− x̂. Thus E(x, x̂) is an intrinsic

way to measure the error between x and x̂: it is an invariant

error.
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The invariant observer based on the invariant error

Copy the original dynamics in x

d

dt
x =

1

V

(
1

ρP
+ x

(
1

ρPP
− 1

ρP

))
(P − xFP )

and add a correction term based on E(x, x̂) as follows

d

dt
x̂ =

1

V

[
1

µP
+ x̂

(
1

µPP
− 1

µP

)] [
P − x̂FP − k log

(
x(1− x̂)

(1− x)x̂

)]
.

This observer is invariant and convergent for any k > 0.
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Dynamics invariant under a group of transformations

d

dt
x = f(x), y = h(x)

Let G be a group of transformations acting on the x-space and

also on the y-space,

X = ϕg(x), Y = ρg(y), g ∈ G,

where ϕg and ρg are diffeomorphisms (smooth bijections).

d
dtx = f(x) with output y = h(x) is said to be G-invariant if for

every g ∈ G the representation of the system remains unchanged:

d

dt
X = f(X), Y = h(X).
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Invariant observer

Take a G-invariant dynamics d
dtx = f(x) with output y = h(x).

The observer ( f̂(x, h(x)) ≡ f(x) )

d

dt
x̂ = f̂(x̂, h(x))

is said G-invariant if, and only if, for all g ∈ G, for all estimated

state x̂ and state x, we have

d

dt
X̂ = f̂(X̂, h(X))

where X̂ = ϕg(x̂) and X = ϕg(x).
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Construction of invariant observer

Assume that the vector field w(x) is invariant with respect to G.

Take a scalar functions of the form I(x̂, h(x)) invariant under the

action of G (I(x̂, h(x)) = I(X, h(X)). Then

d

dt
x̂ = f(x̂) + (I(x̂, y)− I(x̂, h(x̂)) w(x̂)

is an invariant observer. The term

(I(x̂, y)− I(x̂, h(x̂)) w(x̂)

corresponds to an invariant correction term replacing the Kalman

filter correction term k(h(x) − h(x̂)) that does not preserve he

symmetries group G.

Problem: how to compute such w and such I ?
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Computation of I

Take a G-invariant dynamics d
dtx = f(x) with output y = h(x).

Assume that for some x0, the smooth map

G 3 g 7→ ϕg(x)

is of rank r = dimG around g = Id with r ≤ n = dimx. Then, lo-

cally around (x0), there exist m = dim y functionally independent

invariant functions Ii(x̂, y), i = 1, . . . , m.

Proof: the Darboux-Cartan moving frame method.
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The Darboux-Cartan moving frame method

The group G depends on r ≤ dim(x) = n parameters µ =
(µ1, ..., µr). Its action reads

µ ∈ Rr, gµ ∈ G, X = ϕgµ(x), Y = ρgµ(y) (y = h(x)).

Under classical regularity conditions on the action on the x-space,
one can compute a complete set of invariant errors via the fol-
lowing elimination algorithm.

Take any normalization X̄. From X̄ = ϕgµ(x) compute µ as
function of x: µ = q(x). Then

I(x, x̂) = ρgq(x̂)(h(x))

is automatically invariant:

∀µ, I(x, x̂) = I(X, X̂)

.
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Invariant composition error

Let

y = (y1, . . . , yn)

denotes the composition of a mixture of n species. The invariant

errors are given for i 6= j by

Ei,j(y, ŷ) = log

(
yiŷj

ŷiyj

)

under the group of unit changes (same value for mass or mole

fractions) (we can replace the log function by any bijection that

vanishes at 1).
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Conclusion

Several points remain to be fixed: computing the invariant vector

field w; link between invariance and convergence (invariant does

not automatically implies convergence and robustness); formal-

ism on implicit models (DAE) where invariance is simpler.

Invariant error, normalization and parameter estimation: what

is the meaning of ytk(p) − ymesure
tk

in the classical least square

problem

min
parameter p

N∑

k=1

(
ytk(p)− ymesure

tk

)2

where ytk corresponds to a composition at sampling time tk.
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