Euler-Lagrange models with complex currents of three-phase electrical machines and observability issues¹

Pierre Rouchon, in collaboration with Duro Basic, François Malrait from Schneider Electric, STIE.

> Mines ParisTech Centre Automatique et Systèmes Mathématiques et Systèmes pierre.rouchon@mines-paristech.fr http://cas.ensmp.fr/~rouchon/index.html

Electrical and Mechatronical Systems Workshop Bernoulli Center, Lausanne 18-20 February 2009

¹Preprint arXiv:0806.0387v3 [math.OC]

Outline

Permanent magnet 3-phases machines

Usual models Euler Lagrange setting with complex electrical variables Saliency effects Both saliency and magnetic-saturation effects

Induction 3-phases machines

Usual models Magnetic-saturation effects Both space-harmonics and magnetic-saturation effects

(ロ) (同) (三) (三) (三) (○) (○)

Observability issues at zero stator frequency

Concluding remarks

PM machines: usual models

In the (α, β) frame the dynamic equations read²:

$$\begin{cases} \frac{d}{dt} \left(J\dot{\theta} \right) = n_{p} \Im \left(\left(\bar{\phi} e^{j n_{p} \theta} \right)^{*} \imath_{s} \right) - \tau_{L} \\ \frac{d}{dt} \left(\lambda \imath_{s} + \bar{\phi} e^{j n_{p} \theta} \right) = u_{s} - R_{s} \imath_{s} \end{cases}$$

where

- ▶ * stands for complex-conjugation, $j = \sqrt{-1}$ and n_p is the number of pairs of poles.
- θ is the rotor mechanical angle, J and τ_L are the inertia and load torque, respectively.
- ► $i_s = i_{s\alpha} + j_{s\beta}$ (resp $u_s = u_{s\alpha} + ju_{s\beta}$) is the stator current (resp. voltage): complex quantities.
- λ = (L_d + L_q)/2 with inductances L_d = L_q > 0 (no saliency here).

• The stator flux is $\phi_s = \lambda \imath_s + \bar{\phi} e^{j n_p \theta}$ with the constant $\bar{\phi} > 0$ representing to the rotor flux due to permanent magnets.

²See, e.g., J. Chiasson: Modeling and High Performance Control of Electric Machines, Wiley-IEEE Press, 2005.

PM machines: Euler-Lagrange setting³

Lagrangian: sum of kinetic and magnetic Lagrangian $\mathcal{L}_{c} + \mathcal{L}_{m}$:

$$\mathcal{L}_{c} = rac{J}{2}\dot{ heta}^{2}, \quad \mathcal{L}_{m} = rac{\lambda}{2}\left|\imath_{s} + \overline{\imath}e^{\imath n_{p} \theta}\right|^{2}$$

where $\bar{\imath} = \bar{\phi}/\lambda > 0$ is the permanent magnetizing current. Euler-Lagrange setting: with additional variable $q_s \in \mathbb{C}$ defined by $\frac{d}{dt}q_s = \imath_s$, take the Lagrangian $\mathcal{L} = \mathcal{L}_c + \mathcal{L}_m$ as a real function of $q = (\theta, q_{s\alpha}, q_{s\beta})$ and $\dot{q} = (\dot{\theta}, \imath_{s\alpha}, \imath_{s\beta})$:

$$\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \frac{J}{2}\dot{\theta}^{2} + \frac{\lambda}{2}\left((\imath_{\boldsymbol{s}\alpha} + \bar{\imath}\cos n_{\boldsymbol{p}}\theta)^{2} + (\imath_{\boldsymbol{s}\beta} + \bar{\imath}\sin n_{\boldsymbol{p}}\theta)^{2}\right)$$

Then the dynamics (3 real ODE) read:

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) - \frac{\partial \mathcal{L}}{\partial \theta} = -\tau_L$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{s\alpha}} \right) - \frac{\partial \mathcal{L}}{\partial q_{s\alpha}} = u_{s\alpha} - R_s \imath_{s\alpha}, \quad \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{s\beta}} \right) - \frac{\partial \mathcal{L}}{\partial q_{s\beta}} = u_{s\beta} - R_s \imath_{s\beta}$$

³See, e.g., R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez. *Passivity–Based Control of Euler–Lagrange Systems*. Communications and Control Engineering. Springer-Verlag, Berlin, 1998. Euler-Lagrange equation with complex variables⁴

Two generalized coordinates q_1 and q_2 correspond to a point $q = q_1 + jq_2$ in the complex plane $(j = \sqrt{-1})$. The Lagrangian $\mathcal{L}(q_1, q_2, \dot{q}_1, \dot{q}_2)$ is a real function and the Euler-Lagrange equations are

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_1}\right) - \frac{\partial \mathcal{L}}{\partial q_1} = 0, \quad \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_2}\right) - \frac{\partial \mathcal{L}}{\partial q_2} = 0.$$

Using the complex notation q

$$\begin{split} \tilde{\mathcal{L}}(q,q^*,\dot{q},\dot{q}^*) &\equiv \mathcal{L}\left(\frac{q+q^*}{2},\frac{q-q^*}{2\jmath},\frac{\dot{q}+\dot{q}^*}{2},\frac{\dot{q}-\dot{q}^*}{2\jmath}\right).\\ \text{Since } 2\frac{\partial\tilde{\mathcal{L}}}{\partial q} &= \frac{\partial\mathcal{L}}{\partial q_1} - j\frac{\partial\mathcal{L}}{\partial q_2}, 2\frac{\partial\tilde{\mathcal{L}}}{\partial q^*} = \frac{\partial\mathcal{L}}{\partial q_1} + j\frac{\partial\mathcal{L}}{\partial q_2} \text{ we get}\\ \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_1} + j\frac{\partial\mathcal{L}}{\partial\dot{q}_2}\right) &= \frac{\partial\mathcal{L}}{\partial q_1} + j\frac{\partial\mathcal{L}}{\partial q_2} \text{ that reads } \frac{d}{dt}\left(2\frac{\partial\tilde{\mathcal{L}}}{\partial\dot{q}^*}\right) - 2\frac{\partial\tilde{\mathcal{L}}}{\partial q^*} = 0. \end{split}$$

PM machines: Lagrangian with complex stator currents

With $\frac{d}{dt}q_s = \imath_s$ (q_s complex cyclic variables) and the Lagrangian

$$\mathcal{L}(\theta, \dot{\theta}, \imath_{s}, \imath_{s}^{*}) = \frac{J}{2} \dot{\theta}^{2} + \frac{\lambda}{2} \left(\imath_{s} + \bar{\imath} \boldsymbol{e}^{\jmath n_{p} \theta} \right) \left(\imath_{s}^{*} + \bar{\imath} \boldsymbol{e}^{-\jmath n_{p} \theta} \right)$$

the usual equations

$$\frac{d}{dt}\left(J\dot{\theta}\right) = n_{\rho}\Im\left(\left(\lambda\bar{\imath}e^{\jmath n_{\rho}\theta}\right)^{*}\imath_{s}\right) - \tau_{L}, \quad \frac{d}{dt}\left(\lambda(\imath_{s} + \bar{\imath}e^{\jmath n_{\rho}\theta})\right) = u_{s} - R_{s}\imath_{s}$$

read

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = \frac{\partial \mathcal{L}}{\partial \theta} - \tau_L, \quad 2\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \imath_s^*} \right) = u_s - R_s \imath_s$$

since $\frac{\partial \mathcal{L}}{\partial q_s^*} = 0$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_s^*} = \frac{\partial \mathcal{L}}{\partial \imath_s^*}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

PM machines: structure of any dynamical models

More generally, the magnetic Lagrangian \mathcal{L}_m is a real value function of θ , ι_s and ι_s^* that is $\frac{2\pi}{n_p}$ periodic versus θ . Thus any Lagrangian \mathcal{L}_{PM} representing a 3-phases permanent magnet machine admits the following form

$$\mathcal{L}_{\mathsf{PM}} = rac{J}{2}\dot{ heta}^2 + \mathcal{L}_m\left(heta, \imath_{m{s}}, \imath_{m{s}}^*
ight)$$

Consequently, any model (with saliency, magnetic-saturation, space-harmonics, ...) of permanent magnet machines admits the following structure (*J* independent of θ here):

$$\frac{d}{dt}\left(J\dot{\theta}\right) = \frac{\partial \mathcal{L}_m}{\partial \theta} - \tau_L, \quad \frac{d}{dt}\left(2\frac{\partial \mathcal{L}_m}{\partial \imath_s^*}\right) = u_s - R_s \imath_s$$

with $\phi_s = 2 \frac{\partial \mathcal{L}_m}{\partial i_s^*}$ as stator flux.

PM machines: saliency effects

With a positive magnetic Lagrangian of the form

$$\mathcal{L}_{m} = \frac{\lambda}{2} \left(\imath_{s} + \overline{\imath} e^{\jmath n_{p} \theta} \right) \left(\imath_{s}^{*} + \overline{\imath} e^{-\jmath n_{p} \theta} \right) - \frac{\mu}{4} \left(\left(\imath_{s}^{*} e^{\jmath n_{p} \theta} \right)^{2} + \left(\imath_{s} e^{-\jmath n_{p} \theta} \right)^{2} \right)$$

where $\lambda = (L_d + L_q)/2$ and $\mu = (L_q - L_d)/2$ (inductances $L_d > 0$ and $L_q > 0$), we recover the usual model with saliency:

$$\begin{cases} \frac{d}{dt} \left(J\dot{\theta} \right) = n_{\rho} \Im \left(\left(\lambda i_{s}^{*} + \lambda \bar{\imath} e^{-\jmath n_{\rho} \theta} - \mu i_{s} e^{-2\jmath n_{\rho} \theta} \right) i_{s} \right) - \tau_{L} \\ \frac{d}{dt} \left(\lambda i_{s} + \lambda \bar{\imath} e^{\jmath n_{\rho} \theta} - \mu i_{s}^{*} e^{2\jmath n_{\rho} \theta} \right) = u_{s} - R_{s} i_{s}. \end{cases}$$

(ロ) (同) (三) (三) (三) (○) (○)

PM machines: magnetic-saturation and saliency effects Inductances depend on the currents as, e.g.,

$$\lambda = \lambda(|\imath_{s} + \overline{\imath} e^{\jmath n_{p} \theta}|) = \lambda \left(\sqrt{(\imath_{s} + \overline{\imath} e^{\jmath n_{p} \theta})(\imath_{s}^{*} + \overline{\imath} e^{-\jmath n_{p} \theta})} \right)$$

where $i_s + \bar{\imath} e^{\jmath n_p \theta}$ stands for total magnetizing current. With magnetic Lagrangien

$$\mathcal{L}_{m} = \frac{\lambda \left(\left| \imath_{s} + \overline{\imath} e^{\jmath n_{p} \theta} \right| \right)}{2} \left| \imath_{s} + \overline{\imath} e^{\jmath n_{p} \theta} \right|^{2} - \frac{\mu}{4} \left(\left(\imath_{s}^{*} e^{\jmath n_{p} \theta} \right)^{2} + \left(\imath_{s} e^{-\jmath n_{p} \theta} \right)^{2} \right)$$

the dynamics read ($\Lambda = \lambda + \frac{|\iota_s + \bar{\iota}e^{\imath n_p \theta}|}{2}\lambda'$):

$$\begin{cases} \frac{d}{dt} \left(J\dot{\theta} \right) = n_{\rho} \Im \left(\left(\Lambda \left(\imath_{s}^{*} + \bar{\imath} e^{-\jmath n_{\rho} \theta} \right) - \mu \imath_{s} e^{-2\jmath n_{\rho} \theta} \right) \imath_{s} \right) - \tau_{L} \\ \frac{d}{dt} \left(\Lambda \left(\imath_{s} + \bar{\imath} e^{\jmath n_{\rho} \theta} \right) - \mu \imath_{s}^{*} e^{2\jmath n_{\rho} \theta} \right) = u_{s} - R_{s} \imath_{s} \end{cases}$$

Similarly μ could also depend on $|\imath_s + \bar{\imath} e^{jn_p\theta}|_{\dot{\mu}}$

Induction machines: usual models

Dynamics with complex stator and rotor currents:

$$\begin{cases} \frac{d}{dt} \left(J\dot{\theta} \right) = n_p \Im \left(L_m \imath_r^* e^{-\jmath n_p \theta} \imath_s \right) - \tau_L \\ \frac{d}{dt} \left(L_r \imath_r + L_m \imath_s e^{-\jmath n_p \theta} \right) = -R_r \imath_r \\ \frac{d}{dt} \left(L_s \imath_s + L_m \imath_r e^{\jmath n_p \theta} \right) = u_s - R_s \imath_s \end{cases}$$

where

- *i_r* ∈ C (resp. *i_s* ∈ C) is the rotor (resp. stator) current;
 u_s ∈ C is the stator voltage
- $R_s > 0$ and $R_r > 0$ are stator and rotor resistances.
- $L_s > 0$, $L_r > 0$ and L_m are the inductances satisfying $L_s L_r > L_m^2$ for physical reasons (positive magnetic Lagrangien). They are constant here.
- ► the stator (resp. rotor) flux is $\phi_s = L_s \imath_s + L_m \imath_r e^{\jmath n_p \theta}$ (resp. $\phi_r = L_r \imath_r + L_m \imath_s e^{-\jmath n_p \theta}$).

Induction machines: Lagrangian with complex currents

The Lagrangian of the usual model is

$$\mathcal{L}_m = \frac{J}{2}\dot{\theta}^2 + \frac{L_m}{2}\left|\imath_s + \imath_r e^{\jmath n_p \theta}\right|^2 + \frac{L_{fr}}{2}|\imath_r|^2 + \frac{L_{fs}}{2}|\imath_s|^2$$

where $L_s = L_m + L_{fs}$ and $L_r = L_m + L_{fr}$ with $L_m > 0$ and $0 < L_{fr}, L_{fs} \ll L_m$. More generally, a physically consistent model should be obtained with a Lagrangian of the form

$$\mathcal{L}_{\mathsf{IM}} = rac{J}{2}\dot{ heta}^2 + \mathcal{L}_m(heta, \imath_r, \imath_r^*, \imath_s, \imath_s^*)$$

where \mathcal{L}_m is the magnetic Lagrangien expressed with the rotor angle and currents. It is $\frac{2\pi}{n_p}$ periodic versus θ . Any physically admissible model reads (*J* independent of θ)

$$\frac{d}{dt}\left(J\dot{\theta}\right) = \frac{\partial \mathcal{L}_m}{\partial \theta} - \tau_L, \quad \frac{d}{dt}\phi_r = -R_r \imath_r, \quad \frac{d}{dt}\phi_s = u_s - R_s \imath_s,$$

where the rotor and stator fluxes are given by

$$\phi_r = 2 \frac{\partial \mathcal{L}_m}{\partial \imath_r^*}, \qquad \phi_s = 2 \frac{\partial \mathcal{L}_m}{\partial \imath_s^*}.$$

Induction machines: magnetic-saturation

With positive inductances of the form

$$L_m = L_m \left(\left| \imath_s + \imath_r e^{j n_p \theta} \right| \right), \ L_s = L_m + L_{fs}, \ L_r = L_m + L_{fr}$$

the magnetic Lagrangien remains positive

$$\mathcal{L}_{m} = \frac{L_{m}\left(\left|\imath_{s} + \imath_{r} e^{\jmath n_{p} \theta}\right|\right)}{2} \left|\imath_{s} + \imath_{r} e^{\jmath n_{p} \theta}\right|^{2} + \frac{L_{fr}}{2} \imath_{r} \imath_{r}^{*} + \frac{L_{fs}}{2} \imath_{s} \imath_{s}^{*}$$

and the saturation model reads

$$\begin{cases} \frac{d}{dt} \left(J\dot{\theta} \right) = n_{p} \Im \left(\Lambda_{m} \imath_{r}^{*} e^{-\jmath n_{p} \theta} \imath_{s} \right) - \tau_{L} \\ \frac{d}{dt} \left(\Lambda_{m} \left(\imath_{r} + \imath_{s} e^{-\jmath n_{p} \theta} \right) + L_{fr} \imath_{r} \right) = -R_{r} \imath_{r} \\ \frac{d}{dt} \left(\Lambda_{m} \left(\imath_{s} + \imath_{r} e^{\jmath n_{p} \theta} \right) + L_{fs} \imath_{s} \right) = u_{s} - R_{s} \imath_{s} \end{cases}$$

with $\Lambda_m = L_m + \frac{|\imath_s + \imath_r e^{\imath n_p \theta}|}{2} L'_m$ function of $|\imath_s + \imath_r e^{\imath n_p \theta}|$.

Induction machines: space-harmonics and magnetic-saturation. Add contribution of space harmonics to magnetic Lagrangien:

$$\frac{L_m\left(\left|\imath_{s}+\imath_{r}e^{\jmath n_{p}\theta}\right|\right)}{2}\left|\imath_{s}+\imath_{r}e^{\jmath n_{p}\theta}\right|^{2}+\frac{L_{fr}}{2}\imath_{r}\imath_{r}^{*}+\frac{L_{fs}}{2}\imath_{s}\imath_{s}^{*}+\frac{L_{\nu}}{2}\left(\imath_{s}\imath_{r}^{*}e^{-\jmath\sigma_{\nu}\nu n_{p}\theta}+\imath_{s}^{*}\imath_{r}e^{\jmath\sigma_{\nu}\nu n_{p}\theta}\right)$$

with $L_{\nu} > 0$ a small parameter ($|L_{\nu}| \ll L_m$) and $\sigma_{\nu} = \pm 1$ depending on arithmetic conditions⁵. The dynamical model is changed as follows:

$$\frac{d}{dt} \left(J\dot{\theta} \right) = n_{\rho} \Im \left(\left(\Lambda_{m} e^{-j n_{\rho} \theta} + L_{\nu} \sigma_{\nu} \nu e^{-j \sigma_{\nu} \nu n_{\rho} \theta} \right) \imath_{r}^{*} \imath_{s} \right) - \tau_{L} \\
\frac{d}{dt} \left(\Lambda_{m} \left(\imath_{r} + \imath_{s} e^{-j n_{\rho} \theta} \right) + L_{fr} \imath_{r} + L_{\nu} \imath_{s} e^{-j \sigma_{\nu} \nu n_{\rho} \theta} \right) = -R_{r} \imath_{r} \\
\frac{d}{dt} \left(\Lambda_{m} \left(\imath_{s} + \imath_{r} e^{j n_{\rho} \theta} \right) + L_{fs} \imath_{s} + L_{\nu} \imath_{r} e^{j \sigma_{\nu} \nu n_{\rho} \theta} \right) = u_{s} - R_{s} \imath_{s}$$

⁵See H.R. Fudeh and C.M. Ong: Modeling and analysis of induction machines containing space harmonics. Part-I: modeling and transformation. *IEEE Transactions on Power Apparatus and Systems*, 102:2608–2615, 1983.

Sensorless control of PM machines

Sensorless control: a load torque τ_L constant but unknown, control inputs u_s and measured outputs i_s ⁶ Physical models including saliency and magnetic saturation associated to Lagrangian $\mathcal{L}_{PM} = \frac{J}{2}\dot{\theta}^2 + \mathcal{L}_m(\theta, i_s, i_s^*)$,

$$\frac{d}{dt}\left(J\dot{\theta}\right) = \frac{\partial \mathcal{L}_m}{\partial \theta} - \tau_L, \quad \frac{d}{dt}\left(2\frac{\partial \mathcal{L}_m}{\partial \imath_s^*}\right) = u_s - R_s \imath_s$$

can be always written in state-space form

$$\frac{d}{dt}X = f(X, U), \qquad Y = h(X)$$

where $X = (\tau_L, \theta, \dot{\theta}, \Re(\imath_s), \Im(\imath_s))$ with $U = (\Re(u_s), \Im(u_s))$, $Y = (\Re(\imath_s), \Im(\imath_s))$ and $\frac{d}{dt}\tau_L = 0$.

⁶For a nice exposure see J. Holtz: Sensorless control of induction motor drives. *Proc. of the IEEE*, 90(8):1359–1394, 2002.

Sensorless control around zero stator frequency

A stationary regime at zero stator frequency corresponds then to a steady state $(\bar{X}, \bar{U}, \bar{Y})$ satisfying $f(\bar{X}, \bar{U}) = 0$, $\bar{Y} = h(\bar{X})$. For a PM machines we get

$$\frac{\partial \mathcal{L}_{m}}{\partial \theta}(\theta, \imath_{s}, \imath_{s}^{*}) - \tau_{L} = \mathbf{0}, \quad \imath_{s} = \bar{\imath_{s}}$$

to recover (θ, i_s, τ_L) from the stationary values \bar{u}_s and \bar{i}_s . This implies severe observability difficulties:

- to any constant input and output ū_s and ī_s satisfying ū_s = R_sī_s correspond a one dimensional family of steady states parameterized by the scalar variable ξ with τ_L = ∂Lm (ξ, ī_s, ī^{*}_s), θ = ξ, ι_s = ī_s.
- the linear tangent systems around such steady-states are not observable;

The situation is similar for induction machines: including space-harmonic and magnetic-saturation does not canceled such lack of observability.

Concluding remarks

- Extensions to network of machines and generators connected via long lines can also be developed with similar variational principles and Euler-Lagrange equations with complex currents and voltages (ODE or PDE).
- ► Observability issues at zero stator frequency: a strong motivation for theoretical works on the following specific stabilization problem involving an unknown constant parameter *p*: take d/dt x = f(x, u, p), y = h(x) a nonlinear system where {(x, p) | f(x, ū, p) = 0, h(x) = ȳ} is a smooth curve; take any (x̄, p̄) on this equilibrium curve; under which conditions is it possible to construct (without knowing *p*) a (dynamic) output feedback stabilizing x around x̄ in a robust way.