Invariant Observers for Mechanical systems

Pierre Rouchon Ecole des Mines de Paris Centre Automatique et Systèmes pierre.rouchon@ensmp.fr

Dresden, March 2004 Work with Nasradine Aghannan

Outline :

Lagrangian dynamics $\mathcal{L} = \frac{1}{2}g_{ij}(q)\dot{q}^i\dot{q}^j - U(q)$ with position measures y = q. Asymptotic estimation of $\dot{q} = v$, independent of the coordinates chosen on the configuration space q.

- 1. The Euclidian case: $\ddot{q} = -\text{grad}_q U$.
- 2. The non Euclidian case: $\nabla_{\dot{q}}\dot{q} = -\text{grad}_{q}U$.
- 3. Observer convergence : contraction tools.

The Euclidian case

Lagrangian: $\mathcal{L} = \frac{1}{2}\dot{q}^2 - U(q)$ where q^i are Euclidian coordinates:

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}^i} \right) = \frac{\partial \mathcal{L}}{\partial q^i}, \quad \text{i.e.} \quad \ddot{q}^i = -\frac{\partial U}{\partial q^i}.$$

Nonlinear observer via input injection:

$$\begin{split} \dot{\hat{q}}^{i} &= \hat{v}^{i} - \alpha(\hat{q}^{i} - q^{i}), \quad \dot{\hat{v}}^{i} = -\frac{\partial U}{\partial q^{i}}(q) - \beta(\hat{q}^{i} - q^{i}). \\ \text{Error dynamics, } \tilde{q}^{i} &= \hat{q}^{i} - q^{i}, \quad \tilde{v}^{i} = \hat{v}^{i} - v^{i} \text{ (stable for } \alpha, \beta > 0): \\ \dot{\tilde{q}}^{i} &= \tilde{v}^{i} - \alpha \tilde{q}^{i}, \quad \dot{\tilde{v}}^{i} = -\beta \tilde{q}^{i}. \end{split}$$

What is going on when the q^i 's are not Euclidian coordinates? The same system but in another frame $q = \phi(Q)$:

$$\mathcal{L} = \frac{1}{2} g_{ij}(Q) \dot{Q}^i \dot{Q}^j - U(\phi(Q)) \quad \text{with} \quad (g_{ij}) = D\phi^T D\phi.$$

Configuration space and local coordinates.

The goal is to have a design method that is independent of the coordinates chosen on the configuration space. This is not the case if we use classical design with observers of the form

$$\dot{\hat{x}} = f(\hat{x}) + k(h(\hat{x}) - y)$$

for nonlinear system $\dot{x} = f(x)$, y = h(x).

Intrinsic interpretation of the dynamics

The positive definite matrix $(g_{ij}(q))$ define a scalar product on the tangent space at q to the configuration manifold (Riemannian manifold): we can measure distances and transport vectors along geodesics. Intrinsic formulation

$$\dot{\hat{q}}^i = \hat{v}^i - \alpha(\hat{q}^i - q^i), \quad \dot{\hat{v}}^i = -\frac{\partial U}{\partial q^i}(q) - \beta(\hat{q}^i - q^i).$$

The components $\hat{q}^i - q^i$ are related to the gradient of the geodesic distance between the point q and \hat{q} :

$$\widehat{q} - q = \operatorname{grad}_{\widehat{q}} F(q, \widehat{q})$$

where F is the half square of the geodesic distance between q and $\hat{q}.$

The injection term can be done via parallel transport: $grad_q U(q)$ is a tangent vector at q. To have a tangent vector at \hat{q} , we take $\mathcal{T}_{//q \to \hat{q}}(grad_q U(q))$.

It remains the term $\dot{\hat{v}}^i$ that corresponds in fact the covariant derivative of \hat{v} along the curve followed by \hat{q} : $\nabla_{\dot{q}}\hat{v}$ when you gather $\dot{\hat{v}}$ with "gyroscopic like terms".

Intrinsic formulation

 $\hat{q} = \hat{v} - \alpha \operatorname{grad}_{\hat{q}} F(q, \hat{q}), \quad \nabla_{\hat{q}} \hat{v} = -\mathcal{T}_{//q \to \hat{q}}(\operatorname{grad}_{q} U(q)) - \beta \operatorname{grad}_{\hat{q}} F(q, \hat{q}).$ For the metric g_{ij} we have in local coordinates:

$$\{\nabla_{\hat{q}}\hat{v}\}^{i} = \dot{\hat{v}}^{i} + \Gamma^{i}_{jk}(\hat{q})\hat{v}^{j}\dot{\hat{q}}^{k}, \quad \operatorname{grad}_{q}U(q) = g^{ij}\partial_{q^{j}}U, \quad \dots$$

and the parallel transport along the geodesic joining q to \hat{q} is defined by solving a linear differential equation along this geodesic.

The Christoffel symbols Γ^{i}_{jk} are given by

$$\Gamma^{i}_{jk} = \frac{1}{2}g^{il} \left(\frac{\partial g_{lk}}{\partial q^{j}} + \frac{\partial g_{jl}}{\partial q^{k}} - \frac{\partial g_{jk}}{\partial q^{l}} \right)$$

where g^{il} are the entries of $(g_{ij})^{-1}$.

Invariant observer representation

A first order approximation

The intrinsic formulation

 $\hat{q} = \hat{v} - \alpha \operatorname{grad}_{\hat{q}} F(q, \hat{q}), \quad \nabla_{\hat{q}} \hat{v} = -\mathcal{T}_{//q \to \hat{q}}(\operatorname{grad}_{q} U(q)) - \beta \operatorname{grad}_{\hat{q}} F(q, \hat{q}).$ is not very useful in practice. But when \hat{q} is close to q we have the following explicit approximation

$$\begin{aligned} \dot{\hat{q}}^i &= \hat{v}^i - \alpha (\hat{q}^i - q^i) \\ \dot{\hat{v}}^i &= -\Gamma^i_{jk}(\hat{q}) \hat{v}^j \dot{\hat{q}}^k - \partial_{q^i} U(q) - \Gamma^i_{jl}(q) (\partial_{q^j} U(q)) (\hat{q}^l - q^l) - \beta (\hat{q}^i - q^i). \end{aligned}$$

We know that when the metric is Euclidian, i.e., when exist local coordinates such that $g_{ij} = \delta_{ij}$, such observer is asymptotically stable around any trajectories (q, \dot{q}) .

Summarize of the Euclidian case (dim q = 1 and U = 0)

$$\mathcal{L} = \frac{1}{2}\dot{q}^{2}$$

$$\begin{cases} \dot{q} = v \\ \dot{v} = 0 \end{cases}$$

$$\begin{cases} \dot{q} = v \\ \dot{v} = 0 \end{cases}$$

$$\begin{cases} \dot{q} = v \\ \nabla_{\dot{q}}v = 0 \end{cases}$$

$$\begin{cases} \dot{q} = \hat{v} - \alpha(\hat{q} - q) \\ \dot{v} = 0 - \beta(\hat{q} - q) \end{cases}$$

$$\begin{cases} \dot{q} = \hat{v} - \alpha \operatorname{grad}_{\hat{q}} F(q, \hat{q}) \\ \nabla_{\dot{q}}\hat{v} = 0 - \beta \operatorname{grad}_{\hat{q}} F(q, \hat{q}) \end{cases}$$

$$F(q, \hat{q}) = \frac{1}{2}(\hat{q} - q)^{2}$$

$$F(q, \hat{q}) = \frac{1}{2}d_{G}(q, \hat{q})^{2}$$

$$F(q, \hat{q}) = \frac{1}{2}d_{G}(q, \hat{q})^{2}$$

An example

Convergence ?

When the metric (g_{ij}) is Euclidian (flat space), we know that $\dot{\hat{q}} = \hat{v} - \alpha \operatorname{grad}_{\hat{q}} F(q, \hat{q}), \quad \nabla_{\dot{q}} \hat{v} = -\mathcal{T}_{//q \to \hat{q}} (\operatorname{grad}_{q} U(q)) - \beta \operatorname{grad}_{\hat{q}} F(q, \hat{q}).$ is convergent as soon as the gains $\alpha, \beta > 0$. It is not the case when the metric is not flat, i.e., when the Riemann curvature tensor R (order 4) is not identically zero (Gauss theorem): for any tangent vector ξ, ζ at $q, R(\xi, \zeta)$ is a linear application on the tangent space at q. In local coordinates, we have

$$\{R(\xi,\zeta)\eta\}^i = R^i_{jkl}\xi^k\zeta^l\eta^j$$

where R_{jkl}^{i} are the components of the curvature tensor:

$$R^{i}_{jkl} = \frac{\partial \Gamma^{i}_{jk}}{\partial q^{l}} - \frac{\partial \Gamma^{i}_{jl}}{\partial q^{k}} + \Gamma^{i}_{pl} \Gamma^{p}_{jk} - \Gamma^{i}_{pk} \Gamma^{p}_{jl}$$

Jacobi equation

Take a geodesic dynamics (no potential): $\nabla_{\dot{q}}\dot{q} = 0$. Denoted by ξ the first variation of geodesic (ξ corresponds to δq): it obeys the Jacobi equation

$$\frac{D^2\xi}{Dt^2} = -R(\dot{q},\xi)\dot{q}$$

where the operator $D/Dt = \nabla_{\dot{q}}$ corresponds to the covariant derivation along $t \mapsto q(t)$. Moreover $\xi \mapsto R(\dot{q},\xi)\dot{q}$ is a symmetric operator. Thus we can write formally

 $R(\dot{q},\xi)\dot{q} = \operatorname{grad}_{\xi}W(\xi), \quad \text{with} \quad W(\xi) = \langle R(\dot{q},\xi)\dot{q},\xi\rangle/2.$

Formally the quadratic form W is positive (positive curvature) ξ oscillates and when it admits a negative part, ξ diverges exponentially (the geodesic flow is unstable).

Jacobi equation (end)

Formally, the Jacobi equation

$$\frac{D^2\xi}{Dt^2} = -\operatorname{grad}_{\xi} W(\xi)$$

is stable when the quadratic form, the potential W is positive (positive sectional curvature K) and ξ oscillates. When the potential W admits a negative part, ξ diverges exponentially (the geodesic flow is unstable).

The convergent observer in the non Euclidian case

The locally convergent observer of the mechanical system

$$\dot{q} = v$$

 $\nabla_{\dot{q}}v = S(q,t)$

is then

$$\begin{split} \dot{\hat{q}} &= \hat{v} - \alpha \ \operatorname{grad}_{\hat{q}} F(\hat{q}, q) \\ \nabla_{\dot{\hat{q}}} \hat{v} &= \mathcal{T}_{//q \to \hat{q}} S(q, t) - \beta \ \operatorname{grad}_{\hat{q}} F(\hat{q}, q) + R(\hat{v}, \operatorname{grad}_{\hat{q}} F(\hat{q}, q)) \hat{v} \end{split}$$

where we have added a curvature term to compensate the effect of a non Euclidian metric.

The approximate observer in the non Euclidian case

Since

$$\{\operatorname{grad}_{\widehat{q}}F\}^{i} = \widehat{q}^{i} - q^{i} + O(\|\widehat{q} - q\|^{2}) \\ \{\mathcal{T}_{//q \to \widehat{q}}w\}^{i} = w^{i} - \Gamma^{i}_{jl}(q)w^{j}(\widehat{q}^{l} - q^{l}) + O(\|\widehat{q} - q\|^{2})$$

we have the following approximate observer

$$\begin{aligned} \dot{\hat{q}}^i &= \hat{v}^i - \alpha (\hat{q}^i - q^i) \\ \dot{\hat{v}}^i &= -\Gamma^i_{jk}(\hat{q}) \hat{v}^j \dot{\hat{q}}^k + S^i(q,t) - \Gamma^i_{jl}(q) S^j(q,t) (\hat{q}^l - q^l) - \beta (\hat{q}^i - q^i) \\ &+ R^i_{jkl}(q) \hat{v}^k (\hat{q}^l - q^l) \hat{v}^j. \end{aligned}$$

of the mechanical system

$$\dot{q}^{i} = v^{i}$$

$$\dot{v}^{i} = -\Gamma^{i}_{jk}(q)v^{j}v^{k} + S^{i}(q,t)$$

First order variation.

The linearized dynamics around \hat{q} : as for the Jacobi equation, use $D/Dt = \nabla_{\hat{q}}$ instead of d/dt. Denote by $\xi = \delta \hat{q}$ and ζ the covariant variation of the estimated velocity. Then tedious computations in local coordinates gives, when written in intrinsic manner:

$$\begin{aligned} \nabla_{\hat{q}}\xi &= \zeta - \alpha \nabla_{\xi} \mathrm{grad}_{\hat{q}} F(\hat{q}, q) \\ \nabla_{\hat{q}}\zeta &= -R(\hat{q}, \xi) \hat{v} + \nabla_{\xi} \left(\mathcal{T}_{//q \to \hat{q}} S(q, t) \right) - \beta \nabla_{\xi} \mathrm{grad}_{\hat{q}} F(\hat{q}, q) \\ (\nabla_{\xi} R)(\hat{v}, \mathrm{grad}_{\hat{q}} F(\hat{q}, q)) \hat{v} + 2R(\zeta, \mathrm{grad}_{\hat{q}} F(\hat{q}, q)) \hat{v} \\ &+ R(\hat{v}, \nabla_{\xi} \mathrm{grad}_{\hat{q}} F(\hat{q}, q)) \hat{v} \end{aligned}$$

which gives when $\hat{q}=q$

$$\frac{D\xi}{Dt} = \zeta - \alpha \ \xi, \quad \frac{D\zeta}{Dt} = -\beta\xi$$

Convergence analysis: local contraction for a good metric on the tangent bundle.

 $\frac{D\xi}{Dt} = \zeta - \alpha \ \xi, \quad \frac{D\zeta}{Dt} = -\beta\xi$ For $\alpha, \beta > 0$, $A = \begin{pmatrix} -\alpha & 1 \\ -\beta & 0 \end{pmatrix}$ is Hurwitz. There exists a positive definite quadratic form $Q = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$ such that $A^tQ + QA = -I$. Equipped the tangent bundle with the following metric

$$\frac{a}{2}\langle\xi,\xi\rangle + c\,\langle\xi,\zeta\rangle + \frac{b}{2}\,\langle\zeta,\zeta\rangle\,.$$

Convergence analysis: the metric on the tangent bundle.

$$\frac{a}{2}\langle\xi,\xi\rangle + c\,\langle\xi,\zeta\rangle + \frac{b}{2}\,\langle\zeta,\zeta\rangle\,.$$

In local coordinates (q^i, v^i) , the length of the small vector $(\delta q^i, \delta v^i)$ tangent to (q, v) is

$$V\left(\delta q , (\delta v^{i} + \Gamma^{i}_{kl}(q)v^{k}\delta q^{l})_{i=1...n}\right) = \frac{a}{2} g_{ij} \delta q^{i} \delta q^{j}$$
$$+ c g_{ij} (\delta v^{i} + \Gamma^{i}_{kl}(q)v^{k}\delta q^{l}) \delta q^{j}$$
$$+ \frac{b}{2} g_{ij} (\delta v^{i} + \Gamma^{i}_{kl}(q)v^{k}\delta q^{l}) (\delta v^{j} + \Gamma^{j}_{kl}(q)v^{k}\delta q^{l})$$

This defines a Riemannian structure on the tangent bundle. In the local coordinates (q^i, v^i) , the metric is a $2n \times 2n$ matrix with entries function of q and v.

Convergence analysis: local contraction around q.

Set X = (q, v). Denote by G(X) the matrix defining the metric and by $\dot{X} = \Upsilon(X, \hat{X})$ the observer.

By construction $\dot{X} = \Upsilon(X, X)$ corresponds to the true dynamics. The above developments prove in fact that, for $\hat{X} = X$, we have the following matrix inequality

$$\frac{\partial G}{\partial X}\Big|_{\hat{X}} \Upsilon(X,\hat{X}) + \left(\frac{\partial \Upsilon}{\partial \hat{X}}\Big|_{(X,\hat{X})}\right)^T G(\hat{X}) + G(\hat{X}) \left(\frac{\partial \Upsilon}{\partial \hat{X}}\Big|_{(X,\hat{X})}\right) \leq -\lambda G(\hat{X}).$$

proving that the observer dynamics is a contraction when the estimated position \hat{q} is close to the real one q .

The Ball and Beam system: equations

The approximated invariant observer

$$\dot{\hat{r}} = \hat{v}_r - \alpha(\hat{r} - r)$$
$$\dot{\theta} = \hat{v}_\theta - \alpha(\hat{\theta} - \theta)$$

$$\dot{\hat{v}}_r = \hat{r}\dot{\hat{\theta}}\hat{v}_\theta - \left(\sin\theta + \hat{r}(\hat{r} - r)\frac{r\cos\theta - u}{1 + r^2}\right) - \beta(\hat{r} - r) + \left(\frac{1}{1 + \hat{r}^2}\hat{v}_r\hat{v}_\theta(\hat{\theta} - \theta) + \frac{-1}{1 + \hat{r}^2}\hat{v}_\theta^2(\hat{r} - r)\right)$$

$$\begin{split} \dot{\hat{v}}_{\theta} &= \frac{-\hat{r}}{1+\hat{r}^2} (\dot{\hat{r}} \hat{v}_{\theta} + \hat{v}_r \dot{\hat{\theta}}) - \left(\frac{r \cos \theta}{1+r^2} - \frac{\hat{r}}{1+\hat{r}^2} \left((\hat{r}-r) \frac{r \cos \theta - u}{1+r^2} + (\hat{\theta}-\theta) \sin \theta \right) \right) \\ &- \beta (\hat{\theta}-\theta) + \left(\frac{1}{(1+\hat{r}^2)^2} \hat{v}_r^2 (\hat{\theta}-\theta) + \frac{-1}{(1+\hat{r}^2)^2} \hat{v}_r \hat{v}_{\theta} (\hat{r}-r) \right) \end{split}$$

Perfect incompressible fluid

The configuration space M is the Lie group of volume preserving diffeomorphisms on Ω , a bounded connected domain of \mathbb{R}^3 (J.J.Moreau, V. Arnol'd, ...).

 $\mathcal{U} = T_{I_d}M$ is the Lie algebra of vector fields in Ω of zero divergence and tangent to the boundary $\partial\Omega$.

M is The scalar product on \mathcal{U} is derived from the kinetic energy,

$$\langle \vec{v}, \vec{\xi} \rangle = \iiint_{\Omega} \vec{v}(x) \cdot \vec{\xi}(x) dx$$

and is invariant through the right translations $(g \in M)$:

$$R_g: h \in M \to h \circ g \in M$$

The covariant derivation is

$$\nabla_{\vec{v}}\vec{\xi} = \frac{\partial\vec{\xi}}{\partial t} + (\vec{v}\cdot\nabla)\vec{\xi} + \nabla\eta$$

with $\vec{v}(t, \mathbf{I})$ and $\vec{\xi}(t, \mathbf{I})$ in \mathcal{U} . The gradient field $\nabla \eta$ is completely defined by the fact that $\nabla_{\vec{v}}\vec{\xi}$ must belong to \mathcal{U} (it is solution of a Laplace equation in Ω with Neuman conditions on $\partial\Omega$).

If $\vec{v}(t, \mathbf{I}) \in \mathcal{U}$ is solution of the Euler equation, i.e., $\nabla_{\vec{v}} \vec{v} = 0$, the curve $t \longrightarrow \phi_t^{\vec{v}}$ is a geodesic on M where $\phi_t^{\vec{v}}$ is the flow of the vector field \vec{v} .

The large nabla " ∇ " is used for the covariant derivation on M and the small nabla " ∇ " for the gradient operator in the 3-D Euclidian space \mathbb{R}^3 .

Here the role of q is played by the flow ϕ , the role of v by the vector field \vec{v} . The analogue of the first order approximation of the invariant observer reads:

$$\frac{\partial \hat{\phi}}{\partial t}(t,x) = \hat{\vec{v}}(t,\hat{\phi}(t,x)) - \alpha \vec{e}(t,\hat{\phi}(t,x))$$
$$\frac{\partial \hat{\vec{v}}}{\partial t} = -\nabla \eta - \left((\hat{\vec{v}} - \alpha \vec{e}) \cdot \nabla \right) \hat{\vec{v}} - \beta \vec{e} + (\vec{e} \cdot \nabla) \nabla \hat{p} - (\hat{\vec{v}} \cdot \nabla) \nabla \hat{\eta}$$

where

- $\vec{e} \in \mathcal{U}$ corresponds to the position errors $\hat{q}-q$, i.e., $\vec{e}(t, \phi(t, x)) \approx \hat{\phi}(t, x) \phi(t, x)$. The gradient field $\nabla \eta$ ensures $\frac{\partial \hat{\vec{v}}}{\partial t} \in \mathcal{U}$.
- the term $(\vec{e} \cdot \nabla) \nabla \hat{p} (\hat{\vec{v}} \cdot \nabla) \nabla \hat{\eta}$ corresponds to the curvature term $R(\hat{v}, \hat{q} - q)\hat{v}$ (PR 1992); the gradient field $\nabla \hat{p}$ is such that $\nabla \hat{p} + (\hat{\vec{v}} \cdot \nabla)\hat{\vec{v}} \in \mathcal{U}$ and $\nabla \hat{\eta}$ such that $\nabla \hat{\eta} + (\hat{\vec{v}} \cdot \nabla)\vec{e} \in \mathcal{U}$.

Conclusion

- Observer design locally convergent and independent of the coordinates used on the configuration space. Practically, the gain scheduling is automatically done via geometric object such a the Christoffel symbol and the curvature tensor
- Possible extension to other nonlinear system via an adapted notion of error.