Invariant Observers
 for Mechanical systems

Pierre Rouchon
Ecole des Mines de Paris
Centre Automatique et Systèmes
pierre.rouchon@ensmp.fr

Dresden, March 2004
Work with Nasradine Aghannan

Outline :

Lagrangian dynamics $\mathcal{L}=\frac{1}{2} g_{i j}(q) \dot{q}^{i} \dot{q}^{j}-U(q)$ with position measures $y=q$. Asymptotic estimation of $\dot{q}=v$, independent of the coordinates chosen on the configuration space q.

1. The Euclidian case: $\ddot{q}=-\operatorname{grad}_{q} U$.
2. The non Euclidian case: $\nabla_{\dot{q}} \dot{q}=-\operatorname{grad}_{q} U$.
3. Observer convergence : contraction tools.

The Euclidian case

Lagrangian: $\mathcal{L}=\frac{1}{2} \dot{q}^{2}-U(q)$ where q^{i} are Euclidian coordinates:

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}^{i}}\right)=\frac{\partial \mathcal{L}}{\partial q^{i}}, \quad \text { i.e. } \quad \ddot{q}^{i}=-\frac{\partial U}{\partial q^{i}} .
$$

Nonlinear observer via input injection:

$$
\dot{\tilde{q}}^{i}=\widehat{v}^{i}-\alpha\left(\widehat{q}^{i}-q^{i}\right), \quad \dot{\hat{v}}^{i}=-\frac{\partial U}{\partial q^{i}}(q)-\beta\left(\widehat{q}^{i}-q^{i}\right) .
$$

Error dynamics, $\tilde{q}^{i}=\widehat{q}^{i}-q^{i}, \tilde{v}^{i}=\widehat{v}^{i}-v^{i}$ (stable for $\alpha, \beta>0$):

$$
\dot{\tilde{q}}^{i}=\tilde{v}^{i}-\alpha \tilde{q}^{i}, \quad \dot{\tilde{v}}^{i}=-\beta \tilde{q}^{i}
$$

What is going on when the q^{i} 's are not Euclidian coordinates? The same system but in another frame $q=\phi(Q)$:

$$
\mathcal{L}=\frac{1}{2} g_{i j}(Q) \dot{Q}^{i} \dot{Q}^{j}-U(\phi(Q)) \quad \text { with } \quad\left(g_{i j}\right)=D \phi^{T} D \phi
$$

Configuration space and local coordinates.

The goal is to have a design method that is independent of the coordinates chosen on the configuration space. This is not the case if we use classical design with observers of the form

$$
\dot{\hat{x}}=f(\widehat{x})+k(h(\widehat{x})-y)
$$

for nonlinear system $\dot{x}=f(x), y=h(x)$.

Intrinsic interpretation of the dynamics

The positive definite matrix $\left(g_{i j}(q)\right)$ define a scalar product on the tangent space at q to the configuration manifold (Riemannian manifold): we can measure distances and transport vectors along geodesics.

Intrinsic formulation

$$
\dot{\tilde{q}}^{i}=\widehat{v}^{i}-\alpha\left(\widehat{q}^{i}-q^{i}\right), \quad \dot{\hat{v}}^{i}=-\frac{\partial U}{\partial q^{i}}(q)-\beta\left(\widehat{q}^{i}-q^{i}\right)
$$

The components $\hat{q}^{i}-q^{i}$ are related to the gradient of the geodesic distance between the point q and \widehat{q} :

$$
\widehat{q}-q=\operatorname{grad}_{\widehat{q}} F(q, \widehat{q})
$$

where F is the half square of the geodesic distance between q and \hat{q}.

The injection term can be done via parallel transport: $\operatorname{grad}_{q} U(q)$ is a tangent vector at q. To have a tangent vector at \hat{q}, we take $\mathcal{T}_{/ / q \rightarrow \widetilde{q}}\left(\operatorname{grad}_{q} U(q)\right)$.

It remains the term $\dot{\hat{v}}^{i}$ that corresponds in fact the covariant derivative of \widehat{v} along the curve followed by \widehat{q} : $\nabla_{\dot{\tilde{q}}} \widehat{v}$ when you gather $\dot{\hat{v}}$ with "gyroscopic like terms".

Intrinsic formulation

$\dot{\vec{q}}=\widehat{v}-\alpha \operatorname{grad}_{\hat{q}} F(q, \widehat{q}), \quad \nabla_{\dot{\tilde{q}}} \widehat{v}=-\mathcal{T}_{/ / q \rightarrow \widehat{q}}\left(\operatorname{grad}_{q} U(q)\right)-\beta \operatorname{grad}_{\widehat{q}} F(q, \widehat{q})$.
For the metric $g_{i j}$ we have in local coordinates:

$$
\left\{\nabla_{\dot{\tilde{q}}} \widehat{v}\right\}^{i}=\dot{\dot{v}}^{i}+\Gamma_{j k}^{i}(\widehat{q}) \widehat{v}^{j} \dot{\bar{q}}^{k}, \quad \operatorname{grad}_{q} U(q)=g^{i j} \partial_{q^{j}} U
$$

and the parallel transport along the geodesic joining q to \widehat{q} is defined by solving a linear differential equation along this geodesic.

The Christoffel symbols $\Gamma_{j k}^{i}$ are given by

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i l}\left(\frac{\partial g_{l k}}{\partial q^{j}}+\frac{\partial g_{j l}}{\partial q^{k}}-\frac{\partial g_{j k}}{\partial q^{l}}\right)
$$

where $g^{i l}$ are the entries of $\left(g_{i j}\right)^{-1}$.

Invariant observer representation

A first order approximation

The intrinsic formulation
$\dot{\vec{q}}=\widehat{v}-\alpha \operatorname{grad}_{\widehat{q}} F(q, \widehat{q}), \quad \nabla_{\dot{\tilde{q}}} \widehat{v}=-\mathcal{T}_{/ / q \rightarrow \widehat{q}}\left(\operatorname{grad}_{q} U(q)\right)-\beta \operatorname{grad}_{\widehat{q}} F(q, \widehat{q})$. is not very useful in practice. But when \hat{q} is close to q we have the following explicit approximation
$\dot{\dot{q}}^{i}=\widehat{v}^{i}-\alpha\left(\widehat{q}^{i}-q^{i}\right)$
$\dot{\hat{v}}^{i}=-\Gamma^{i}{ }_{j k}(\widehat{q}) \widehat{v}^{j} \dot{\tilde{q}}^{k}-\partial_{q^{i}} U(q)-\Gamma_{j l}^{i}(q)\left(\partial_{q^{j}} U(q)\right)\left(\widehat{q}^{l}-q^{l}\right)-\beta\left(\tilde{q}^{i}-q^{i}\right)$.
We know that when the metric is Euclidian, i.e., when exist local coordinates such that $g_{i j}=\delta_{i j}$, such observer is asymptotically stable around any trajectories (q, \dot{q}).

Summarize of the Euclidian case $(\operatorname{dim} q=1$ and $U=0)$

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2} \dot{q}^{2} \\
& \left\{\begin{array}{l}
\dot{q}=v \\
\dot{v}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{\vec{q}}=\widehat{v}-\alpha(\hat{q}-q) \\
\dot{\hat{v}}=0-\beta(\widehat{q}-q)
\end{array}\right. \\
& F(q, \widehat{q})=\frac{1}{2}(\widehat{q}-q)^{2} \\
& \operatorname{grad}_{\widehat{q}} F(q, \widehat{q})=\widehat{q}-q \\
& \mathcal{L}=\frac{1}{2} g(q) \dot{q}^{2} \\
& \left\{\begin{aligned}
\dot{q} & =v \\
\nabla_{\dot{q}} v & =0
\end{aligned}\right. \\
& \left\{\begin{aligned}
\dot{\hat{q}} & =\widehat{v}-\alpha \operatorname{grad}_{\widehat{q}} F(q, \widehat{q}) \\
\nabla_{\dot{\tilde{q}}} \widehat{v} & =0-\beta \operatorname{grad}_{\widehat{q}} F(q, \widehat{q})
\end{aligned}\right. \\
& F(q, \widehat{q})=\frac{1}{2} d_{G}(q, \widehat{q})^{2}
\end{aligned}
$$

An example

$$
\begin{aligned}
& \text { q-coordinate } \\
& \left\{\begin{array}{l}
\dot{\hat{q}}=\widehat{v}-\alpha(\widehat{q}-q) \\
\dot{\hat{v}}=0-\beta(\widehat{q}-q)
\end{array}\right. \\
& \text { r-coordinate : } \quad r=\exp (q) \\
& \mathcal{L}(r, \dot{r})=\frac{1}{2} \frac{\dot{r}^{2}}{r^{2}} \\
& \left\{\begin{array}{c}
\dot{r}=w \\
\dot{w}=\frac{w^{2}}{r}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{\vec{r}}=\widehat{w}-\alpha \widehat{r}(\ln \widehat{r}-\ln r) \\
\dot{\hat{w}}=\frac{\widehat{w} \dot{\vec{r}}}{\widehat{r}}-\beta \widehat{r}(\ln \widehat{r}-\ln r)
\end{array}\right.
\end{aligned}
$$

Convergence ?

When the metric $\left(g_{i j}\right)$ is Euclidian (flat space), we know that
$\dot{\tilde{q}}=\widehat{v}-\alpha \operatorname{grad}_{\widehat{q}} F(q, \widehat{q}), \quad \nabla_{\dot{\tilde{q}}} \widehat{v}=-\mathcal{T}_{/ / q \rightarrow \widehat{q}}\left(\operatorname{grad}_{q} U(q)\right)-\beta \operatorname{grad}_{\widehat{q}} F(q, \widehat{q})$. is convergent as soon as the gains $\alpha, \beta>0$. It is not the case when the metric is not flat, i.e., when the Riemann curvature tensor R (order 4) is not identically zero (Gauss theorem): for any tangent vector ξ, ζ at $q, R(\xi, \zeta)$ is a linear application on the tangent space at q. In local coordinates, we have

$$
\{R(\xi, \zeta) \eta\}^{i}=R_{j k l}^{i} \xi^{k} \zeta^{l} \eta^{j}
$$

where $R_{j k l}^{i}$ are the components of the curvature tensor:

$$
R_{j k l}^{i}=\frac{\partial \Gamma_{j k}^{i}}{\partial q^{l}}-\frac{\partial \Gamma_{j l}^{i}}{\partial q^{k}}+\Gamma_{p l}^{i} \Gamma_{j k}^{p}-\Gamma_{p k}^{i} \Gamma_{j l}^{p}
$$

Jacobi equation

Take a geodesic dynamics (no potential): $\nabla_{\dot{q}} \dot{q}=0$. Denoted by ξ the first variation of geodesic (ξ corresponds to δq): it obeys the Jacobi equation

$$
\frac{D^{2} \xi}{D t^{2}}=-R(\dot{q}, \xi) \dot{q}
$$

where the operator $D / D t=\nabla_{\dot{q}}$ corresponds to the covariant derivation along $t \mapsto q(t)$. Moreover $\xi \mapsto R(\dot{q}, \xi) \dot{q}$ is a symmetric operator. Thus we can write formally

$$
R(\dot{q}, \xi) \dot{q}=\operatorname{grad}_{\xi} W(\xi), \quad \text { with } \quad W(\xi)=\langle R(\dot{q}, \xi) \dot{q}, \xi\rangle / 2
$$

Formally the quadratic form W is positive (positive curvature) ξ oscillates and when it admits a negative part, ξ diverges exponentially (the geodesic flow is unstable).

Jacobi equation (end)

Formally, the Jacobi equation

$$
\frac{D^{2} \xi}{D t^{2}}=-\operatorname{grad}_{\xi} W(\xi)
$$

is stable when the quadratic form, the potential W is positive (positive sectional curvature K) and ξ oscillates. When the potential W admits a negative part, ξ diverges exponentially (the geodesic flow is unstable).

The convergent observer in the non Euclidian case

The locally convergent observer of the mechanical system

$$
\begin{aligned}
\dot{q} & =v \\
\nabla_{\dot{q}} v & =S(q, t)
\end{aligned}
$$

is then

$$
\begin{aligned}
\dot{\dot{q}} & =\widehat{v}-\alpha \operatorname{grad}_{\widehat{q}} F(\widehat{q}, q) \\
\nabla_{\dot{\tilde{q}}} \widehat{v} & =\mathcal{T}_{/ / q \rightarrow \widehat{q}} S(q, t)-\beta \operatorname{grad}_{\widehat{q}} F(\widehat{q}, q)+R\left(\widehat{v}, \operatorname{grad}_{\widehat{q}} F(\widehat{q}, q)\right) \widehat{v}
\end{aligned}
$$

where we have added a curvature term to compensate the effect of a non Euclidian metric.

The approximate observer in the non Euclidian case

Since

$$
\begin{aligned}
\left\{\operatorname{grad}_{\widehat{q}} F\right\}^{i} & =\widehat{q}^{i}-q^{i}+O\left(\|\widehat{q}-q\|^{2}\right) \\
\left\{\mathcal{T}_{/ / q \rightarrow \widehat{q}} w\right\}^{i} & =w^{i}-\Gamma_{j l}^{i}(q) w^{j}\left(\widehat{q}^{l}-q^{l}\right)+O\left(\|\widehat{q}-q\|^{2}\right)
\end{aligned}
$$

we have the following approximate observer

$$
\begin{aligned}
\dot{\tilde{q}}^{i}= & \widehat{v}^{i}-\alpha\left(\widehat{q}^{i}-q^{i}\right) \\
\dot{\hat{v}}^{i}= & -\Gamma_{j k}^{i}(\widehat{q}) \widehat{v}^{j} \dot{\tilde{q}}^{k}+S^{i}(q, t)-\Gamma_{j l}^{i}(q) S^{j}(q, t)\left(\widehat{q}^{l}-q^{l}\right)-\beta\left(\widehat{q}^{i}-q^{i}\right) \\
& +R_{j k l}^{i}(q) \widehat{v}^{k}\left(\widehat{q}^{l}-q^{l}\right) \widehat{v}^{j} .
\end{aligned}
$$

of the mechanical system

$$
\begin{aligned}
& \dot{q}^{i}=v^{i} \\
& \dot{v}^{i}=-\Gamma_{j k}^{i}(q) v^{j} v^{k}+S^{i}(q, t)
\end{aligned}
$$

First order variation.

The linearized dynamics around \hat{q} : as for the Jacobi equation, use $D / D t=\nabla_{\dot{\tilde{q}}}$ instead of $d / d t$. Denote by $\xi=\delta \widehat{q}$ and ζ the covariant variation of the estimated velocity. Then tedious computations in local coordinates gives, when written in intrinsic manner:

$$
\begin{aligned}
\nabla_{\dot{q}} \xi & =\zeta-\alpha \nabla_{\xi} \operatorname{grad}_{\widehat{q}} F(\widehat{q}, q) \\
\nabla_{\dot{q}} \zeta & =-R(\dot{\vec{q}}, \xi) \widehat{v}+\nabla_{\xi}\left(\mathcal{T}_{/ / q \rightarrow \widehat{q}} S(q, t)\right)-\beta \nabla_{\xi} \operatorname{grad}_{\widehat{q}} F(\widehat{q}, q) \\
& \left(\nabla_{\xi} R\right)\left(\widehat{v}, \operatorname{grad}_{\widehat{q}} F(\widehat{q}, q)\right) \widehat{v}+2 R\left(\zeta, \operatorname{grad}_{\widehat{q}} F(\widehat{q}, q)\right) \widehat{v} \\
& +R\left(\widehat{v}, \nabla_{\xi} \operatorname{grad}_{\hat{q}} F(\widehat{q}, q)\right) \widehat{v}
\end{aligned}
$$

which gives when $\widehat{q}=q$

$$
\frac{D \xi}{D t}=\zeta-\alpha \xi, \quad \frac{D \zeta}{D t}=-\beta \xi
$$

Convergence analysis: local contraction for a good metric on the tangent bundle.

$$
\frac{D \xi}{D t}=\zeta-\alpha \xi, \quad \frac{D \zeta}{D t}=-\beta \xi
$$

For $\alpha, \beta>0, A=\left(\begin{array}{ll}-\alpha & 1 \\ -\beta & 0\end{array}\right)$ is Hurwitz. There exists a positive definite quadratic form $Q=\left(\begin{array}{ll}a & c \\ c & b\end{array}\right)$ such that $A^{t} Q+Q A=-I$.
Equipped the tangent bundle with the following metric

$$
\frac{a}{2}\langle\xi, \xi\rangle+c\langle\xi, \zeta\rangle+\frac{b}{2}\langle\zeta, \zeta\rangle .
$$

Convergence analysis: the metric on the tangent bundle.

$$
\frac{a}{2}\langle\xi, \xi\rangle+c\langle\xi, \zeta\rangle+\frac{b}{2}\langle\zeta, \zeta\rangle .
$$

In local coordinates $\left(q^{i}, v^{i}\right)$, the length of the small vector $\left(\delta q^{i}, \delta v^{i}\right)$ tangent to (q, v) is

$$
\begin{aligned}
& V\left(\delta q,\left(\delta v^{i}+\Gamma_{k l}^{i}(q) v^{k} \delta q^{l}\right)_{i=1 \ldots n}\right)=\frac{a}{2} g_{i j} \delta q^{i} \delta q^{j} \\
& \quad+c g_{i j}\left(\delta v^{i}+\Gamma_{k l}^{i}(q) v^{k} \delta q^{l}\right) \delta q^{j} \\
& \quad+\frac{b}{2} g_{i j}\left(\delta v^{i}+\Gamma_{k l}^{i}(q) v^{k} \delta q^{l}\right)\left(\delta v^{j}+\Gamma_{k l}^{j}(q) v^{k} \delta q^{l}\right)
\end{aligned}
$$

This defines a Riemannian structure on the tangent bundle. In the local coordinates $\left(q^{i}, v^{i}\right)$, the metric is a $2 n \times 2 n$ matrix with entries function of q and v.

Convergence analysis: local contraction around q.

Set $X=(q, v)$. Denote by $G(X)$ the matrix defining the metric and by $\dot{X}=\Upsilon(X, \hat{X})$ the observer.

By construction $\dot{X}=\Upsilon(X, X)$ corresponds to the true dynamics. The above developments prove in fact that, for $\widehat{X}=X$, we have the following matrix inequality
$\left.\frac{\partial G}{\partial X}\right|_{\hat{X}} \Upsilon(X, \hat{X})+\left(\left.\frac{\partial \Upsilon}{\partial \hat{X}}\right|_{(X, \hat{X})}\right)^{T} G(\hat{X})+G(\hat{X})\left(\left.\frac{\partial \Upsilon}{\partial \hat{X}}\right|_{(X, \hat{X})}\right) \leq-\lambda G(\hat{X})$.
proving that the observer dynamics is a contraction when the estimated position \widehat{q} is close to the real one q.

The Ball and Beam system: equations

The approximated invariant observer

$$
\begin{aligned}
\dot{\hat{r}} & =\widehat{v}_{r}-\alpha(\widehat{r}-r) \\
\dot{\theta} & =\widehat{v}_{\theta}-\alpha(\widehat{\theta}-\theta) \\
\dot{\hat{v}}_{r} & =\widehat{\hat{r}} \dot{\widehat{v}}_{\theta}-\left(\sin \theta+\widehat{r}(\widehat{r}-r) \frac{r \cos \theta-u}{1+r^{2}}\right) \\
& -\beta(\widehat{r}-r)+\left(\frac{1}{1+\widehat{r}^{2}} \widehat{v}_{r} \widehat{v}_{\theta}(\widehat{\theta}-\theta)+\frac{-1}{1+\widehat{r}^{2}} \widehat{v}_{\theta}^{2}(\widehat{r}-r)\right) \\
\dot{\hat{v}}_{\theta} & =\frac{-\widehat{r}}{1+\widehat{r}^{2}}\left(\dot{\dot{r}} \widehat{v}_{\theta}+\widehat{v}_{r} \dot{\hat{\theta}}\right)-\left(\frac{r \cos \theta}{1+r^{2}}-\frac{\widehat{r}}{1+\widehat{r}^{2}}\left((\widehat{r}-r) \frac{r \cos \theta-u}{1+r^{2}}+(\widehat{\theta}-\theta) \sin \theta\right)\right) \\
& -\beta(\hat{\theta}-\theta)+\left(\frac{1}{\left(1+\widehat{r}^{2}\right)^{2}} \widehat{v}_{r}^{2}(\hat{\theta}-\theta)+\frac{-1}{\left(1+\widehat{r}^{2}\right)^{2}} \widehat{v}_{r} \widehat{v}_{\theta}(\widehat{r}-r)\right)
\end{aligned}
$$

Perfect incompressible fluid

The configuration space M is the Lie group of volume preserving diffeomorphisms on Ω, a bounded connected domain of \mathbb{R}^{3} (J.J.Moreau, V. Arnol'd, ...).
$\mathcal{U}=T_{I_{d}} M$ is the Lie algebra of vector fields in Ω of zero divergence and tangent to the boundary $\partial \Omega$.

M is The scalar product on \mathcal{U} is derived from the kinetic energy,

$$
<\vec{v}, \vec{\xi}>=\iiint_{\Omega} \vec{v}(x) \cdot \vec{\xi}(x) d x
$$

and is invariant through the right translations $(g \in M)$:

$$
R_{g}: h \in M \rightarrow h \circ g \in M
$$

The covariant derivation is

$$
\nabla_{\vec{v}} \vec{\xi}=\frac{\partial \vec{\xi}}{\partial t}+(\vec{v} \cdot \nabla) \vec{\xi}+\nabla \eta
$$

with $\vec{v}(t, \boldsymbol{\bullet})$ and $\vec{\xi}(t, \boldsymbol{\bullet})$ in \mathcal{U}. The gradient field $\nabla \eta$ is completely defined by the fact that $\nabla_{\vec{v}} \vec{\xi}$ must belong to \mathcal{U} (it is solution of a Laplace equation in Ω with Neuman conditions on $\partial \Omega$).

If $\vec{v}(t, \stackrel{\bullet}{ }) \in \mathcal{U}$ is solution of the Euler equation, i.e., $\nabla_{\vec{v}} \vec{v}=0$, the curve $t \longrightarrow \phi_{t}^{\vec{v}}$ is a geodesic on M where $\phi_{t}^{\vec{v}}$ is the flow of the vector field \vec{v}.

The large nabla " ∇ " is used for the covariant derivation on M and the small nabla " ∇ " for the gradient operator in the 3-D Euclidian space \mathbb{R}^{3}.

Here the role of q is played by the flow ϕ, the role of v by the vector field \vec{v}. The analogue of the first order approximation of the invariant observer reads:

$$
\begin{aligned}
\frac{\partial \widehat{\phi}}{\partial t}(t, x) & =\widehat{\vec{v}}(t, \widehat{\phi}(t, x))-\alpha \vec{e}(t, \widehat{\phi}(t, x)) \\
\frac{\partial \hat{\vec{v}}}{\partial t} & =-\nabla \eta-((\hat{\vec{v}}-\alpha \vec{e}) \cdot \nabla) \hat{\vec{v}}-\beta \vec{e}+(\vec{e} \cdot \nabla) \nabla \hat{p}-(\hat{\vec{v}} \cdot \nabla) \nabla \hat{\eta}
\end{aligned}
$$

where

- $\vec{e} \in \mathcal{U}$ corresponds to the position errors $\widehat{q}-q$, i.e., $\vec{e}(t, \phi(t, x)) \approx$ $\widehat{\phi}(t, x)-\phi(t, x)$. The gradient field $\nabla \eta$ ensures $\frac{\partial \hat{\vec{v}}}{\partial t} \in \mathcal{U}$.
- the term $(\vec{e} \cdot \nabla) \nabla \hat{p}-(\hat{\vec{v}} \cdot \nabla) \nabla \hat{\eta}$ corresponds to the curvature term $R(\widehat{v}, \widehat{q}-q) \widehat{v}$ (PR 1992); the gradient field $\nabla \hat{p}$ is such that $\nabla \hat{p}+(\hat{\vec{v}} \cdot \nabla) \hat{\vec{v}} \in \mathcal{U}$ and $\nabla \hat{\eta}$ such that $\nabla \hat{\eta}+(\hat{\vec{v}} \cdot \nabla) \vec{e} \in \mathcal{U}$.

Conclusion

- Observer design locally convergent and independent of the coordinates used on the configuration space. Practically, the gain scheduling is automatically done via geometric object such a the Christoffel symbol and the curvature tensor
- Possible extension to other nonlinear system via an adapted notion of error.

