Stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays

> Pierre Rouchon, Mines-ParisTech, Centre Automatique et Systèmes, pierre.rouchon@mines-paristech.fr

> > Delayed Complex Systems June 2012, Palma de Majorque

> > > Joint work with

Hadis Amini (Mines-ParisTech), Mazyar Mirrahimi (INRIA), Ram Somaraju (INRIA/Vrije Universiteit Brussel) Igor Dotsenko, Serge Haroche (ENS, Collège de France) Michel Brune, Jean-Michel Raimond, Clément Sayrin (ENS).

Outline

Feedback and quantum systems

Measurement-based feedback of photons

The LKB experiment The ideal Markov model Open-loop convergence Closed-loop experimental data

Observer/controller design for the photon box

A strict control Lyapunov control Quantum filter, separation principle and delay

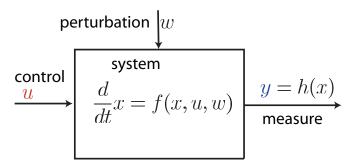
Conclusion: measurement-based versus coherent feedbacks

Generalization to any discrete-time QND systems ¹

Controlled QND Markov chains Open-loop convergence Feedback, delay and closed-loop convergence Imperfect measurements

¹H. Amini et al. Preprint arxiv:1201.1387, 2012. < □ > < ∅ > < ≡ > < ≡ > < ≡ > < ∞ < ∞

Model of classical systems

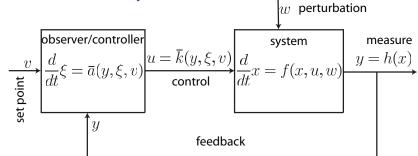


For the harmonic oscillator of pulsation ω with measured position *y*, controlled by the force *u* and subject to an additional unknown force *w*.

$$\begin{aligned} x &= (x_1, x_2) \in \mathbb{R}^2, \quad y = x_1 \\ \frac{d}{dt} x_1 &= x_2, \quad \frac{d}{dt} x_2 = -\omega^2 x_1 + u + w \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Feedback for classical systems



Proportional Integral Derivative (PID) for $\frac{d^2}{dt^2}y = -\omega^2 y + u + w$ with the set point $v = y_{sp}$

$$u = -K_{p}(y - y_{sp}) - K_{d} \frac{d}{dt}(y - y_{sp}) - K_{int} \int (y - y_{sp})$$

with the positive gains (K_p , K_d , K_{int}) tuned as follows ($0 < \Omega_0 \sim \omega$, $0 < \xi \sim 1$, $0 < \epsilon \ll 1$:

$$K_{\rho} = \Omega_0^2, \quad K_d = 2\xi\Omega_0, \quad , K_{\text{int}} = \epsilon\Omega_0^3.$$

Feedback for the quantum system $\ensuremath{\mathcal{S}}$

Key issue: back-action due to the measurement process.

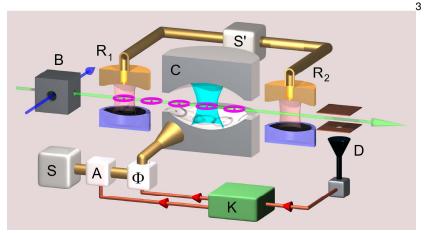
Measurement-based feedback: measurement back-action on S is stochastic (collapse of the wave-packet); controller is classical; the control input u is a classical variable appearing in some controlled Schrödinger equation; udepends on the past measures.

Coherent feedback: the system S is coupled to another quantum system (the controller); the composite system, $S \otimes$ controller, is an open-quantum system relaxing to some target (separable) state (related to reservoir engineering).

This talk is devoted to the first experimental realization of a **measurement-based state feedback**. It has been done at Laboratoire Kastler Brossel of Ecole Normale Supérieure by the Cavity Quantum ElectroDynamics (CQED) group of Serge Haroche.²

²C. Sayrin et al.: Real-time quantum feedback prepares and stabilizes photon number states. Nature, 477:73–77, 2011.

The closed-loop CQED experiment



- Control input $u = Ae^{i\Phi}$; measure output $y \in \{g, e\}$.
- \bullet Sampling time 80 μs long enough for numerical computations.

The ideal Markov chain for the wave function $|\psi\rangle$ ⁴

Input u_k , state $|\psi_k\rangle = \sum_{n\geq 0} \psi_k^n |n\rangle$, output y_k :

$$\left|\psi_{k+1/2}\right\rangle = \frac{M_{y_{k}}\left|\psi_{k}\right\rangle}{\left\|M_{y_{k}}\left|\psi_{k}\right\rangle\right\|}, \quad \left|\psi_{k+1}\right\rangle = D_{u_{k}}\left|\psi_{k+1/2}\right\rangle \quad \text{with}$$

- $y_k = g$ (resp. e) with probability $||M_g|\psi_k\rangle ||^2$ (resp. $||M_e|\psi_k\rangle ||^2$);
- ► measurement Kraus operators $M_g = \cos\left(\frac{\phi_0 \mathbf{N} + \phi_R}{2}\right)$ and $M_e = \sin\left(\frac{\phi_0 \mathbf{N} + \phi_R}{2}\right)$: $M_g^{\dagger} M_g + M_e^{\dagger} M_e = \mathbf{1}$ with $\mathbf{N} = \mathbf{a}^{\dagger} \mathbf{a} = \text{diag}(0, 1, 2, ...)$ the photon number operator;
- b displacement unitary operator (u ∈ ℝ): D_u = e^{ua[†]-ua} with
 a = upper diag(√1, √2, ...) the photon annihilation operator.

⁴S. Haroche and J.M. Raimond. *Exploring the Quantum: Atoms, Cavities and Photons*. Oxford Graduate Texts, 2006.

The ideal Markov chain for the density operator $\rho = |\psi\rangle \langle \psi|$

Diagonal elements of ρ , $\rho^{nn} = \langle n | \rho | n \rangle = |\psi^n|^2$, form the photon number distribution.

$$\rho_{k+1} = \begin{cases} \frac{D_{u_k} M_g \rho_k M_g^{\dagger} D_{u_k}^{\dagger}}{\operatorname{Tr} \left(M_g \rho_k M_g^{\dagger} \right)} & y_k = g \text{ with probability } p_{g,k} = \operatorname{Tr} \left(M_g \rho_k M_g^{\dagger} \right) \\ \frac{D_{u_k} M_e \rho_k M_e^{\dagger} D_{u_k}^{\dagger}}{\operatorname{Tr} \left(M_e \rho_k M_e^{\dagger} \right)} & y_k = e \text{ with probability } p_{e,k} = \operatorname{Tr} \left(M_e \rho_k M_e^{\dagger} \right) \end{cases}$$

Displacement unitary operator (u ∈ ℝ): D_u = e^{ua[†]-ua} with a = upper diag(√1, √2, ...) the photon annihilation operator.

► Measurement Kraus operators $M_g = \cos\left(\frac{\phi_0 \mathbf{N} + \phi_R}{2}\right)$ and $M_e = \sin\left(\frac{\phi_0 \mathbf{N} + \phi_R}{2}\right)$: $M_g^{\dagger} M_g + M_e^{\dagger} M_e = \mathbf{1}$ with $\mathbf{N} = \mathbf{a}^{\dagger} \mathbf{a} = \text{diag}(0, 1, 2, ...)$ the photon number operator.

Open-loop behavior (u = 0)

An experimental open-loop trajectory starting from coherent state

 $ho_0 = \ket{\psi_0} raket{\psi_0}$ with $\bar{n} = 3$ photons: $\ket{\psi_0} = e^{-\bar{n}/2} \sum_{n \ge 0} \sqrt{\frac{\bar{n}^n}{n!}} \ket{n}$.

- A fast convergence towards $|n\rangle \langle n|$ for some *n*,
- followed by a slow relaxation towards vacuum |0> (0|: decoherence due to finite photon life time around 70 ms (not included into the ideal model).

Open-loop stability of $\rho_{k+1} = \frac{M_{y_k}\rho_k M_{y_k}^{\dagger}}{\text{Tr}(M_{y_k}\rho_k M_{y_k}^{\dagger})}$ explaining this fast convergence when ϕ_0/π is irrational ⁵

- for any n, $\rho_k^{nn} = \langle n | \rho_k | n \rangle$ is a martingale: $\mathbb{E} \left(\rho_{k+1}^{nn} | \rho_k \right) = \rho_k^{nn}$;
- almost all realizations starting from ρ₀ converge towards a photon number state |n⟩ ⟨n|; the probability to converge towards |n⟩ ⟨n| is given by the initial population ρ₀ⁿⁿ.

This convergence characterizes a Quantum Non Demolition (QND) measurement of photons (counting photons without destroying them).

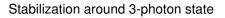
⁵H. Amini et al., IEEE Trans. Automatic Control, in press 2012, Sector State State

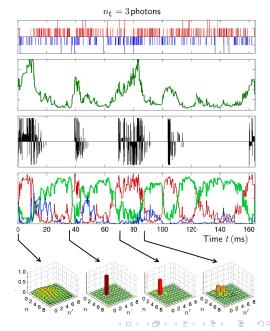
Closed-loop experimental data

- Initial state coherent state with $\bar{n} = 3$ photons
- State estimation via a quantum filter of state ρ_k^{est} .
- Lyapunov state feedback $u_k = f(\rho_k)$ stabilizing towards $|\bar{n}\rangle \langle \bar{n}|$
- ρ_k is replaced by its estimate ρ_k^{est} in the feedback (quantum separation principle)

Sampling period 80 µs Experience imperfections:

- detection efficiency 40%
- detection error rate 10%
- delay: 4 steps
- truncation to 9 photons
- finite photon life time
- atom occupancy 30%





Fidelity as control Lyapunov function

In ⁶ we propose the following stabilizing state feedback law based on the fidelity towards the target state $|\bar{n}\rangle$,

$$u = f(\rho) =: \operatorname{Argmin}_{\upsilon \in [-\bar{u}, \bar{u}]} V(D_{\upsilon} \rho D_{\upsilon}^{\dagger})$$

where $V(\rho) = 1 - F(|\bar{n}\rangle \langle \bar{n}|, \rho) = 1 - \rho^{\bar{n}\bar{n}}$ and $\bar{u} > 0$ is small. Two important issues.

- The state ρ is not directly measured; output delay is of 4 steps: it was solved by a quantum filter taking into account the delay.
- V is maximum and equal to 1 for any ρ = |n⟩ ⟨n| with n ≠ n̄: no distinction between n = n̄ + 1 (close to the target) and n̄ + 1000 (far from the target). This issue has been solved by changing the Lyapunov function V.

⁶I. Dotsenko et al.: Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states. Physical Review A80:013805, 2009.

Lyapunov-based feedback (goal photon number \bar{n})⁷ $V(\rho) = \sum_{n} \left(-\epsilon \langle n | \rho | n \rangle^2 + \sigma_n \langle n | \rho | n \rangle \right)$ is a strict control Lyapunov function with $\epsilon > 0$ small enough,

$$\sigma_{n} = \begin{cases} \frac{1}{4} + \sum_{\nu=1}^{\bar{n}} \frac{1}{\nu} - \frac{1}{\nu^{2}}, & \text{if } n = 0; \\ \sum_{\nu=n+1}^{\bar{n}} \frac{1}{\nu} - \frac{1}{\nu^{2}}, & \text{if } n \in [1, \bar{n} - 1]; \\ 0, & \text{if } n = \bar{n}; \\ \sum_{\nu=\bar{n}+1}^{n} \frac{1}{\nu} + \frac{1}{\nu^{2}}, & \text{if } n \in [\bar{n} + 1, +\infty[, \\ \end{array} \end{cases}$$

and the feedback $u = f(\rho) =: \underset{v \in [-\bar{u},\bar{u}]}{\operatorname{Argmin}} \quad V_{\epsilon} \left(D_{v} \rho D_{v}^{\dagger} \right) (\bar{u} > 0 \text{ small}).$

In closed-loop, $V(\rho)$ becomes a strict super-martingale:

$$\mathbb{E}\left(V(\rho_{k+1} \mid \rho_k) = V(\rho_k) - Q(\rho_k)\right)$$

with $Q(\rho)$ continuous, positive and vanishing only when $\rho = |\bar{n}\rangle \langle \bar{n}|$. This feedback law yields

- ► global stabilization for any finite dimensional approximation consisting in truncation to n^{max} < +∞ photons.</p>
- global approximate stabilization for $n^{max} = +\infty$.

⁷H. Amini et al.: CDC-2011.

The control Lyapunov function used for the photon box $n^{max} = 9$.

Coefficients σ_{n} of the control Lyapunov function 0.8 0 0.6 O 0.4 0.2 0 2 6 0 Δ 8 photon number n $V(\rho) = \sum_{n=0}^{9} \left(-\epsilon \langle n | \rho | n \rangle^{2} + \sigma_{n} \langle n | \rho | n \rangle \right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の≪

Global approximate stabilization $(n^{max} = +\infty)^8$

► The feedback $u = \underset{v \in [-\bar{u},\bar{u}]}{\operatorname{Argmin}} V_{\epsilon} \left(D_{v} \rho D_{v}^{\dagger} \right)$ ensures a strict closed-loop Lyapunov function

$$V_{\epsilon}(\rho) = \sum_{n \ge 0} \left(-\epsilon \langle n | \rho | n \rangle^{2} + \sigma_{n} \langle n | \rho | n \rangle \right)$$

with $\sigma_n \sim \log n$, for *n* large (high photon-number cut-off).

For any η > 0 and C > 0, exist ε > 0 and ū > 0 (small), such that, for any initial value ρ₀ with V_ε(ρ₀) ≤ C, ρ_k^{nn̄} converges almost surely towards a number inside [1 − η, 1]. With Tr (ρ_k) = 1, and ρ_k = ρ_k[†] ≥ 0, this means, that almost surely, for k large enough, ρ_k is close (weak-* topology) to the goal Fock state ρ̄ = |n̄⟩ ⟨n̄|.

⁸R. Somaraju, M. Mirrahimi, P.R.: CDC 2011 http://arxiv.org/abs/1103.1724

Design of the strict control Lyapunov function⁹

Exploit open-loop stability: for each *n*, $\langle n | \rho | n \rangle$ is a martingale; $V(\rho) = -\frac{1}{2} \sum_{n} \langle n | \rho | n \rangle^2$ is a super-martingale with

$$\mathbb{E}\left(V(\rho_{k+1}) \mid \rho_k\right) = V(\rho_k) - \mathcal{Q}(\rho_k)$$

where $Q(\rho) \ge 0$ and $Q(\rho) = 0$ iff, ρ is a Fock state.

For closing the loop take σ_n such that

$$\boldsymbol{u}\mapsto\sum_{\boldsymbol{n}}\sigma_{\boldsymbol{n}}\left\langle \boldsymbol{n}\left|\boldsymbol{D}_{\boldsymbol{u}}\boldsymbol{\rho}\boldsymbol{D}_{\boldsymbol{u}}^{\dagger}\right|\boldsymbol{n}\right\rangle$$

1. is strongly convex for $\rho = |\bar{n}\rangle \langle \bar{n}|$

2. is strongly concave for $\rho = |n\rangle \langle n|, n \neq \bar{n}$.

This is achieved by inverting the Laplacian matrix associated to the control Hamiltionan $H = i(\mathbf{a} - \mathbf{a}^{\dagger})$. Remember that $D_u = e^{-iuH}$.

⁹H. Amini et al., CDC 2011, http://arxiv.org/abs/1103-1365 . . .

Estimation of ρ_k from the past measures $y_{\nu \leq k}$ via a quantum filter

$$\begin{cases} \rho_{k+1} = \frac{D_{u_k} M_{y_k} \rho_k M_{y_k}^{\dagger} D_{u_k}^{\dagger}}{\text{Tr} \left(M_{y_k} \rho_k M_{y_k}^{\dagger} \right)} \\ \rho_{k+1}^{\text{est}} = \frac{D_{u_k} M_{y_k} \rho_k^{\text{est}} M_{y_k}^{\dagger} D_{u_k}^{\dagger}}{\text{Tr} \left(M_{y_k} \rho_k^{\text{est}} M_{y_k}^{\dagger} \right)} \end{cases}$$

- Assume we know ρ_k and u_k. Outcome of measure no k, y_k, defines the jump operator M_{y_k} and we can compute ρ_{k+1}.
- Quantum filter and real-time estimation: initialize the estimation ρ^{est} to some initial value ρ^{est}₀ and update at step k with measured jumps y_k and the known controls u_k.
- Quantum separation principle for stabilization towards a pure state¹⁰: assume that the feedback $u = f(\rho)$ ensures global asymptotic convergence towards a pure state; then, if $ker(\rho_0^{est}) \subset ker(\rho_0)$, the feedback $u_k = f(\rho_k^{est})$ ensures also global asymptotic convergence towards the same pure state.

¹⁰Bouten, van Handel, 2008.

A modified quantum filter with a measure delayed by one step Without delay the stabilizing feedback reads

$$u_k = \operatorname{Argmin} \quad V \Big(D_v rac{M_{y_k}
ho_k^{\operatorname{est}} M_{y_k}^{\dagger}}{\operatorname{Tr}(M_{y_k}
ho_k^{\operatorname{est}} M_{y_k}^{\dagger})} D_v^{\dagger} \Big)$$

With delay, we have only access to y_{k-1} and the stabilizing feedback uses the Kraus map $\mathbb{K}(\rho) = M_g \rho M_g^{\dagger} + M_e \rho M_e^{\dagger}$:

$$u_k = \operatorname{Argmin} V \left(D_v \mathbb{K}(\rho_k^{\mathsf{est}}) D_v^{\dagger} \right)$$

This is the same feedback law but with another state estimation at step k: $\mathbb{K}(\rho_k^{\text{est}})$ instead of $\frac{M_{y_k}\rho_k^{\text{est}}M_{y_k}^{\dagger}}{\text{Tr}(M_{y_k}\rho_k^{\text{est}}M_{y_k}^{\dagger})}$.

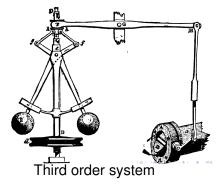
- System theoretical interpretation: K(ρ_k^{est}) stands for the the prediction of cavity state at step *k*. This prediction is in average (expectation value) since y_k ∈ {g, e} can take two values.
- Quantum physics interpretation: $\mathbb{K}(\rho_k^{\text{est}})$ corresponds to tracing over the atom that has already interacted with the cavity (entangled with cavity state) but that has not been measured at step *k*.

A delay of two steps involves two iterations of such Kraus maps, ... = ogg

Conclusion: measurement-based versus coherent feedback.

- Classical state-feedback stabilization: continuous time systems with QND measurement (possible extension of M. Mirrahimi and R. van Handel, SIAM JOC, 2007), filtering stability (Belavkin seminal contributions, see also van Handel, ...).
- Stabilization by coherent feedback: similarly to the Watt regulator where a mechanical system is controlled by another one, the controller is a quantum system coupled to the original one (Mabuchi, Nurdin, Gough, James, Petersen, ...); related to "quantum circuit" theory (see last chapters of Gardiner-Zoller book and the courses of Michel Devoret at Collège de France);
- Coherent feedback is closely related to reservoir engineering: exploit and design the measurement process (here operators *M_µ*) and its intrinsic back-action to ensure convergence of the ensemble-average dynamics towards a unique pure state (Ticozzi, Viola, ...)

Watt regulator: a classical analogue of quantum coherent feedback. ¹¹



The first variations of speed $\delta \omega$ and governor angle $\delta \theta$ obey to

$$\frac{d}{dt}\delta\omega = -\mathbf{a}\delta\theta$$
$$\frac{d^2}{dt^2}\delta\theta = -\Lambda\frac{d}{dt}\delta\theta - \Omega^2(\delta\theta - \mathbf{b}\delta\omega)$$

with (a, b, Λ, Ω) positive parameters.

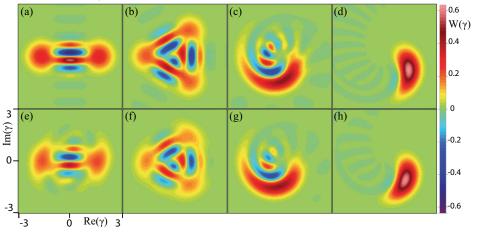
$$\frac{d^3}{dt^3}\delta\omega = -\Lambda \frac{d^2}{dt^2}\delta\omega - \Omega^2 \frac{d}{dt}\delta\omega - ab\Omega^2\delta\omega = 0$$

Characteristic polynomial $P(s) = s^3 + \Lambda s^2 + \Omega^2 s + ab\Omega^2$ with roots having negative real parts iff $\Lambda > ab$: governor damping must be strong enough to ensure asymptotic stability of the closed-loop system.

¹¹J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.

Reservoir engineering stabilizing Schrödinger cats for the photon box ¹²

Wigner functions of the various states that can be produced by such reservoir based on composite dispersive/resonant atom/cavity interaction.



¹² Sarlette et al: PRL 107:010402,2011 and PRA to appear in 2012.

Control of a QND Markov chain with delay τ

$$\rho_{k+1} = \mathbb{M}_{\mu_k}^{u_{k-\tau}}(\rho_k) =: \frac{M_{\mu_k}^{u_{k-\tau}}\rho_k M_{\mu_k}^{u_{k-\tau}\dagger}}{\operatorname{Tr}\left(M_{\mu_k}^{u_{k-\tau}}\rho_k M_{\mu_k}^{u_{k-\tau}\dagger}\right)}$$

- ► To each measurement outcome μ is attached the Kraus operator $M^u_{\mu} \in \mathbb{C}^{d \times d}$ depending on μ and also on a scalar control input $u \in \mathbb{R}$. For each u, $\sum_{\mu=1}^{m} M^{u\dagger}_{\mu} M^{u}_{\mu} = I$, and we have the Kraus map $\mathbb{K}^u(\rho) = \sum_{\mu=1}^{m} M^u_{\mu} \rho M^{u\dagger}_{\mu}$
- μ_k is a random variable taking values μ in $\{1, \dots, m\}$ with probability $p_{\mu,\rho_k}^{u_{k-\tau}} = \text{Tr}\left(M_{\mu}^{u_{k-\tau}}\rho_k M_{\mu}^{u_{k-\tau}\dagger}\right)$.
- ▶ For u = 0, the measurement operators M^0_{μ} are diagonal in the same orthonormal basis $\{ |n\rangle | n \in \{1, \dots, d\} \}$, therefore $M^0_{\mu} = \sum_{n=1}^d c_{\mu,n} |n\rangle \langle n|$ with $c_{\mu,n} \in \mathbb{C}$.
- ▶ For all $n_1 \neq n_2$ in $\{1, \dots, d\}$, there exists $\mu \in \{1, \dots, m\}$ such that $|c_{\mu,n_1}|^2 \neq |c_{\mu,n_2}|^2$.

Open-loop convergence $\rho_{k+1} = \mathbb{M}^{0}_{\mu_{k}}(\rho_{k})$

For any initial condition ρ_0 ,

- with probability one, *ρ_k* converges to one of the *d* states |*n*⟩ ⟨*n*| with *n* ∈ {1, · · · , *d*}.
- the probability of convergence towards the state |n⟩ ⟨n| depends only on ρ₀ and is given by ⟨n| ρ₀ |n⟩.

Proof based on

- the martingales $\langle n | \rho | n \rangle$
- the super-martingale $V(\rho) := -\sum_{n} \frac{\left(\langle n|\rho|n\rangle\right)^2}{2}$ satisfying

$$\mathbb{E}\left(V(\rho_{k+1})|\rho_k\right) - V(\rho_k) = -Q(\rho_k) \leq 0$$

with
$$Q(\rho) = \frac{1}{4} \sum_{n,\mu,\nu} p^0_{\mu,\rho} p^0_{\nu,\rho} \left(\frac{|c_{\mu,n}|^2 \langle n|\rho|n \rangle}{p^0_{\mu,\rho}} - \frac{|c_{\nu,n}|^2 \langle n|\rho|n \rangle}{p^0_{\nu,\rho}} \right)^2$$

• $Q(\rho) = 0$ iff exists $n \in \{1, ..., d\}$ such that $\rho = |n\rangle \langle n|$.

Feedback stabilization of $\rho_{k+1} = \mathbb{M}_{\mu_k}^{u_{k-\tau}}(\rho_k)$ towards $|\bar{n}\rangle \langle \bar{n}|$

- ► $V_0(\rho) = \sum_{n=1}^d \sigma_n \langle n | \rho | n \rangle$ with $\sigma_n \ge 0$ chosen such that $\sigma_{\bar{n}} = 0$ and for any $n \ne \bar{n}$, the second-order *u*-derivative of $V_0(\mathbb{K}^u(|n\rangle \langle n|))$ at u = 0 is strictly negative (\mathbb{K}^u is the Kraus map): set of linear equations in σ_n solved by inverting an irreducible *M*-matrix (Perron-Frobenius theorem).
- The function (ε > 0 small enough):
 V_ε(ρ) = V₀(ρ) ^ε/₂ ∑^d_{n=1}(⟨n|ρ|n⟩)² still admits a unique global minimum at |n̄⟩ ⟨n̄|; for u close to 0, u → V_ε(K^u(|n⟩ ⟨n|)) is strongly concave for any n ≠ n̄ and strongly convexe for n = n̄.

For \bar{u} and ϵ small enough, the feedback

$$u_{k} = f(\chi_{k}) =: \operatorname*{argmin}_{\xi \in [-\bar{u},\bar{u}]} (\mathbb{E} (W_{\epsilon}(\chi_{k+1}) | \chi_{k}, u_{k} = \xi))$$

ensures global stabilization towards $\bar{\chi}$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Quantum separation principle

Estimate the hidden state ρ by ρ^{est} satisfying

$$\rho_{k+1}^{\text{est}} = \mathbb{M}_{\mu_k}^{u_{k-\tau}}(\rho_k^{\text{est}})$$

where ρ obeys to $\rho_{k+1} = \mathbb{M}_{\mu_k}^{u_{k-\tau}}(\rho_k)$ with the stabilizing feedback $u_k = f(\rho_k^{\text{est}}, u_{k-1}, \dots, u_{k-\tau})$ computed using ρ^{est} instead of ρ .

- - $\blacktriangleright \langle \bar{n} | \rho_k | \bar{n} \rangle \in [0, 1],$
 - linearity of $\mathbb{E}\left(\langle \bar{n} | \rho_k | \bar{n} \rangle | \rho_0, \rho_0^{\text{est}}\right)$ versus ρ_0 ,
 - decomposition $\rho_0^{\text{est}} = \gamma \rho_0 + (1 \gamma) \rho_0^c$ with $\gamma \in]0, 1[$.

¹³Bouten, van Handel, 2008.

Imperfect measurements: the new "observable" state $\widehat{\rho}$

The left stochastic matrix η: η_{μ',μ} ∈ |0, 1] is the probability of having the imperfect outcome μ' ∈ {1,..., m'} knowing that the perfect one is μ ∈ {1,..., m}.

•
$$\widehat{\rho}_k = \mathbb{E}\left(\rho_k | \rho_0, \mu'_0, \dots, \mu'_{k-1}, u_{-\tau}, \dots, u_{k-\tau-1}\right)$$
 obeys to¹⁴

$$\widehat{\rho}_{k+1} = \mathbb{L}_{\mu'_k}^{u_{k-\tau}}(\widehat{\rho}_k), \text{ where}$$

•
$$\mathbb{L}^{u}_{\mu'}(\widehat{\rho}) = \frac{\mathsf{L}^{u}_{\mu'}(\widehat{\rho})}{\operatorname{Tr}\left(\mathsf{L}^{u}_{\mu'}(\widehat{\rho})\right)}$$
 with $\mathsf{L}^{u}_{\mu'}(\widehat{\rho}) = \sum_{\mu=1}^{m} \eta_{\mu',\mu} M^{u}_{\mu} \widehat{\rho} M^{u\dagger}_{\mu};$

- μ'_k is a random variable taking values μ' in $\{1, \dots, m'\}$ with probability $p_{\mu', \widehat{\rho}_k}^{u_{k-\tau}} = \text{Tr}\left(\mathbf{L}_{\mu'}^{u_{k-\tau}}(\widehat{\rho}_k)\right)$.
- $\blacktriangleright \mathbb{E}\left(\widehat{\rho}_{k+1}|\widehat{\rho}_{k}=\rho, u_{k-\tau}=u\right)=\mathbb{K}^{u}(\widehat{\rho})$
- ► Assumption: for all $n_1 \neq n_2$ in $\{1, \dots, d\}$, there exists $\mu' \in \{1, \dots, m'\}$, s.t. Tr $\left(\mathsf{L}^{\mathsf{0}}_{\mu'}(|n_1\rangle \langle n_1|)\right) \neq$ Tr $\left(\mathsf{L}^{\mathsf{0}}_{\mu'}(|n_2\rangle \langle n_2|)\right)$.

<u>Open-loop convergence of $\hat{\rho}_k$ towards $|n\rangle \langle n|$ with prob. $\langle n|\hat{\rho}_0|n\rangle$.</u> ¹⁴R. Somaraju et al., ACC 2012 (http://arxiv.org/abs/1109₂5344) $\Rightarrow \equiv 2020$ Feedback stabilization of $\widehat{\rho}_{k+1} = \mathbb{L}_{\mu_k}^{u_{k-\tau}}(\widehat{\rho}_k)$ towards $|\overline{n}\rangle \langle \overline{n}|$

► With the previous function $V_{\epsilon}(\rho) = V_0(\rho) - \frac{\epsilon}{2} \sum_{n=1}^{d} (\langle n | \rho | n \rangle)^2$ stabilize $\hat{\chi} = (\hat{\rho}, \beta_1, \dots, \beta_{\tau})$ towards $\bar{\chi} = (|\bar{n}\rangle \langle \bar{n}|, 0, \dots, 0)$ using the control-Lyapunov function $W_{\epsilon}(\hat{\chi}) = V_{\epsilon}(\mathbb{K}^{\beta_1}(\mathbb{K}^{\beta_2}(\dots, \mathbb{K}^{\beta_{\tau}}(\hat{\rho})\dots))).$

For \bar{u} and ϵ small enough, the feedback

$$u_{k} = f(\widehat{\chi}_{k}) =: \operatorname*{argmin}_{\xi \in [-\bar{u},\bar{u}]} (\mathbb{E} (W_{\epsilon}(\widehat{\chi}_{k+1}) | \widehat{\chi}_{k}, u_{k} = \xi))$$

ensures global stabilization of $\hat{\chi}_k$ towards $\bar{\chi}$.

Since ρ_k = E (ρ_k|ρ₀, μ'₀,..., μ'_{k-1}, u_{-τ},..., u_{k-τ-1}) convergences towards the pure state |n̄⟩ ⟨n̄|, ρ_k converges also towards the same pure state.

Quantum separation principle

• Estimate the hidden state $\hat{\rho}$ by $\hat{\rho}^{\text{est}}$ satisfying

$$\widehat{
ho}_{k+1}^{ ext{est}} = \mathbb{L}_{\mu'_k}^{u_{k- au}}(\widehat{
ho}_k^{ ext{est}})$$

where

▶ *ρ_k* obeys to

$$\rho_{k+1} = \mathbb{M}_{\mu_k}^{u_{k-\tau}}(\rho_k)$$

with the stabilizing feedback

$$u_k = f(\widehat{\rho}_k^{\text{est}}, u_{k-1}, \dots, u_{k-\tau})$$

computed using $\hat{\rho}^{\text{est}}$ instead of ρ .

• $\mu'_k = \mu'$ with probability η_{μ',μ_k} .

► Filter stability: $F(\widehat{\rho}_k, \widehat{\rho}_k^{\text{est}}) \triangleq \left(\text{Tr} \left(\sqrt{\sqrt{\widehat{\rho}_k} \widehat{\rho}_k^{\text{est}} \sqrt{\widehat{\rho}_k}} \right) \right)^2$ is always a sub-martingale¹⁵.

If ker(ρ̂^{est}₀) ⊂ ker(ρ₀), ρ_k and ρ̂^{est}_k converge almost surely towards the target state |n̄⟩ ⟨n̄|.

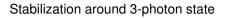
1⁵P.R., IEEE Trans. Automatic Control, 2011.

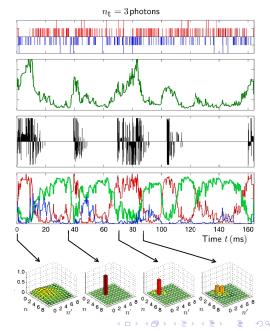
Closed-loop experimental data

- Initial state coherent state with $\bar{n} = 3$ photons
- State estimation via a quantum filter of state ρ_k^{est} .
- Lyapunov state feedback $u_k = f(\rho_k)$ stabilizing towards $|\bar{n}\rangle \langle \bar{n}|$
- ρ_k is replaced by its estimate ρ_k^{est} in the feedback (quantum separation principle)

Sampling period 80 µs Experience imperfections:

- detection efficiency 40%
- detection error rate 10%
- delay 4 sampling periods
- truncation to 9 photons
- finite photon life time
- atom occupancy 30%





The left stochastic matrix for the LKB photon box¹⁶

For each control input *u*,

- we have a total of m = 3 × 7 = 21 Kraus operators. The jumps are labeled by µ = (µ^a, µ^c) with µ^a ∈ {no, g, e, gg, ge, eg, ee} labeling atom related jumps and µ^c ∈ {o, +, -} cavity decoherence jumps.
- we have only m' = 6 real detection possibilities µ' ∈ {no, g, e, gg, ge, ee} corresponding respectively to no detection, a single detection in g, a single detection in e, a double detection both in g, a double detection one in g and the other in e, and a double detection both in e.

$\mu' \setminus \mu$	(no, μ^c)	(g, μ^c)	(e, μ^c)	(gg, μ^c)	(ee, μ^c)	(ge,μ^c) or $(eg$
no	1	$1-\epsilon_d$	1-∈ _d	$(1-\epsilon_d)^2$	$(1-\epsilon_d)^2$	$(1-\epsilon_d)^2$
g	0	$\epsilon_d(1-\eta_g)$	$\epsilon_d \eta_e$	$2\epsilon_d(1-\epsilon_d)(1-\eta_g)$	$2\epsilon_d(1-\epsilon_d)\eta_e$	$\epsilon_d(1-\epsilon_d)(1-\eta_g +$
е	0	$\epsilon_d \eta_g$	$\epsilon_d(1-\eta_e)$	$2\epsilon_d(1-\epsilon_d)\eta_g$	$2\epsilon_d(1-\epsilon_d)(1-\eta_e)$	$\epsilon_d(1-\epsilon_d)(1-\eta_e +$
gg	0	0	0	$\epsilon_d^2 (1-\eta_g)^2$	$\epsilon_d^2 \eta_{\theta}^2$	$\epsilon_d^2 \eta_{\theta}(1-\eta_g)$
ge	0	0	0	$2\epsilon_d^2\eta_g(1-\eta_g)$	$2\epsilon_d^2\eta_e(1-\eta_e)$	$\epsilon_d^2((1-\eta_g)(1-\eta_e) +$
ee	0	0	0	$\epsilon_d^2 \eta_g^2$	$\epsilon_d^2 (1 - \eta_e)^2$	$\epsilon_d^2 \eta_g (1-\eta_e)$

¹⁶R. Somaraju et al.: ACC 2012 (http://arxiv.org/abs/1109<u>5</u>344) → < ≣ → ⊂ = → へ (~