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Model of classical systems
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perturbation
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For the harmonic oscillator of pulsation ω with measured
position y , controlled by the force u and subject to an additional
unknown force w .

x = (x1, x2) ∈ R2, y = x1
d
dt x1 = x2,

d
dt x2 = −ω2x1 + u + w



Feedback for classical systems

 feedback
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Proportional Integral Derivative (PID) for d2

dt2 y = −ω2y + u + w
with the set point v = ysp

u = −Kp
(
y − ysp

)
− Kd

d
dt

(
y − ysp

)
− Kint

∫ (
y − ysp

)
with the positive gains (Kp,Kd ,Kint) tuned as follows
(0 < Ω0 ∼ ω, 0 < ξ ∼ 1, 0 < ε� 1:

Kp = Ω2
0, Kd = 2ξΩ0, ,Kint = εΩ3

0.



Feedback for the quantum system S

Key issue: back-action due to the measurement process.

Measurement-based feedback: measurement back-action on S is
stochastic (collapse of the wave-packet); controller is
classical; the control input u is a classical variable
appearing in some controlled Schrödinger equation; u
depends on the past measures.

Coherent feedback: the system S is coupled to another quantum
system (the controller); the composite system, S ⊗
controller, is an open-quantum system relaxing to some
target (separable) state (related to reservoir
engineering).

This talk is devoted to the first experimental realization of a
measurement-based state feedback. It has been done at
Laboratoire Kastler Brossel of Ecole Normale Supérieure by the
Cavity Quantum ElectroDynamics (CQED) group of Serge Haroche.2

2C. Sayrin et al.: Real-time quantum feedback prepares and stabilizes
photon number states. Nature, 477:73–77, 2011.



The closed-loop CQED experiment

3

• Control input u = AeıΦ; measure output y ∈ {g,e}.
• Sampling time 80 µs long enough for numerical computations.

3Courtesy of Igor Dotsenko



The ideal Markov chain for the wave function |ψ〉 4
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Input uk , state |ψk 〉 =
∑

n≥0 ψ
n
k |n〉, output yk :∣∣ψk+1/2

〉
=

Myk |ψk 〉
‖Myk |ψk 〉 ‖

, |ψk+1〉 = Duk

∣∣ψk+1/2
〉

with

I yk = g (resp. e) with probability ‖Mg |ψk 〉 ‖2 (resp. ‖Me |ψk 〉 ‖2);

I measurement Kraus operators Mg = cos
(
φ0N+φR

2

)
and

Me = sin
(
φ0N+φR

2

)
: M†gMg + M†eMe = 1 with

N = a†a = diag(0,1,2, . . .) the photon number operator;

I displacement unitary operator (u ∈ R): Du = eua†−ua with
a = upper diag(

√
1,
√

2, . . .) the photon annihilation operator.
4S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities

and Photons. Oxford Graduate Texts, 2006.



The ideal Markov chain for the density operator ρ = |ψ〉 〈ψ|

Diagonal elements of ρ, ρnn = 〈n| ρ |n〉 = |ψn|2, form the photon
number distribution.

ρk+1 =



Duk Mgρk M†gD†uk

Tr
(

Mgρk M†g
) yk = g with probability pg,k = Tr

(
Mgρk M†g

)
Duk Meρk M†eD†uk

Tr
(

Meρk M†e
) yk = e with probability pe,k = Tr

(
Meρk M†e

)

I Displacement unitary operator (u ∈ R): Du = eua†−ua with
a = upper diag(

√
1,
√

2, . . .) the photon annihilation operator.

I Measurement Kraus operators Mg = cos
(
φ0N+φR

2

)
and

Me = sin
(
φ0N+φR

2

)
: M†gMg + M†eMe = 1 with

N = a†a = diag(0,1,2, . . .) the photon number operator.



Open-loop behavior (u = 0)
An experimental open-loop trajectory starting from coherent state

ρ0 = |ψ0〉 〈ψ0| with n̄ = 3 photons: |ψ0〉 = e−n̄/2∑
n≥0

√
n̄n

n! |n〉 .

I A fast convergence towards |n〉 〈n| for some n,

I followed by a slow relaxation towards vacuum |0〉 〈0|:
decoherence due to finite photon life time around 70 ms (not
included into the ideal model).

Open-loop stability of ρk+1 =
Myk ρk M†yk

Tr(Myk ρk M†yk )
explaining this fast

convergence when φ0/π is irrational 5

I for any n, ρnn
k = 〈n| ρk |n〉 is a martingale: E

(
ρnn

k+1 | ρk
)

= ρnn
k ;

I almost all realizations starting from ρ0 converge towards a
photon number state |n〉 〈n|; the probability to converge towards
|n〉 〈n| is given by the initial population ρnn

0 .

This convergence characterizes a Quantum Non Demolition (QND)
measurement of photons (counting photons without destroying them).

5H. Amini et al., IEEE Trans. Automatic Control, in press, 2012.



Closed-loop experimental data

• Initial state coherent state
with n̄ = 3 photons
• State estimation via a
quantum filter of state ρest

k .
• Lyapunov state feedback
uk = f (ρk ) stabilizing
towards |n̄〉 〈n̄|
• ρk is replaced by its
estimate ρest

k in the
feedback (quantum
separation principle)

Sampling period 80 µs
Experience imperfections:
• detection efficiency 40%
• detection error rate 10%
• delay: 4 steps
• truncation to 9 photons
• finite photon life time
• atom occupancy 30%

Stabilization around 3-photon state



Fidelity as control Lyapunov function

In 6 we propose the following stabilizing state feedback law
based on the fidelity towards the target state |n̄〉,

u = f (ρ) =: Argmin
υ∈[−ū,ū]

V (DυρD†υ)

where V (ρ) = 1− F (|n̄〉 〈n̄| , ρ) = 1− ρn̄n̄ and ū > 0 is small.
Two important issues.

I The state ρ is not directly measured; output delay is of 4
steps: it was solved by a quantum filter taking into account
the delay.

I V is maximum and equal to 1 for any ρ = |n〉 〈n| with n 6= n̄:
no distinction between n = n̄ + 1 (close to the target) and
n̄ + 1000 (far from the target). This issue has been solved
by changing the Lyapunov function V .

6I. Dotsenko et al.: Quantum feedback by discrete quantum non-demolition
measurements: towards on-demand generation of photon-number states.
Physical Review A80:013805, 2009.



Lyapunov-based feedback (goal photon number n̄) 7

V (ρ) =
∑

n

(
−ε〈n |ρ|n〉2 + σn 〈n| ρ |n〉

)
is a strict control Lyapunov

function with ε > 0 small enough,

σn =


1
4 +

∑n̄
ν=1

1
ν −

1
ν2 , if n = 0;∑n̄

ν=n+1
1
ν −

1
ν2 , if n ∈ [1, n̄ − 1];

0, if n = n̄;∑n
ν=n̄+1

1
ν + 1

ν2 , if n ∈ [n̄ + 1,+∞[,

and the feedback u = f (ρ) =: Argmin
υ∈[−ū,ū]

Vε
(

DυρD†υ
)

(ū > 0 small).

In closed-loop, V (ρ) becomes a strict super-martingale:

E (V (ρk+1 | ρk ) = V (ρk )−Q(ρk )

with Q(ρ) continuous, positive and vanishing only when ρ = |n̄〉 〈n̄|.
This feedback law yields

I global stabilization for any finite dimensional approximation
consisting in truncation to nmax < +∞ photons.

I global approximate stabilization for nmax = +∞.
7H. Amini et al.: CDC-2011.



The control Lyapunov function used for the photon box nmax = 9.
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V (ρ) =
∑9

n=0

(
−ε〈n |ρ|n〉2 + σn 〈n| ρ |n〉

)



Global approximate stabilization (nmax = +∞) 8

I The feedback u = Argmin
υ∈[−ū,ū]

Vε
(

DυρD†υ
)

ensures a strict

closed-loop Lyapunov function

Vε(ρ) =
∑
n≥0

(
−ε〈n |ρ|n〉2 + σn 〈n| ρ |n〉

)
with σn ∼ log n, for n large (high photon-number cut-off).

I For any η > 0 and C > 0, exist ε > 0 and ū > 0 (small),
such that, for any initial value ρ0 with Vε(ρ0) ≤ C, ρn̄n̄

k
converges almost surely towards a number inside [1− η,1].
With Tr (ρk ) = 1, and ρk = ρ†k ≥ 0, this means, that almost
surely, for k large enough, ρk is close (weak-* topology) to
the goal Fock state ρ̄ = |n̄〉 〈n̄|.

8R. Somaraju, M. Mirrahimi, P.R.: CDC 2011
http://arxiv.org/abs/1103.1724



Design of the strict control Lyapunov function9

Exploit open-loop stability: for each n, 〈n |ρ|n〉 is a martingale;
V (ρ) = − 1

2

∑
n 〈n |ρ|n〉

2 is a super-martingale with

E (V (ρk+1) / ρk ) = V (ρk )−Q(ρk )

where Q(ρ) ≥ 0 and Q(ρ) = 0 iff, ρ is a Fock state.

For closing the loop take σn such that

u 7→
∑

n

σn

〈
n
∣∣∣DuρD†u

∣∣∣n〉

1. is strongly convex for ρ = |n̄〉 〈n̄|

2. is strongly concave for ρ = |n〉 〈n|, n 6= n̄.

This is achieved by inverting the Laplacian matrix associated to the
control Hamiltionan H = ı(a− a†). Remember that Du = e−ıuH .

9H. Amini et al., CDC 2011,http://arxiv.org/abs/1103.1365



Estimation of ρk from the past measures yν≤k via a quantum filter
ρk+1 =

Duk Mykρk M†yk D†uk

Tr
(

Mykρk M†yk

)
ρest

k+1 =
Duk Mykρ

est
k M†yk D†uk

Tr
(

Mykρ
est
k M†yk

)
I Assume we know ρk and uk . Outcome of measure no k , yk ,

defines the jump operator Myk and we can compute ρk+1.

I Quantum filter and real-time estimation: initialize the estimation
ρest to some initial value ρest

0 and update at step k with measured
jumps yk and the known controls uk .

I Quantum separation principle for stabilization towards a pure
state10: assume that the feedback u = f (ρ) ensures global
asymptotic convergence towards a pure state; then, if
ker(ρest

0 ) ⊂ ker(ρ0), the feedback uk = f (ρest
k ) ensures also global

asymptotic convergence towards the same pure state.
10Bouten, van Handel, 2008.



A modified quantum filter with a measure delayed by one step
Without delay the stabilizing feedback reads

uk = Argmin V
(

Dv
Myk ρ

est
k M†yk

Tr(Myk ρ
est
k M†yk )

D†v
)

With delay, we have only access to yk−1 and the stabilizing feedback
uses the Kraus map K(ρ) = MgρM†g + MeρM†e :

uk = Argmin V
(

DvK(ρest
k )D†v

)
This is the same feedback law but with another state estimation at
step k : K(ρest

k ) instead of
Myk ρ

est
k M†yk

Tr(Myk ρ
est
k M†yk )

.

I System theoretical interpretation: K(ρest
k ) stands for the the

prediction of cavity state at step k . This prediction is in average
(expectation value) since yk ∈ {g,e} can take two values.

I Quantum physics interpretation: K(ρest
k ) corresponds to

tracing over the atom that has already interacted with the cavity
(entangled with cavity state) but that has not been measured at
step k .

A delay of two steps involves two iterations of such Kraus maps, . . .



Conclusion: measurement-based versus coherent feedback.

I Classical state-feedback stabilization: continuous time systems
with QND measurement (possible extension of M. Mirrahimi and
R. van Handel, SIAM JOC, 2007), filtering stability (Belavkin
seminal contributions, see also van Handel, ...).

I Stabilization by coherent feedback: similarly to the Watt
regulator where a mechanical system is controlled by another
one, the controller is a quantum system coupled to the original
one (Mabuchi, Nurdin, Gough, James, Petersen, ...); related to
”quantum circuit” theory (see last chapters of Gardiner-Zoller
book and the courses of Michel Devoret at Collège de France);

I Coherent feedback is closely related to reservoir engineering:
exploit and design the measurement process (here operators
Mµ) and its intrinsic back-action to ensure convergence of the
ensemble-average dynamics towards a unique pure state
(Ticozzi, Viola, . . . )



Watt regulator: a classical analogue of quantum coherent feedback. 11

The first variations of speed δω
and governor angle δθ obey to

d
dt δω = −aδθ
d2

dt2 δθ = −Λ d
dt δθ − Ω2(δθ − bδω)

with (a,b,Λ,Ω) positive param-
eters.

Third order system

d3

dt3 δω = −Λ d2

dt2 δω − Ω2 d
dt δω − abΩ2δω = 0

Characteristic polynomial P(s) = s3 + Λs2 + Ω2s + abΩ2 with
roots having negative real parts iff Λ > ab: governor damping
must be strong enough to ensure asymptotic stability of the
closed-loop system.

11J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.



Reservoir engineering stabilizing Schrödinger cats for the photon box 12

Wigner functions of the various states that can be produced by
such reservoir based on composite dispersive/resonant
atom/cavity interaction.
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12Sarlette et al: PRL 107:010402,2011 and PRA to appear in 2012.



Control of a QND Markov chain with delay τ

ρk+1 = Muk−τ
µk (ρk ) =:

Muk−τ
µk ρkMuk−τ

µk

†

Tr
(

Muk−τ
µk ρkMuk−τ

µk

†)
I To each measurement outcome µ is attached the Kraus operator

Mu
µ ∈ Cd×d depending on µ and also on a scalar control input

u ∈ R. For each u,
∑m
µ=1 Mu

µ
†Mu

µ = I, and we have the Kraus
map Ku(ρ) =

∑m
µ=1 Mu

µρMu
µ
†

I µk is a random variable taking values µ in {1, · · · ,m} with
probability puk−τ

µ,ρk = Tr
(

Muk−τ
µ ρk Muk−τ

µ
†)

.

I For u = 0, the measurement operators M0
µ are diagonal in the

same orthonormal basis { |n〉 | n ∈ {1, · · · ,d}}, therefore
M0
µ =

∑d
n=1 cµ,n |n〉 〈n| with cµ,n ∈ C.

I For all n1 6= n2 in {1, · · · ,d}, there exists µ ∈ {1, · · · ,m} such
that |cµ,n1 |2 6= |cµ,n2 |2.



Open-loop convergence ρk+1 = M0
µk

(ρk )

For any initial condition ρ0,

I with probability one, ρk converges to one of the d states |n〉 〈n|
with n ∈ {1, · · · ,d}.

I the probability of convergence towards the state |n〉 〈n| depends
only on ρ0 and is given by 〈n| ρ0 |n〉 .

Proof based on

I the martingales 〈n| ρ |n〉

I the super-martingale V (ρ) := −
∑

n

(
〈n|ρ|n〉

)2

2 satisfying

E (V (ρk+1)|ρk )− V (ρk ) = −Q(ρk ) ≤ 0

with Q(ρ) = 1
4

∑
n,µ,ν p0

µ,ρp0
ν,ρ

(
|cµ,n|2〈n|ρ|n〉

p0
µ,ρ

− |cν,n|
2〈n|ρ|n〉

p0
ν,ρ

)2
.

I Q(ρ) = 0 iff exists n ∈ {1, . . . ,d} such that ρ = |n〉 〈n|.



Feedback stabilization of ρk+1 = Muk−τ
µk (ρk ) towards |n̄〉 〈n̄|

I V0(ρ) =
∑d

n=1 σn 〈n| ρ |n〉 with σn ≥ 0 chosen such that σn̄ = 0
and for any n 6= n̄, the second-order u-derivative of
V0(Ku(|n〉 〈n|)) at u = 0 is strictly negative (Ku is the Kraus
map): set of linear equations in σn solved by inverting an
irreducible M-matrix (Perron-Frobenius theorem).

I The function (ε > 0 small enough):
Vε(ρ) = V0(ρ)− ε

2

∑d
n=1(〈n| ρ |n〉)2 still admits a unique global

minimum at |n̄〉 〈n̄|; for u close to 0, u 7→ Vε(Ku(|n〉 〈n|)) is
strongly concave for any n 6= n̄ and strongly convexe for n = n̄.

I The delay of τ steps: stabilize the state χ = (ρ, β1, · · · , βτ ) (βl
control input u delayed l steps) towards χ̄ = (|n̄〉 〈n̄| ,0, . . . ,0)
using the control-Lyapunov function

Wε(χ) = Vε(Kβ1 (Kβ2 (. . . . . .Kβτ (ρ) . . .))).

For ū and ε small enough, the feedback

uk = f (χk ) =: argmin
ξ∈[−ū,ū]

(
E (Wε(χk+1)|χk ,uk = ξ)

)
ensures global stabilization towards χ̄.



Quantum separation principle

I Estimate the hidden state ρ by ρest satisfying

ρest
k+1 = Muk−τ

µk (ρest
k )

where ρ obeys to ρk+1 = Muk−τ
µk (ρk ) with the stabilizing

feedback uk = f (ρest
k ,uk−1, . . . ,uk−τ ) computed using ρest

instead of ρ.
I If ker(ρest

0 ) ⊂ ker(ρ0), ρk and ρest
k converge almost surely

towards the target state |n̄〉 〈n̄|.
Proof based on13:

I 〈n̄| ρk |n̄〉 ∈ [0,1],
I linearity of E

(
〈n̄| ρk |n̄〉 |ρ0, ρ

est
0

)
versus ρ0,

I decomposition ρest
0 = γρ0 + (1− γ)ρc

0 with γ ∈]0,1[.

13Bouten, van Handel, 2008.



Imperfect measurements: the new ”observable” state ρ̂

I The left stochastic matrix η: ηµ′,µ ∈ |0,1] is the probability of
having the imperfect outcome µ′ ∈ {1, . . . ,m′} knowing that the
perfect one is µ ∈ {1, . . . ,m}.

I ρ̂k = E
(
ρk |ρ0, µ

′
0, . . . , µ

′
k−1,u−τ , . . . ,uk−τ−1

)
obeys to14

ρ̂k+1 = Luk−τ
µ′k

(ρ̂k ), where

I Lu
µ′(ρ̂) =

Lu
µ′ (ρ̂)

Tr
(

Lu
µ′ (ρ̂)

) with Lu
µ′(ρ̂) =

∑m
µ=1 ηµ′,µMu

µρ̂Mu
µ
†;

I µ′k is a random variable taking values µ′ in {1, · · · ,m′} with

probability puk−τ
µ′,ρ̂k

= Tr
(

Luk−τ
µ′ (ρ̂k )

)
.

I E (ρ̂k+1|ρ̂k = ρ,uk−τ = u) = Ku(ρ̂)

I Assumption: for all n1 6= n2 in {1, · · · ,d}, there exists
µ′ ∈ {1, · · · ,m′}, s.t. Tr

(
L0
µ′(|n1〉 〈n1|)

)
6= Tr

(
L0
µ′(|n2〉 〈n2|)

)
.

Open-loop convergence of ρ̂k towards |n〉 〈n| with prob. 〈n| ρ̂0 |n〉.
14R. Somaraju et al., ACC 2012 (http://arxiv.org/abs/1109.5344)



Feedback stabilization of ρ̂k+1 = Luk−τ
µk (ρ̂k ) towards |n̄〉 〈n̄|

I With the previous function Vε(ρ) = V0(ρ)− ε
2

∑d
n=1(〈n| ρ |n〉)2

stabilize χ̂ = (ρ̂, β1, · · · , βτ ) towards χ̄ = (|n̄〉 〈n̄| ,0, . . . ,0) using
the control-Lyapunov function

Wε(χ̂) = Vε(Kβ1 (Kβ2 (. . . . . .Kβτ (ρ̂) . . .))).

I For ū and ε small enough, the feedback

uk = f (χ̂k ) =: argmin
ξ∈[−ū,ū]

(
E (Wε(χ̂k+1)|χ̂k ,uk = ξ)

)
ensures global stabilization of χ̂k towards χ̄.

I Since ρ̂k = E
(
ρk |ρ0, µ

′
0, . . . , µ

′
k−1,u−τ , . . . ,uk−τ−1

)
convergences towards the pure state |n̄〉 〈n̄|, ρk converges also
towards the same pure state.



Quantum separation principle

I Estimate the hidden state ρ̂ by ρ̂est satisfying

ρ̂est
k+1 = Luk−τ

µ′k
(ρ̂est

k )

where
I ρk obeys to

ρk+1 = Muk−τ
µk (ρk )

with the stabilizing feedback

uk = f (ρ̂est
k ,uk−1, . . . ,uk−τ )

computed using ρ̂est instead of ρ.
I µ′k = µ′ with probability ηµ′,µk .

I Filter stability: F
(
ρ̂k , ρ̂

est
k

)
,

(
Tr
(√√

ρ̂k ρ̂
est
k

√
ρ̂k

))2

is

always a sub-martingale15.
I If ker(ρ̂est

0 ) ⊂ ker(ρ0), ρk and ρ̂est
k converge almost surely

towards the target state |n̄〉 〈n̄|.
15P.R., IEEE Trans. Automatic Control, 2011.



Closed-loop experimental data

• Initial state coherent state
with n̄ = 3 photons
• State estimation via a
quantum filter of state ρest

k .
• Lyapunov state feedback
uk = f (ρk ) stabilizing
towards |n̄〉 〈n̄|
• ρk is replaced by its
estimate ρest

k in the
feedback (quantum
separation principle)

Sampling period 80 µs
Experience imperfections:
• detection efficiency 40%
• detection error rate 10%
• delay 4 sampling periods
• truncation to 9 photons
• finite photon life time
• atom occupancy 30%

Stabilization around 3-photon state



The left stochastic matrix for the LKB photon box16

For each control input u,
I we have a total of m = 3× 7 = 21 Kraus operators. The

jumps are labeled by µ = (µa, µc) with
µa ∈ {no,g,e,gg,ge,eg,ee} labeling atom related jumps
and µc ∈ {o,+,−} cavity decoherence jumps.

I we have only m′ = 6 real detection possibilities
µ′ ∈ {no,g,e,gg,ge,ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and
the other in e, and a double detection both in e.

µ′ \ µ (no, µc) (g, µc) (e, µc) (gg, µc) (ee, µc) (ge, µc) or (eg, µc)

no 1 1-εd 1-εd (1-εd )2 (1-εd )2 (1-εd )2

g 0 εd (1-ηg) εdηe 2εd (1-εd )(1-ηg) 2εd (1-εd )ηe εd (1-εd )(1-ηg + ηe)
e 0 εdηg εd (1-ηe) 2εd (1-εd )ηg 2εd (1-εd )(1-ηe) εd (1-εd )(1-ηe + ηg)

gg 0 0 0 ε2d (1-ηg)2 ε2dη
2
e ε2dηe(1-ηg)

ge 0 0 0 2ε2dηg(1-ηg) 2ε2dηe(1-ηe) ε2d ((1-ηg)(1-ηe) + ηgηe)

ee 0 0 0 ε2dη
2
g ε2d (1-ηe)2 ε2dηg(1-ηe)

16R. Somaraju et al.: ACC 2012 (http://arxiv.org/abs/1109.5344)
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