An introduction to quantum cryptography, computation and error correction.

Colloquium of the Physics Department, ENS-Paris October 23, 2018

Pierre Rouchon
Centre Automatique et Systèmes, Mines ParisTech, PSL Research University Quantic Research Team (ENS, Inria, Mines)

Quantum cryptography and computation
RSA public-key system
Quantum mechanics from scratch
BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback
Autonomous QEC and coherent feedback
Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

Quantum cryptography and computation
RSA public-key system
Quantum mechanics from scratch
BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback Autonomous QEC and coherent feedback

Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

- Invented by Rivest, Shamir and Adleman in 1977, this protocole relies on the factorization difficulty of RSA integer $n=p q$ with p and q large prime numbers (typically $\log _{2}(n) \sim 2048$).
- 3-step protocol based on the public key (n, e), with e invertible modulo $(p-1)(q-1)$ and the secrete key d, inverse of e modulo $(p-1)(q-1)$:

1. Encryption of M by Alice: $M \mapsto A=M^{e} \bmod (n)$ (efficient exponentiation by squaring $\leq \log _{2}(e)$ multiplications $\left.\bmod (n)\right)$
2. Alice sends A to Bob on a public classical communication channel (possibly spied by the bad Oscar)
3. Decryption of A by Bob: $M=A^{d}$ where d is known only by Bob ${ }^{1}$
${ }^{1}$ Euler-Fermat theorem combined with Chinese-remainder theorem ensures that for arbitrary integers M and $k, M^{k \varphi(n)+1}=M \bmod (n)$ where $\varphi(n)=\varphi(p q)=(p-1)(q-1)$ is the Euler's totient function (use ed $=1+r \varphi(n)$ for some integer r).

- To recover M from knowing A, e and n, the bad Oscar has to solve $A=M^{e} \bmod (n)$. Specialists conjecture that there do-not exist C and $k>0$ and an algorithm starting with input (n, e, A) providing M with less that $C(\log n)^{k}$ evaluations of universal classical gates AND, XOR and NOT (RSA problem conjectured outside complexity class \mathbf{P}).
- If one has access to the factorization $p q=n$, one recovers the secret key d as the inverse of e modulo $(p-1)(q-1)$ (Euclidean polynomial algorithm providing the greatest common divisor).
- Factorization, which is in the complexity class NP, is guessed to be outside complexity class \mathbf{P} : conjecture $\mathbf{P} \not \ddagger \mathbf{N P}$.
Issues around quantum cryptography and computation:

1. unconditionally secure key distribution: BB84 quantum protocol (commercially available, see https://www.idquantique.com/).
2. factorization in " polynomial time" via Shor algorithm (success probability $O(1)$ with $O\left((\log n)^{3}\right)$ operations)
(quantum computer with $3 \log _{2} n+c$ logical qubits, far from being available yet for 2048-bit RSA numbers n).

Quantum cryptography and computation

RSA public-key system

Quantum mechanics from scratch
BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback Autonomous QEC and coherent feedback

Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

The LKB Photon box

The first experimental realization of a quantum-state feedback:
microwave photons (10 GHz)

Theory: I. Dotsenko,: Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states. Physical Review A, 2009, 80: 013805-013813. Experiment: C. Sayrin, ..., S. Haroche:
Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477, 73-77.

1. Schrödinger: wave funct. $|\psi\rangle \in \mathcal{H}$,

$$
\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} \boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H}=\boldsymbol{H}_{0}+u \boldsymbol{H}_{1},
$$

2. Origin of dissipation: collapse of the wave packet induced by the measurement of observable \boldsymbol{O} with spectral decomp. $\sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$:

- measurement outcome μ with proba. $\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{P}_{\mu}|\psi\rangle$ depending on $|\psi\rangle$, just before the measurement
- measurement back-action if outcome $\mu=y$:

$$
|\psi\rangle \mapsto|\psi\rangle_{+}=\frac{\boldsymbol{P}_{y}|\psi\rangle}{\sqrt{\langle\psi| \boldsymbol{P}_{y}|\psi\rangle}}
$$

3. Tensor product for the description of composite systems (S, M) :

- Hilbert space $\mathcal{H}=\mathcal{H}_{S} \otimes \mathcal{H}_{M}$
- Hamiltonian $\boldsymbol{H}=\boldsymbol{H}_{S} \otimes \boldsymbol{I}_{M}+\boldsymbol{H}_{\text {int }}+\boldsymbol{I}_{S} \otimes \boldsymbol{H}_{M}$
- observable on sub-system M only: $\boldsymbol{O}=\boldsymbol{I}_{S} \otimes \boldsymbol{O}_{M}$.
${ }^{2}$ S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities and Photons. Oxford Graduate Texts, 2006.

Composite system (S, M) : harmonic oscillator \otimes qubit.

- System S corresponds to a quantized harmonic oscillator:

$$
\mathcal{H}_{S}=\left\{\sum_{n=0}^{\infty} \psi_{n}|n\rangle \mid\left(\psi_{n}\right)_{n=0}^{\infty} \in I^{2}(\mathbb{C})\right\},
$$

where $|n\rangle$ is the photon-number state with n photons $\left(\left\langle n_{1} \mid n_{2}\right\rangle=\delta_{n_{1}, n_{2}}\right)$.

- Meter M is a qubit, a 2-level system:

$$
\mathcal{H}_{M}=\left\{\psi_{\mathrm{g}}|g\rangle+\psi_{e}|e\rangle \mid \psi_{\mathrm{g}}, \psi_{e} \in \mathbb{C}\right\},
$$

where $|g\rangle$ (resp. $|e\rangle$) is the ground (resp. excited) state $(\langle g \mid g\rangle=\langle e \mid e\rangle=1$ and $\langle g \mid e\rangle=0)$

- State of the composite system $|\Psi\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{M}$:

$$
\begin{aligned}
|\boldsymbol{\Psi}\rangle= & \sum_{n \geq 0}\left(\Psi_{n g}|n\rangle \otimes|g\rangle+\Psi_{n e}|n\rangle \otimes|e\rangle\right) \\
& =\left(\sum_{n \geq 0} \Psi_{n g}|n\rangle\right) \otimes|g\rangle+\left(\sum_{n \geq 0} \Psi_{n e}|n\rangle\right) \otimes|e\rangle, \quad \Psi_{n e}, \Psi_{n g} \in \mathbb{C} .
\end{aligned}
$$

Ortho-normal basis: $(|n\rangle \otimes|g\rangle,|n\rangle \otimes|e\rangle)_{n \in \mathbb{N}}$.

Quantum trajectories (1)

- When atom comes out B, the quantum state $|\boldsymbol{\Psi}\rangle_{B}$ of the composite system is separable: $|\boldsymbol{\Psi}\rangle_{B}=|\psi\rangle \otimes|\boldsymbol{g}\rangle$.
- Just before the measurement in D, the state is in general entangled (not separable):

$$
|\boldsymbol{\Psi}\rangle_{\boldsymbol{R}_{\mathbf{z}}}=\boldsymbol{U}_{S M}(|\psi\rangle \otimes|\boldsymbol{g}\rangle)=\left(\boldsymbol{M}_{\boldsymbol{g}}|\psi\rangle\right) \otimes|\boldsymbol{g}\rangle+\left(\boldsymbol{M}_{e}|\psi\rangle\right) \otimes|e\rangle
$$

where $\boldsymbol{U}_{S M}=\boldsymbol{U}_{R_{2}} \boldsymbol{U}_{C} \boldsymbol{U}_{R_{1}}$ is a unitary transformation (Schrödinger propagator) defining the measurement operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} on \mathcal{H}_{S}. Since $\boldsymbol{U}_{S M}$ is unitary, $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}=\boldsymbol{I}$.

Quantum trajectories (2)

Just before detector D the quantum state is entangled:

$$
|\boldsymbol{\Psi}\rangle_{R_{\mathbf{2}}}=\left(\boldsymbol{M}_{g}|\psi\rangle\right) \otimes|g\rangle+\left(\boldsymbol{M}_{e}|\psi\rangle\right) \otimes|e\rangle
$$

Just after outcome y, the state becomes separable ${ }^{3}$:

$$
|\boldsymbol{\Psi}\rangle_{D}=\left(\frac{\boldsymbol{M}_{y}}{\sqrt{\langle\psi| \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y}|\psi\rangle}}|\psi\rangle\right) \otimes|y\rangle .
$$

Outcome y obtained with probability $\mathbb{P}_{y}=\langle\psi| \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y}|\psi\rangle$. .
Quantum trajectories (Markov chain, stochastic dynamics):
$\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{\boldsymbol{g}}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=g \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{\boldsymbol{e}}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=e \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle ;\end{cases}$
with state $\left|\psi_{k}\right\rangle$ and measurement outcome $y_{k} \in\{g, e\}$ at time-step k :

$$
{ }^{3} \text { Measurement operator } \boldsymbol{O}=\boldsymbol{I}_{S} \otimes(|e\rangle\langle e|-|g\rangle\langle g|) .
$$

Quantum Non Demolition (QND) measurement of photons ${ }^{4}$

$$
|\boldsymbol{\Psi}\rangle_{R_{\mathbf{2}}}=\boldsymbol{U}_{R_{\mathbf{2}}} \boldsymbol{U}_{C} \boldsymbol{U}_{R_{\mathbf{1}}}(|\psi\rangle \otimes|g\rangle)
$$

$$
\begin{aligned}
\boldsymbol{U}_{R_{\mathbf{1}}} & =\boldsymbol{I}_{S} \otimes\left(\left(\frac{|g\rangle+|e\rangle}{\sqrt{2}}\right)\langle g|+\left(\frac{-|g\rangle+|e\rangle}{\sqrt{2}}\right)\langle e|\right) \\
\boldsymbol{U}_{C} & =e^{-i \frac{\phi_{0}}{2} \boldsymbol{N}} \otimes|g\rangle\langle g|+e^{i \frac{\phi_{0}}{2} \boldsymbol{N}} \otimes|e\rangle\langle e| \\
\boldsymbol{U}_{R_{\mathbf{2}}} & =\boldsymbol{U}_{R_{\mathbf{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{U}_{R_{1}}(|\psi\rangle \otimes|g\rangle)=\frac{1}{\sqrt{2}}(|\psi\rangle \otimes|g\rangle+|\psi\rangle \otimes|e\rangle) \\
& \boldsymbol{U}_{C} \boldsymbol{U}_{R_{1}}(|\psi\rangle \otimes|g\rangle)=\frac{1}{\sqrt{2}}\left(\left(e^{-i \frac{\phi_{0}}{2} N}|\psi\rangle\right) \otimes|g\rangle+\left(e^{i \frac{\phi_{0}}{2} N}|\psi\rangle\right) \otimes|e\rangle\right) \\
& \begin{array}{r}
|\boldsymbol{\Psi}\rangle_{R_{\mathbf{2}}}=\frac{1}{2}\left(\left(e^{-i \frac{\phi_{0}}{2} N}|\psi\rangle\right) \otimes(|g\rangle+|e\rangle)+\left(e^{i \frac{\phi_{0}}{2} N}|\psi\rangle\right) \otimes(-|g\rangle+|e\rangle)\right) \\
\quad=\left(-i \sin \left(\frac{\phi_{0}}{2} N\right)|\psi\rangle\right) \otimes|g\rangle+\left(\cos \left(\frac{\phi_{0}}{2} N\right)|\psi\rangle\right) \otimes|e\rangle
\end{array}
\end{aligned}
$$

Thus $M_{g}=-i \sin \left(\frac{\phi_{0}}{2} N\right)$ and $M_{e}=\cos \left(\frac{\phi_{0}}{2} N\right)$.
Quantum Monte-Carlo simulations with MATLAB: QNDphoton.m

[^0]Quantum cryptography and computation

BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback Autonomous QEC and coherent feedback

Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

$\begin{array}{llllllllllllll}\text { Bob's Results } & 0 & 1 & 0 & - & 0 & 1 & 1 & 1 & 1 & - & 1 & 0\end{array}$

GAP Optique

A first quantum sequence via a quantum communication channel:

1. Alice sends to Bob a large number N of linearly polarized photons (i.e. qubits $\left.|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle\right)$ along 4 possible directions:

- horizontal $(|0\rangle)$ or vertical $(|1\rangle)$.
- $+\pi / 4\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)$ or $-\pi / 4\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$.

2. For each photon received from Alice, Bob chooses a measurement

- H/V: $Z=|0\rangle\langle 0|-|1\rangle\langle 1|$
- $\pm \pi / 4: \quad X=|1\rangle\langle 0|+|0\rangle\langle 1|=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\left(\frac{\langle 0|+\langle 1|}{\sqrt{2}}\right)-\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\left(\frac{\langle 0|-\langle 1|}{\sqrt{2}}\right)$

A second classical sequence via a public communication channel:

1. For each photon, Alice and Bob exchange the type of chosen polarization Z or X (but not its value).
2. For 50% of the photons sharing the same polarization (around $N / 4$), Alice and Bob exchange their values (H / V or $\pm \pi / 4$).
3. For 50% of the photons with same polarization (around $N / 4$), Alice and Bob keep secret their values
If the exchanged values (H / V or $\pm \pi / 4$) coincide, Alice and Bob are convinced that the quantum communication was not spied by the bad Oscar. The remaining values (around N/4 and kept secret) will then form a coding key exploited by Alice and Bob in a classical cryptographic protocol.
Security: Oscar cannot clone the photon emitted by Alice.

Impossibility of quantum cloning (Wootters and Zurek 1982)

Assume that exists a quantum machine copying the original qubit onto a second clone qubit. The initial wave function of the composite system (original qubit, clone qubit, quantum machine) reads

$$
|\equiv\rangle_{t=0}=|\psi\rangle \otimes|b\rangle \otimes\left|f_{b}\right\rangle
$$

where $|\psi\rangle \in \mathbb{C}^{2}$ is the original state, $|b\rangle$ the initial state of the clone (b for blank) and $\left|f_{b}\right\rangle$ the initial state of the cloning machine.
The cloning process is associated to a unitary transformation \boldsymbol{U}_{T} independent of $|\equiv\rangle_{t=0}$ and satisfying

$$
\forall|\psi\rangle, \quad|\psi\rangle \otimes|\psi\rangle \otimes\left|f_{|\psi\rangle}\right\rangle=\boldsymbol{U}_{T}\left(|\psi\rangle \otimes|b\rangle \otimes\left|f_{b}\right\rangle\right)
$$

In particular

$$
\begin{aligned}
|0\rangle \otimes|0\rangle \otimes\left|f_{|0\rangle}\right\rangle & =U_{T}\left(|0\rangle \otimes|b\rangle \otimes\left|f_{b}\right\rangle\right) \\
\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes\left|\frac{f^{|0\rangle+|1\rangle}}{\sqrt{2}}\right\rangle & =U_{T}\left(\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes|b\rangle \otimes\left|f_{b}\right\rangle\right)
\end{aligned}
$$

Impossible with $|\equiv\rangle=|0\rangle \otimes|b\rangle \otimes\left|f_{b}\right\rangle$ and $|\Lambda\rangle=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes|b\rangle \otimes\left|f_{b}\right\rangle$

$$
\left.\frac{1}{\sqrt{2}}=|\langle\equiv \mid \Lambda\rangle|>\frac{1}{2} \geq\left|\langle\equiv| U_{T}^{\dagger} U_{T}\right| \Lambda\right\rangle \mid
$$

since U_{T} preserves Hermitian product:

Quantum cryptography and computation
RSA public-key system
Quantum mechanics from scratch
BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback Autonomous QEC and coherent feedback

Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

Factoring algorithm and its reduction to order finding (Shor 1994)

- Input: composite odd number n.
- Output: a non trivial factor a of n in
$O\left((\log n)^{2}(\log \log n)(\log \log \log n)\right)$ universal classical/quantum operations.
- Algorithm:

1. Check whether $n=a^{b}$ with $a, b>1$ (polynomial classical algorithm); possible return of a and stop.
2. Otherwise, choose randomly $x \in\{2, \ldots, n-1\}$. If $a=\operatorname{gcd}(x, n)>1$ (Euclidian division), return a and stop.
3. Otherwise determine with a quantum computer the order r of x modulo n (the smallest $r>1$ such that $\left.x^{r}=1 \bmod (n)\right)^{5}$

- If r even and $1<\operatorname{gcd}\left(x^{r / 2} \pm 1, n\right)<n$, then return $a=\operatorname{gcd}\left(x^{r / 2} \pm 1, n\right)$ and stop.
- Otherwise (probability $\leq \eta<1$ independent of n) goto step 2 .

[^1]
A quantum gate appearing in Shor's order-finding algorithm.

- The canonical ℓ-qubit basis (basis of $\mathbb{C}^{2^{\ell}} \equiv\left(\mathbb{C}^{2}\right)^{\otimes^{\ell}}$) is labelled by $\left\{0, \ldots 2^{\ell}-1\right\} \ni j \equiv\left(j_{1}, \ldots, j_{\ell}\right) \in\{0,1\}^{\ell}$ with
$|j\rangle=\left|j_{1} j_{2} \ldots j_{\ell}\right\rangle=\left|j_{1}\right\rangle \otimes\left|j_{2}\right\rangle \otimes \ldots \otimes\left|j_{\ell}\right\rangle$ and $j=\sum_{s=1}^{\ell} j_{s} 2^{\ell-s}$.
- To the data $1<x<n<2^{\ell}$ with $\operatorname{gcd}(x, n)=1$ is associated \boldsymbol{U} a unitary transformation on ℓ-qubits (permutation between vectors $|j\rangle$)

$$
\text { if } y \leq n-1, \boldsymbol{U}|y\rangle=|x y \bmod (n)\rangle \text {, otherwise } \boldsymbol{U}|y\rangle=|y\rangle \text {. }
$$

- For r the order of $x \bmod (n)$ and any $s \in\{0, \ldots, r-1\}$ the ℓ-qubit state

$$
\left|u_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{\frac{-2 i \pi s k}{r}}\left|x^{k} \bmod (n)\right\rangle \quad \text { satisfies } \boldsymbol{U}\left|u_{s}\right\rangle=e^{\frac{-2 i \pi s}{r}}\left|u_{s}\right\rangle
$$

and $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.

- Modular exponentiation algorithm to compute \boldsymbol{U} with $O\left(\ell^{3}\right) 1$-qubit gates ${ }^{6}$ and CNOT 2-qubit gates ${ }^{7}$ (non trivial quantum algorithm...)

$$
\begin{aligned}
& { }^{6} \text { Unitary } e^{\imath \theta} e^{-\imath \alpha \boldsymbol{Z} / 2} e^{-\imath \beta \boldsymbol{X} / 2} e^{-\imath \gamma \boldsymbol{Z} / 2} \text { with }(\theta, \alpha, \beta, \gamma) \in[0,2 \pi] . \\
& { }^{7} \text { CNOT }\left|y_{1} y_{2}\right\rangle=\left|y_{1} z_{2}\right\rangle \text { where }\{0,1\} \ni z_{2}=y_{1}+y_{2} \bmod (2) .
\end{aligned}
$$

The quantum Fourier transform

- Computations of the usual discrete Fourier transform $\mathbb{C}^{2^{\ell}} \ni\left(x_{0}, \ldots, x_{2 \ell-1}\right) \mapsto\left(y_{0}, \ldots, y_{2^{\ell}-1}\right) \in \mathbb{C}^{2^{\ell}}$

$$
y_{j}=\frac{1}{2^{\ell / 2}} \sum_{j=0}^{2^{\ell}-1} e^{\frac{2 i \pi j k}{2^{\ell}}} x_{k} ; \quad x_{k}=\frac{1}{2^{\ell / 2}} \sum_{j=0}^{2^{\ell}-1} e^{\frac{-2 i \pi j k}{2^{\ell}}} y_{j}
$$

requires $O\left(\ell 2^{\ell}\right)$ additions and multiplications (FFT).

- It is also a unitary transformation of $\mathbb{C}^{2^{\ell}} \equiv\left(\mathbb{C}^{2}\right)^{\otimes^{\ell}}$, the quantum Fourier transform (QFT)

$$
\left|j_{1}\right\rangle \ldots\left|j_{\ell}\right\rangle=|j\rangle \mapsto \frac{\sum_{k=0}^{2^{\ell}-1} e^{\frac{2 i \pi j k}{2^{\ell}}}|k\rangle}{2^{\ell / 2}}
$$

with the binary decomposition $j=\sum_{s=1}^{\ell} j_{s} 2^{\ell-s}$.

- The identity underlying the quantum circuit implementing the QFT with $O\left(\ell^{2}\right)$ 1-qubit gates and 2-qubit gates:
$\frac{\sum_{k=0}^{2^{\ell}-1} e^{\frac{2 i \pi j k}{2^{\ell}}}|k\rangle}{2^{\ell / 2}}=\frac{\left(|0\rangle+e^{2 i \pi 0 . j_{\ell}}|1\rangle\right)\left(|0\rangle+e^{2 i \pi 0 . j_{\ell-1} j_{\ell}}|1\rangle\right) \ldots\left(|0\rangle+e^{2 i \pi 0 . j_{1} \ldots j_{\ell}}|1\rangle\right)}{2^{\ell / 2}}$
with binary fraction notations $0 . j_{s} j_{s+1} j_{m}=j_{s} / 2+j_{s+1} / 4+\ldots+j_{m} / 2^{m-s+1}$.

Efficient Circuit for the quantum Fourier transform

With Hadamard gate, $\boldsymbol{H}=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\langle 0|+\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\langle 1|$, and
Controlled- $\boldsymbol{R}_{\boldsymbol{k}}$ gate (2-qubit) where $\boldsymbol{R}_{\boldsymbol{k}}=|0\rangle\langle 0|+e^{2 i \pi / 2^{k}}|1\rangle\langle 1|$, the circuit

followed by a simple swap circuit reversing the order of the ℓ qubits, one gets the QFT:
$\left|j_{1} \ldots j_{\ell}\right\rangle \mapsto \frac{\left(|0\rangle+e^{2 i \pi 0 . j_{\ell}}|1\rangle\right)\left(|0\rangle+e^{2 i \pi 0 . j_{\ell-1} j_{\ell}}|1\rangle\right) \ldots\left(|0\rangle+e^{2 i \pi 0 . j_{1} \ldots j_{\ell}}|1\rangle\right)}{2^{\ell / 2}}$

Quantum cryptography and computation

Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback Autonomous QEC and coherent feedback

Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

- Single bit error model: the bit $b \in\{0,1\}$ flips with probability $p<1 / 2$ during Δt (for usual DRAM: $\boldsymbol{p} / \boldsymbol{\Delta t} \leq \mathbf{1 0}^{\mathbf{- 1 4}} \mathrm{s}^{\mathbf{1}}$).
- Multi-bit error model: each bit $b_{k} \in\{0,1\}$ flips with probability $p<1 / 2$ during Δt; no correlation between the bit flips.
-Use redundancy to construct with several physical bits b_{k} of flip probability p, a logical bit b_{L} with a flip probability $p_{L}<p$.
- The simplest solution, the 3-bit code (sampling time Δt):

$$
\begin{aligned}
t=0: & b_{L}=[b b b] \text { with } b \in\{0,1\} \\
t=\Delta t: & \text { measure the three physical bits of } b_{L}=\left[b_{1} b_{2} b_{3}\right] \\
& \text { (instantaneous) : }
\end{aligned}
$$

1. if all 3 bits coincide, nothing to do.
2. if one bit differs from the two other ones, flip this bit (instantaneous);

- Since the flip probability laws of the physical bits are independent, the probability that the logical bit b_{L} (protected with the above error correction code) flips during Δt is $\boldsymbol{p}_{\boldsymbol{L}}=3 \boldsymbol{p}^{2}-2 \boldsymbol{p}^{\mathbf{3}}<p$ since $p<1 / 2$.

Quantum cryptography and computation
RSA public-key system
Quantum mechanics from scratch
BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback Autonomous QEC and coherent feedback

Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

The 3-qubit bit flip code

- Local bit-flip errors: each physical qubit $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ becomes
$\boldsymbol{X}|\psi\rangle=\alpha|1\rangle+\beta|0\rangle^{8}$ with probability $p<1 / 2$ during Δt.
(for actual super-conducting qubit $p / \Delta t>10^{\mathbf{3}} \mathrm{s}^{\mathbf{- 1}}$).
- $t=0:\left|\psi_{L}\right\rangle=\alpha\left|0_{L}\right\rangle+\beta\left|1_{L}\right\rangle \in \mathbb{C}^{8}$ with $\left|0_{L}\right\rangle=|000\rangle$ and $\left|1_{L}\right\rangle=|111\rangle$.
- $t=\Delta t:\left|\psi_{L}\right\rangle$ becomes with

1 flip: $\left\{\begin{array}{l}\alpha|100\rangle+\beta|011\rangle \\ \alpha|010\rangle+\beta|101\rangle \\ \alpha|001\rangle+\beta|110\rangle\end{array} \quad ; 2\right.$ flips: $\left\{\begin{array}{l}\alpha|110\rangle+\beta|001\rangle \\ \alpha|101\rangle+\beta|010\rangle \\ \alpha|011\rangle+\beta|100\rangle\end{array} \quad ; 3\right.$ flips: $\alpha|111\rangle+\beta|000\rangle$.

- Key fact: 4 orthogonal planes $\mathcal{P}_{c}=\operatorname{span}(|000\rangle,|111\rangle), \mathcal{P}_{1}=\operatorname{span}(|100\rangle,|011\rangle)$, $\mathcal{P}_{2}=\operatorname{span}(|010\rangle,|101\rangle)$ and $\mathcal{P}_{3}=\operatorname{span}(|001\rangle,|110\rangle)$.
- Error syndromes: 3 commuting observables $\boldsymbol{S}_{1}=\boldsymbol{I} \otimes \boldsymbol{Z} \otimes \boldsymbol{Z}, \boldsymbol{S}_{\mathbf{2}}=\boldsymbol{Z} \otimes \boldsymbol{I} \otimes \boldsymbol{Z}$ and $\boldsymbol{S}_{\mathbf{3}}=\boldsymbol{Z} \otimes \boldsymbol{Z} \otimes \boldsymbol{I}$ with spectrum $\{-1,+1\}$ and outcomes $\left(s_{1}, s_{2}, s_{3}\right) \in\{-1,+1\}$.

$$
\begin{aligned}
& \text {-1- } s_{1}=s_{2}=s_{3}: \mathcal{P}_{c} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{ll}
\alpha|000\rangle+\beta|111\rangle & 0 \mathrm{flip} \\
\beta|000\rangle+\alpha|111\rangle & 3 \mathrm{flips}
\end{array}\right. \text {; no correction } \\
& -2-s_{1} \neq s_{2}=s_{3}: \mathcal{P}_{1} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{ll}
\alpha|100\rangle+\beta|011\rangle & 1 \mathrm{flip} \\
\beta|100\rangle+\alpha|011\rangle & 2 \mathrm{flips}
\end{array} \quad ;(\boldsymbol{X} \otimes \boldsymbol{I} \otimes \boldsymbol{I})\left|\psi_{L}\right\rangle \in \mathcal{P}_{c} .\right. \\
& -3-s_{2} \neq s_{3}=s_{1}: \mathcal{P}_{2} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{ll}
\alpha|010\rangle+\beta|101\rangle & 1 \mathrm{flip} \\
\beta|010\rangle+\alpha|101\rangle & 2 \mathrm{flips}
\end{array} \quad ;(\boldsymbol{I} \otimes \boldsymbol{X} \otimes \boldsymbol{I})\left|\psi_{L}\right\rangle \in \mathcal{P}_{c} .\right. \\
& -4-s_{3} \neq s_{1}=s_{2}: \mathcal{P}_{3} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{ll}
\alpha|001\rangle+\beta|110\rangle & 1 \mathrm{flip} \\
\beta|001\rangle+\alpha|110\rangle & 2 \mathrm{flips}
\end{array} \quad ;(\boldsymbol{I} \otimes \boldsymbol{I} \otimes \boldsymbol{X})\left|\psi_{L}\right\rangle \in \mathcal{P}_{C} .\right.
\end{aligned}
$$

$$
{ }^{8} x=|1\rangle\langle 0|+|0\rangle\langle 1| \text { and } Z=|0\rangle\langle 0|-|1\rangle\langle 1| .
$$

The 3-qubit phase flip code

- Local phase-flip error: each physical qubit $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ becomes
$\boldsymbol{Z}|\psi\rangle=\alpha|0\rangle-\beta|0\rangle{ }^{9}$ with probability $p<1 / 2$ during Δt.
- Since $X=\boldsymbol{H} Z \boldsymbol{H}$ and $Z=\boldsymbol{H} X \boldsymbol{H}\left(\boldsymbol{H}^{2}=\boldsymbol{I}\right)$, use the 3-qubit bit flip code in the frame defined by \boldsymbol{H} :
$|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \triangleq|+\rangle, \quad|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \triangleq|-\rangle, \quad \boldsymbol{X} \mapsto \boldsymbol{H X} \boldsymbol{H}=\boldsymbol{Z}=|+\rangle\langle+|+|-\rangle\langle-|$.
$\bullet t=+:\left|\psi_{L}\right\rangle=\alpha|+L\rangle+\beta|-L\rangle$ with $\left|+_{L}\right\rangle=|+++\rangle$ and $|-L\rangle=|---\rangle$.
- $t=\Delta t:\left|\psi_{L}\right\rangle$ becomes with

1 flip: $\left\{\begin{array}{l}\alpha|-++\rangle+\beta|+--\rangle \\ \alpha|+-+\rangle+\beta|-+-\rangle \\ \alpha|++-\rangle+\beta|--+\rangle\end{array} \quad ; \quad 2\right.$ flips: $\left\{\begin{array}{l}\alpha|--+\rangle+\beta|++-\rangle \\ \alpha|-+-\rangle+\beta|+-+\rangle \\ \alpha|+--\rangle+\beta|-++\rangle\end{array} \quad ; 3\right.$ flips: $\alpha|---\rangle+\beta|+++\rangle$.

- Key fact: 4 orthogonal planes $\boldsymbol{\mathcal { P }}_{\boldsymbol{c}}=\mathbf{s p a n}(|+++\rangle,|---\rangle), \boldsymbol{\mathcal { P }}_{\mathbf{1}}=\mathbf{s p a n}(|-++\rangle,|+--\rangle$,
$\boldsymbol{P}_{\mathbf{2}}=\operatorname{span}(|+-+\rangle,|-+-\rangle)$ and $\boldsymbol{\mathcal { P }}_{\mathbf{3}}=\operatorname{span}(|++-\rangle,|--+\rangle)$.
\bullet Error syndromes: 3 commuting observables $\boldsymbol{S}_{\mathbf{1}}=\boldsymbol{I} \otimes \boldsymbol{X} \otimes \boldsymbol{X}, \boldsymbol{S}_{\mathbf{2}}=\boldsymbol{X} \otimes \boldsymbol{I} \otimes \boldsymbol{X}$ and $\boldsymbol{S}_{\mathbf{3}}=\boldsymbol{X} \otimes \boldsymbol{X} \otimes \boldsymbol{I}$ with spectrum $\{-1,+1\}$ and outcomes $\left(s_{1}, s_{2}, s_{3}\right) \in\{-1,+1\}$.

$$
\begin{aligned}
& -\mathbf{1 -} \boldsymbol{s}_{\mathbf{1}}=s_{\mathbf{2}}=s_{\mathbf{3}}: \mathcal{P}_{c} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{l}
\alpha|+++\rangle+\beta|---\rangle 0 \text { flip } \\
\beta|+++\rangle+\alpha|---\rangle 3 \text { flips } \quad \text {; no correction }
\end{array}\right. \\
& \text {-2- } \boldsymbol{s}_{\mathbf{1}} \neq \boldsymbol{s}_{\mathbf{2}}=s_{\mathbf{3}}: \mathcal{P}_{\mathbf{1}} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{l}
\alpha|-++\rangle+\beta|+--\rangle \mathbf{1} \text { flip } \\
\beta|-++\rangle+\alpha|+--\rangle 2 \text { flips } \quad ;(\boldsymbol{Z} \otimes \boldsymbol{I} \otimes \boldsymbol{I})\left|\psi_{L}\right\rangle \in \mathcal{P}_{c} .
\end{array}\right. \\
& \text {-3- } s_{\mathbf{2}} \neq s_{\mathbf{3}}=s_{\mathbf{1}}: \mathcal{P}_{\mathbf{2}} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{l}
\alpha|+-+\rangle+\beta|-+-\rangle 1 \mathrm{flip} \\
\beta|+-+\rangle+\alpha|-+-\rangle 2 \mathrm{flips} \quad ;(\boldsymbol{I} \otimes \boldsymbol{Z} \otimes \boldsymbol{I})\left|\psi_{L}\right\rangle \in \mathcal{P}_{C} .
\end{array}\right. \\
& \text {-4- } s_{\mathbf{3}} \neq s_{\mathbf{1}}=s_{\mathbf{2}}: \mathcal{P}_{\mathbf{3}} \ni\left|\psi_{L}\right\rangle=\left\{\begin{array}{l}
\alpha|++-\rangle+\beta|--+\rangle 1 \text { flip } \\
\beta|++-\rangle+\alpha|--+\rangle 2 \text { flips } \quad ;(\boldsymbol{I} \otimes \boldsymbol{I} \otimes Z)\left|\psi_{L}\right\rangle \in \mathcal{P}_{c} .
\end{array}\right.
\end{aligned}
$$

$$
{ }^{9} \boldsymbol{x}=|1\rangle\langle 0|+|0\rangle\langle 1|, \boldsymbol{Z}=|0\rangle\langle 0|-|1\rangle\langle 1| \text { and } \boldsymbol{H}=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\langle 0|+\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\langle 1| .
$$

The Shor code (1995): combination of bit-flip and phase flip codes 篤 ${ }^{*}$ |PSL*

- Take the phase flip code $|+++\rangle$ and $|---\rangle$. Replace each $|+\rangle$ (resp. $|-\rangle$) by $\frac{|000\rangle+|111\rangle}{\sqrt{2}}$ (resp. $\frac{|000\rangle-|111\rangle}{\sqrt{2}}$). New logical qubit $\left|\psi_{L}\right\rangle=\alpha\left|0_{L}\right\rangle+\beta\left|1_{L}\right\rangle \in \mathbb{C}^{2^{9}}$:

$$
\left|0_{L}\right\rangle=\frac{(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)}{2 \sqrt{2}},\left|1_{L}\right\rangle=\frac{(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)}{2 \sqrt{2}}
$$

- Local errors: each of the 9 physical qubits can have a bit-flip \boldsymbol{X}, a phase flip \boldsymbol{Z} or a bit flip followed by a phase flip $\boldsymbol{Z X}=i \boldsymbol{Y}^{10}$ with probability p during Δt.
- Denote by \boldsymbol{X}_{k} (resp. \boldsymbol{Y}_{k} and \boldsymbol{Z}_{k}), the local operator \boldsymbol{X} (resp. \boldsymbol{Y} and \boldsymbol{Z}) acting on physical qubit no $k \in\{1, \ldots, 9\}$. Denote by $\mathcal{P}_{c}=\operatorname{span}\left(\left|0_{L}\right\rangle,\left|1_{L}\right\rangle\right)$ the code space. One get a family of the $1+3 \times 9=28$ orthogonal planes:

$$
\mathcal{P}_{c}, \quad\left(\boldsymbol{X}_{k} \mathcal{P}_{c}\right)_{k=1, \ldots, 9}, \quad\left(\boldsymbol{Y}_{k} \mathcal{P}_{c}\right)_{k=1, \ldots, 9}, \quad\left(\boldsymbol{Z}_{k} \mathcal{P}_{c}\right)_{k=1, \ldots, 9}
$$

- One can always construct error syndromes to obtain, when there is only one error among the 9 qubits during Δt, the number k of the qubit and the error type it has undergone ($\boldsymbol{X}, \boldsymbol{Y}$ or \boldsymbol{Z}). These 28 planes are then eigen-planes by the syndromes.
- If the physical qubit k is subject to any kind of local errors associated to arbitrary operator $\boldsymbol{M}=g \boldsymbol{I}+a \boldsymbol{X}+b \boldsymbol{Y}+c \boldsymbol{Z}(g, a, b, c \in \mathbb{C}),\left|\psi_{L}\right\rangle \mapsto \frac{\boldsymbol{M}_{k}\left|\psi_{L}\right\rangle}{\sqrt{\left\langle\psi_{L}\right| \boldsymbol{M}_{k}^{\dagger} \boldsymbol{M}_{k}\left|\psi_{L}\right\rangle}}$, the syndrome measurements will project the corrupted logical qubit on one of the 4 planes $\mathcal{P}_{c}, \boldsymbol{X}_{k} \mathcal{P}_{c}, \boldsymbol{Y}_{k} \mathcal{P}_{c}$ or $\boldsymbol{Z}_{k} \mathcal{P}_{c}$. It is then simple by using either $\boldsymbol{I}, \boldsymbol{X}_{k}, \boldsymbol{Y}_{k}$ or \boldsymbol{Z}_{k}, to recover up to a global phase the original logical qubit $\left|\psi_{L}\right\rangle$.

$$
{ }^{10} \boldsymbol{x}=|1\rangle\langle 0|+|0\rangle\langle 1|, \boldsymbol{Z}=|0\rangle\langle 0|-|1\rangle\langle 1| \text { and } \boldsymbol{Y}=i|1\rangle|0\rangle-i|0\rangle|1\rangle .
$$

Many open issues connected to QEC

- For a logical qubit relying on n physical qubits, the dimension of the Hilbert has to be larger than $2(1+3 n)$ to recover an arbitrary single-qubit error: $2^{n} \geq 2(1+3 n)$ imposing $n \geq 5$.
- Efficient constructions of quantum error-correcting codes: stabilizer codes, surface codes where the physical qubits are located on a 2D-lattice, topological codes, ...
- Fault tolerant computations: computing on encoded quantum states; fault-tolerant operations to avoid propagations of errors during encoding, gates and measurement; concatenation and threshold theorem, ...
- Error rates for a DRAM bit $\leq 10^{-14} \mathrm{~s}^{-1}$ and for a superconducting qubit $\geq 10^{3} \mathrm{~s}^{-1}$: high order error-correcting codes; important overhead (around 1000 physical qubits to encode a logical one ${ }^{11}$); scalability issues;

[^2]Quantum cryptography and computation
RSA public-key system
Quantum mechanics from scratch BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback Autonomous QEC and coherent feedback

Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

Continuous-time QEC and feedback

- Quantum error correction is a feedback scheme: at each sampling time a measurement is performed and a correction depending only on the measurement outcome is applied.
- From a control engineering view point, QEC is based on a static output feedback scheme (feedback without memory) (called also Markovian feedback).
- In usual discrete-time setting, measurement (sensor) and correction (actuator) processes are assumed instantaneous.
- Natural question: how to take into account the finite band-width of the measurement and correction processes.
- Interest of continuous-time formulations for QEC:

1. measurement and correction are faster than the error rates but not infinitely faster;
2. qubit errors can occur during the measurement and the correction processes (fault-tolerance issues).
$|\psi\rangle$ replaced by ρ (density operator) obeying to a stochastic master equation (SME).

$$
|\boldsymbol{\Psi}\rangle_{R_{\mathbf{2}}}=\boldsymbol{U}_{S M}|\boldsymbol{\Psi}\rangle_{B}=\boldsymbol{U}_{S M}(|\psi\rangle \otimes|\boldsymbol{g}\rangle)=\left(\boldsymbol{M}_{\boldsymbol{g}}|\psi\rangle\right) \otimes|\boldsymbol{g}\rangle+\left(\boldsymbol{M}_{e}|\psi\rangle\right) \otimes|e\rangle
$$

with $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{\boldsymbol{e}}=\boldsymbol{I}$.

- Quantum trajectories (Markov chain, stochastic dynamics):
$\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{\boldsymbol{g}}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{\boldsymbol{g}}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=g \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{\boldsymbol{e}}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=e \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle ;\end{cases}$
with state $\left|\psi_{k}\right\rangle$ and measurement outcome $y_{k} \in\{g, e\}$ at time-step k :

Continuous-time quantum trajectories (diffusive case) ${ }^{12}$

- The measurement outcome y_{k} at discrete-time step k, is replaced by the small among of measurement signal $d y_{t} \in \mathbb{R}$ obtained during an infinitesimal time interval $[t, t+d t]$.
- The measurement operator $M_{y_{k}}$ becomes $M_{d y_{t}}$ close to identity:

$$
\boldsymbol{M}_{\boldsymbol{d} \boldsymbol{y}_{t}}=\boldsymbol{I}+\left(-\frac{i}{\hbar} \boldsymbol{H}-\frac{1}{2}\left(\boldsymbol{L}^{\dagger} \boldsymbol{L}\right)\right) d t+\boldsymbol{d} y_{t} \boldsymbol{L}
$$

where operator L (not necessarily Hermitian) describes the measurement process and \boldsymbol{H} is the Hamiltonian corresponding to the coherent evolution.

- The measurement backaction reads

$$
|\psi\rangle_{t+d t}=\frac{M_{d y_{t}}|\psi\rangle_{t}}{\sqrt{\left\langle\left.\psi\right|_{t} M_{d y_{t}} M_{d y_{t}} \mid \psi\right\rangle_{t}}}
$$

- Probability density of $\boldsymbol{d} \boldsymbol{y} \in \mathbb{R}$ knowing $|\psi\rangle_{t}: \frac{e^{-\frac{d 2^{2}}{2 t t}}}{\sqrt{2 \pi d t}}\left\langle\left.\psi\right|_{t} \boldsymbol{M}_{d y}^{\dagger} \boldsymbol{M}_{d y} \mid \psi\right\rangle_{t}$. Coincides up to order $O\left(d t^{3 / 2}\right)$ terms to $d y=\left\langle\left.\psi\right|_{t}\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \mid \psi\right\rangle_{t} d t+d W$ where $d W$ is a Wiener process (Gaussian of zero mean and variance $d t$).
Quantum Monte-Carlo simulations with MATLAB: QNDqubit.m ($\boldsymbol{L}=\boldsymbol{\sigma}_{\boldsymbol{z}}, \boldsymbol{H}=0$)

[^3]
Why density operators ρ instead of wave functions $|\psi\rangle$

Consider once again the LKB photon-box:

$$
\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{\boldsymbol{g}}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=g \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=e \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle\end{cases}
$$

Assume known $\left|\psi_{0}\right\rangle$ and detector out of order $(y=\varnothing)$: what about $\left|\psi_{1}\right\rangle$?

- Expectation value of $\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|$ knowing $\left|\psi_{0}\right\rangle$: ${ }^{13}$

$$
\mathbb{E}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\left|\left|\psi_{0}\right\rangle\right)=\boldsymbol{M}_{g}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| \boldsymbol{M}_{e}^{\dagger}\right.
$$

- Set $K(\rho) \triangleq M_{g} \rho M_{g}^{\dagger}+M_{e} \rho M_{e}^{\dagger}$ for any operator ρ.
- ρ_{k} expectation of $\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ knowing $\left|\psi_{0}\right\rangle$:

$$
\boldsymbol{\rho}_{k+1}=\boldsymbol{K}\left(\boldsymbol{\rho}_{k}\right) \text { and } \boldsymbol{\rho}_{0}=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| \text {. }
$$

Linear map K : trace preserving Kraus map (quantum channel).
Density operators ρ : convex space of Hermitian non-negative operators of trace one.
${ }^{13}|\psi\rangle\langle\psi|$: orthogonal projector on line spanned by unitary vector $|\psi\rangle$.

Quantum trajectories for the density operator ρ

Detector efficiency $\boldsymbol{\eta} \in[0,1]$. Output $y \in\{g, e, \varnothing\}$:

$$
\boldsymbol{\rho}_{k+1}= \begin{cases}\frac{\boldsymbol{K}_{g}\left(\boldsymbol{\rho}_{k}\right)}{\operatorname{Tr}\left(\boldsymbol{K}_{g}\left(\boldsymbol{\rho}_{k}\right)\right)}, y_{k}=g \text { with probability } & \operatorname{Tr}\left(\boldsymbol{K}_{g}\left(\boldsymbol{\rho}_{k}\right)\right) \\ \frac{\boldsymbol{K}_{e}\left(\boldsymbol{\rho}_{k}\right)}{\operatorname{Tr}\left(\boldsymbol{K}_{e}\left(\boldsymbol{\rho}_{k}\right)\right)}, y_{k}=e \text { with probability } & \operatorname{Tr}\left(\boldsymbol{K}_{e}\left(\boldsymbol{\rho}_{k}\right)\right) ; \\ \frac{\boldsymbol{K}_{\varnothing}\left(\boldsymbol{\rho}_{k}\right)}{\operatorname{Tr}\left(\boldsymbol{K}_{\varnothing}\left(\boldsymbol{\rho}_{k}\right)\right)}, y_{k}=\varnothing \text { with probability } & \operatorname{Tr}\left(\boldsymbol{K}_{\varnothing}\left(\boldsymbol{\rho}_{k}\right)\right) ;\end{cases}
$$

with Kraus maps

$$
\begin{aligned}
& \boldsymbol{K}_{g}(\rho)=\eta \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}, \quad \boldsymbol{K}_{e}(\rho)=\eta \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger} \\
& \boldsymbol{K}_{\varnothing}(\rho)=(1-\eta)\left(\boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}\right) .
\end{aligned}
$$

We still have:

$$
\mathbb{E}\left(\rho_{k+1} \mid \rho_{k}\right) \triangleq \boldsymbol{K}\left(\boldsymbol{\rho}_{k}\right)=\boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}=\sum_{y} \boldsymbol{K}_{y}\left(\boldsymbol{\rho}_{k}\right) .
$$

Discrete-time quantum trajectories for open quantum systems
Four features:

1. Bayes law: $\mathbb{P}(\mu / y)=\mathbb{P}(y / \mu) \mathbb{P}(\mu) /\left(\sum_{\mu^{\prime}} \mathbb{P}\left(y / \mu^{\prime}\right) \mathbb{P}\left(\mu^{\prime}\right)\right)$,
2. Schrödinger equations defining unitary transformations.
3. Partial collapse of the wave packet: irreversibility and dissipation are induced by the measurement of observables with degenerate spectra.
4. Tensor product for the description of composite systems.
\Rightarrow Discrete-time Q. traj. : Markov processes of state ρ, (density op.): $\rho_{k+1}=\frac{\sum_{\mu=1}^{m} \eta_{y, \mu} \boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu=1}^{m} \eta_{y, \mu} \boldsymbol{\mu}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger}\right)}$, with proba. $\mathbb{P}_{y}\left(\rho_{k}\right)=\sum_{\mu=1}^{m} \eta_{y, \mu} \operatorname{Tr}\left(\boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger}\right)$ associated to Kraus maps ${ }^{14}$ (ensemble average, quantum channel)

$$
\mathbb{E}\left(\rho_{k+1} \mid \rho_{k}\right)=\boldsymbol{K}\left(\rho_{k}\right)=\sum_{\mu} \boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger} \quad \text { with } \quad \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}=\boldsymbol{I}
$$

and left stochastic matrices (imperfections, decoherences) ($\eta_{y, \mu}$).

[^4]
Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains
$\rho_{k+1}=\frac{\sum_{\mu=\mathbf{1}}^{m} \eta_{y, \mu} \boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu=\mathbf{1}}^{m} \eta_{y, \mu} \boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger}\right)}$, with proba. $\mathbb{P}_{y}\left(\rho_{k}\right)=\sum_{\mu=1}^{m} \eta_{y, \mu} \operatorname{Tr}\left(\boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger}\right)$
with ensemble averages corresponding to Kraus linear maps

$$
\mathbb{E}\left(\rho_{k+1} \mid \rho_{k}\right)=\boldsymbol{K}\left(\rho_{k}\right)=\sum_{\mu} \boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger} \quad \text { with } \quad \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}=\boldsymbol{I}
$$

Continuous-time models: stochastic differential systems ${ }^{15}$

$$
\begin{aligned}
& d \rho_{t}=\left(-\frac{i}{\hbar}\left[\boldsymbol{H}, \rho_{t}\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \rho_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \rho_{t}+\rho_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
&+\sum_{\nu} \sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu} \rho_{t}+\rho_{t} \boldsymbol{L}_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \rho_{t}\right) \rho_{t}\right) d W_{\nu, t}
\end{aligned}
$$

driven by Wiener processes $d W_{\nu, t}$, with measurements $y_{\nu, t}$, $d y_{\nu, t}=\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \rho_{t}\right) d t+d W_{\nu, t}$, detection efficiencies $\eta_{\nu} \in[0,1]$ and Lindblad-Kossakowski master equations ($\eta_{\nu} \equiv 0$):

$$
\frac{d}{d t} \rho=-\frac{i}{\hbar}[\boldsymbol{H}, \rho]+\sum_{\nu} \boldsymbol{L}_{\nu} \rho \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \rho+\rho \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)
$$

${ }^{15}$ A. Barchielli, M. Gregoratti: Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case. Springer Verlag, 2009.

Positivity-preserving formulation of diffusive SME ${ }^{16}$

With a single imperfect measurement $\boldsymbol{d y}_{t}=\sqrt{\eta} \operatorname{Tr}\left(\left(\boldsymbol{L}+\mathbf{L}^{\dagger}\right) \rho_{t}\right) d t+\boldsymbol{d} W_{t}$ and detection efficiency $\eta \in[0,1]$, the quantum state ρ_{t} is usually mixed and obeys to

$$
\begin{aligned}
d \rho_{t}=\left(-\frac{i}{\hbar}\left[\boldsymbol{H}, \rho_{t}\right]+\boldsymbol{L} \rho_{t} \boldsymbol{L}^{\dagger}\right. & \left.-\frac{1}{2}\left(\boldsymbol{L}^{\dagger} \boldsymbol{L} \rho_{t}+\rho_{t} \boldsymbol{L}^{\dagger} \boldsymbol{L}\right)\right) d t \\
& +\sqrt{\eta}\left(\boldsymbol{L} \rho_{t}+\rho_{t} \boldsymbol{L}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \rho_{t}\right) \rho_{t}\right) d W_{t}
\end{aligned}
$$

driven by the Wiener process $d W_{t}$
With Itō rules, it can be written as the following "discrete-time" Markov model

$$
\rho_{t+d t}=\frac{\boldsymbol{M}_{\boldsymbol{d y}_{t}} \rho_{t} \boldsymbol{M}_{\boldsymbol{d} y_{t}}^{\dagger}+(1-\eta) \boldsymbol{L}_{t} \boldsymbol{L}^{\dagger} d t}{\operatorname{Tr}\left(\boldsymbol{M}_{\boldsymbol{d y _ { t }}} \rho_{t} \boldsymbol{M}_{\boldsymbol{d} \boldsymbol{y}_{t}}^{\dagger}+(1-\eta) \boldsymbol{L} \rho_{t} \boldsymbol{L}^{\dagger} d t\right)}
$$

with $\boldsymbol{M}_{\boldsymbol{d} \boldsymbol{y}_{t}}=\boldsymbol{I}+\left(-\frac{i}{\hbar} \boldsymbol{H}-\frac{1}{2}\left(\boldsymbol{L}^{\dagger} \boldsymbol{L}\right)\right) d t+\sqrt{\eta} d \boldsymbol{y}_{t} \boldsymbol{L}$.
ρ_{0} density operator \mapsto for all $t>0, \rho_{t}$ density operator

[^5]

- How to achieve QEC with the above measurement-based feedback scheme where the controller admits a memory (a dynamical system, possibly stochastic).
- In ${ }^{17}$ QEC is implicitly formulated as feedback stabilization of the code space \mathcal{P}_{c} under quantum non demolition measurement. Numerical closed-loop simulations indicate promising convergence properties but a precise mathematical convergence analysis is missing. Many open issues such as precise estimates of convergence rates in closed-loop ${ }^{18}$

[^6]Quantum cryptography and computation
RSA public-key system
Quantum mechanics from scratch
BB84 quantum key distribution protocol
Shor's factorization algorithm based on quantum Fourier transform
Quantum error correction (QEC)
Classical error correction
QEC in discrete-time
Continuous-time QEC and measurement-based feedback
Autonomous QEC and coherent feedback
Appendix: two key quantum systems
Qubit (half-spin)
Harmonic oscillator (spring)

Coherent feedback (with measurement-based feedback)

- Quantum analogue of Watt speed governor where a dissipative mechanical system controls another mechanical system ${ }^{19}$
- Coherent feedback where the controller is another quantum systems ${ }^{20}$:

[^7]
Inria Quantic project with ENS, Mines and Yale

- Quantic in Paris ${ }^{\text {a }}$: 3 theoreticians, 1 experimentalist, $4 \mathrm{PhD}, 2$ PostDocs. - Development of theoretical methods and experimental devices ensuring robust processing of quantum information.

```
ahttps://team.inria.fr/quantic/
```

- Address Quantum Error Correction (QEC) in a new direction ${ }^{21}$: instead of relying on a large number of physical qubits and collective syndrome measurements to obtain a logical qubit, engineer a logical qubit of tunable high fidelity, localized in a single harmonic oscillator (cat qubit), relying on measurement-based and coherent feedback schemes, exploiting typical nonlinearities of Josephson superconducting circuits, and subject essentially to one error channel (finite photon life-time).
> ${ }^{21}$ M. Mirrahimi, Z. Leghtas, V.V. Albert, S. Touzard, R.J. Schoelkopf, L. Jiang, and M.H. Devoret. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics, 16:045014, 2014.
- Hilbert space:

$$
\mathcal{H}_{M}=\mathbb{C}^{2}=\left\{c_{g}|g\rangle+c_{e}|e\rangle, c_{g}, c_{e} \in \mathbb{C}\right\} .
$$

- Quantum state space:
$\mathcal{D}=\left\{\rho \in \mathcal{L}\left(\mathcal{H}_{M}\right), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\}$.
- Operators and commutations:
$\boldsymbol{\sigma}_{-}=|g\rangle\langle e|, \sigma_{+}=\boldsymbol{\sigma}_{-}^{\dagger}=|e\rangle\langle g|$
$\sigma_{x}=\sigma_{-}+\sigma_{+}=|g\rangle\langle e|+|e\rangle\langle g| ;$
$\sigma_{y}=i \sigma_{-}-i \sigma_{+}=i|g\rangle\langle e|-i|e\rangle\langle g| ;$
$\sigma_{z}=\sigma_{+} \sigma_{-}-\sigma_{-} \sigma_{+}=|e\rangle\langle e|-|g\rangle\langle g| ;$

$\sigma_{x}{ }^{2}=I, \sigma_{x} \sigma_{y}=i \sigma_{z},\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, \ldots$
- Hamiltonian: $\boldsymbol{H}_{M} / \hbar=\omega_{q} \boldsymbol{\sigma}_{\mathbf{z}} / 2+\boldsymbol{u}_{q} \boldsymbol{\sigma}_{\boldsymbol{x}}$.
- Bloch sphere representation:
$\mathcal{D}=\left\{\left.\frac{1}{2}\left(I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right) \right\rvert\,(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2}+z^{2} \leq 1\right\}$
${ }^{22}$ See S. M. Barnett, P.M. Radmore: Methods in Theoretical Quantum Optics. Oxford University Press, 2003.
- Hilbert space:

$$
\mathcal{H}_{S}=\left\{\sum_{n \geq 0} \psi_{n}|n\rangle,\left(\psi_{n}\right)_{n \geq 0} \in I^{2}(\mathbb{C})\right\} \equiv L^{2}(\mathbb{R}, \mathbb{C})
$$

- Quantum state space:

$$
\mathcal{D}=\left\{\rho \in \mathcal{L}\left(\mathcal{H}_{S}\right), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\} .
$$

- Operators and commutations:
$\boldsymbol{a}|n\rangle=\sqrt{n}|\boldsymbol{n}-1\rangle, \boldsymbol{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$;
$\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}, \boldsymbol{N}|n\rangle=n|n\rangle ;$
$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \boldsymbol{a} f(\boldsymbol{N})=f(\boldsymbol{N}+\boldsymbol{I}) \mathbf{a}$;
$\boldsymbol{D}_{\alpha}=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{\dagger}} \mathbf{a}$.
$\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right),[\boldsymbol{X}, \boldsymbol{P}]=\imath \boldsymbol{I} / 2$.
- Hamiltonian: $\boldsymbol{H}_{S} / \hbar=\omega_{c} \boldsymbol{a}^{\dagger} \boldsymbol{a}+u_{c}\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)$. (associated classical dynamics:

$$
\left.\frac{d x}{d t}=\omega_{c} p, \frac{d p}{d t}=-\omega_{c} x-\sqrt{2} u_{c}\right) .
$$

- Classical pure state \equiv coherent state $|\alpha\rangle$
$\alpha \in \mathbb{C}:|\alpha\rangle=\sum_{n \geq 0}\left(e^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}}\right)|n\rangle ;|\alpha\rangle \equiv \frac{1}{\pi^{1 / 4}} e^{2 \sqrt{2} \times \Im \alpha} e^{-\frac{(x-\sqrt{2} \Re \alpha)^{2}}{2}}$ $\boldsymbol{a}|\alpha\rangle=\alpha|\alpha\rangle, \boldsymbol{D}_{\alpha}|0\rangle=|\alpha\rangle$.

[^0]: ${ }^{4} \mathrm{M}$. Brune, ... : Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of "Schrödinger cat" states. Physical Review A, 45:5193-5214, 1992.

[^1]: ${ }^{5}$ Shor's algorithm is detailed in Chapter 5 of M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[^2]: ${ }^{11}$ A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland: Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A,86(3):032324, 2012.

[^3]: ${ }^{12}$ For a mathematical exposure: A. Barchielli, M. Gregoratti: Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case. Springer Verlag,2009.

[^4]: ${ }^{14}$ M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[^5]: ${ }^{16}$ Such SME precisely describe cutting-edge experiments with superconducting qubits under homodyne and heterodyne continuous-time measurements. See, e.g., the group of Benjamin Huard at ENS-Lyon: http://www.physinfo.fr/index.html.

[^6]: ${ }^{17}$ C. Ahn, A. C. Doherty, and A. J. Landahl. Continuous quantum error correction via quantum feedback control. Phys. Rev. A, 65:042301, March 2002.
 ${ }^{18}$ Preliminary results in, e.g., G. Cardona, A. Sarlette, and PR. Exponential stochastic stabilization of a two-level quantum system via strict Lyapunov control. arXiv:1803.07542.

[^7]: ${ }^{19}$ J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
 ${ }^{20}$ Optical pumping (Kastler 1950), coherent population trapping (Arimondo 1996), dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf, Verstraete, Devoret, Siddiqi, Lloyd, Viola, Ticozzi, Mirrahimi, Sarlette, ...)

