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RSA public-key system

• Invented by Rivest, Shamir and Adleman in 1977, this protocole relies
on the factorization difficulty of RSA integer n = pq with p and q large
prime numbers (typically log2(n) ∼ 2048).
• 3-step protocol based on the public key (n, e), with e invertible modulo
(p− 1)(q− 1) and the secrete key d , inverse of e modulo (p− 1)(q− 1):

1. Encryption of M by Alice: M 7→ A = Me mod (n) (efficient
exponentiation by squaring ≤ log2(e) multiplications mod (n))

2. Alice sends A to Bob on a public classical communication channel
(possibly spied by the bad Oscar)

3. Decryption of A by Bob: M = Adwhere d is known only by Bob 1

1Euler-Fermat theorem combined with Chinese-remainder theorem ensures
that for arbitrary integers M and k, Mkϕ(n)+1 = M mod (n) where
ϕ(n) = ϕ(pq) = (p − 1)(q − 1) is the Euler’s totient function
(use ed = 1 + rϕ(n) for some integer r).
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RSA problem and integer factorization

I To recover M from knowing A, e and n, the bad Oscar has to solve
A = Me mod (n). Specialists conjecture that there do-not exist C
and k > 0 and an algorithm starting with input (n, e,A) providing
M with less that C

(
log n

)k evaluations of universal classical gates
AND, XOR and NOT (RSA problem conjectured outside
complexity class P).

I If one has access to the factorization pq = n, one recovers the
secret key d as the inverse of e modulo (p − 1)(q − 1) (Euclidean
polynomial algorithm providing the greatest common divisor).

I Factorization, which is in the complexity class NP, is guessed to be
outside complexity class P: conjecture P$ NP.

Issues around quantum cryptography and computation:

1. unconditionally secure key distribution: BB84 quantum protocol
(commercially available, see https://www.idquantique.com/).

2. factorization in " polynomial time" via Shor algorithm (success
probability O(1) with O

(
(log n)3

)
operations)

(quantum computer with 3 log2 n + c logical qubits, far from being
available yet for 2048-bit RSA numbers n).
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The LKB Photon box

The first experimental realization of a quantum-state feedback:

microwave photons
            (10 GHz)

Theory: I. Dotsenko, . . . : Quantum feedback by discrete quantum
non-demolition measurements: towards on-demand generation of
photon-number states. Physical Review A, 2009, 80: 013805-013813.
Experiment: C. Sayrin, . . . , S. Haroche:
Real-time quantum feedback prepares and stabilizes photon number
states. Nature, 2011, 477, 73-77.
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Three quantum features emphasized by the LKB photon box 2

1. Schrödinger: wave funct. |ψ〉 ∈ H,
d

dt
|ψ〉 = − i

~H |ψ〉 , H = H0 + uH1,

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp.

∑
µ λµPµ:

I measurement outcome µ with proba. Pµ = 〈ψ|Pµ |ψ〉
depending on |ψ〉, just before the measurement

I measurement back-action if outcome µ = y :

|ψ〉 7→ |ψ〉+ =
Py |ψ〉√
〈ψ|Py |ψ〉

3. Tensor product for the description of composite systems (S ,M):
I Hilbert space H = HS ⊗HM

I Hamiltonian H = HS ⊗ IM + H int + I S ⊗HM

I observable on sub-system M only: O = I S ⊗OM .
2S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities

and Photons. Oxford Graduate Texts, 2006.
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Composite system (S ,M): harmonic oscillator ⊗ qubit.

I System S corresponds to a quantized harmonic oscillator:

HS =

{ ∞∑
n=0

ψn |n〉
∣∣∣∣ (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 is the photon-number state with n photons
(〈n1|n2〉 = δn1,n2).

I Meter M is a qubit, a 2-level system:

HM =

{
ψg |g〉+ ψe |e〉

∣∣∣∣ ψg , ψe ∈ C
}
,

where |g〉 (resp. |e〉) is the ground (resp. excited) state
(〈g |g〉 = 〈e|e〉 = 1 and 〈g |e〉 = 0)

I State of the composite system |Ψ〉 ∈ HS ⊗HM :

|Ψ〉 =
∑
n≥0

(
Ψng |n〉 ⊗ |g〉+ Ψne |n〉 ⊗ |e〉

)
=

∑
n≥0

Ψng |n〉

⊗ |g〉+

∑
n≥0

Ψne |n〉

⊗ |e〉 , Ψne ,Ψng ∈ C.

Ortho-normal basis:
(
|n〉 ⊗ |g〉 , |n〉 ⊗ |e〉

)
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Quantum trajectories (1)

C

B

D

R 1
R 2

B R 2

I When atom comes out B, the quantum state |Ψ〉B of the
composite system is separable: |Ψ〉B = |ψ〉 ⊗ |g〉 .

I Just before the measurement in D, the state is in general entangled
(not separable):

|Ψ〉R2
= USM

(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me |ψ〉

)
⊗ |e〉

where USM = UR2UCUR1 is a unitary transformation (Schrödinger
propagator) defining the measurement operators Mg and Me on
HS . Since USM is unitary, M†gMg + M†eMe = I .
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Quantum trajectories (2)

Just before detector D the quantum state is entangled:

|Ψ〉R2
= (Mg |ψ〉)⊗ |g〉+ (Me |ψ〉)⊗ |e〉

Just after outcome y , the state becomes separable 3:

|Ψ〉D =

 My√〈
ψ|M†y My |ψ

〉 |ψ〉
⊗ |y〉 .

Outcome y obtained with probability Py =
〈
ψ|M†yMy |ψ

〉
..

Quantum trajectories (Markov chain, stochastic dynamics):

|ψk+1〉 =


Mg√〈

ψk |M
†
gMg |ψk

〉 |ψk〉 , yk = g with probability
〈
ψk |M†gMg |ψk

〉
;

Me√〈
ψk |M

†
e Me |ψk

〉 |ψk〉 , yk = e with probability
〈
ψk |M†eMe |ψk

〉
;

with state |ψk〉 and measurement outcome yk ∈ {g , e} at time-step k:

3Measurement operator O = I S ⊗ (|e〉 〈e| − |g〉 〈g |).
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Quantum Non Demolition (QND) measurement of photons 4

|Ψ〉R2
= UR2UCUR1

(
|ψ〉 ⊗ |g〉

)
C

B

D

R 1
R 2

B R 2

UR1 = I S ⊗
((
|g〉+|e〉√

2

)
〈g |+

(
−|g〉+|e〉√

2

)
〈e|
)

UC = e−i
φ0
2 N ⊗ |g〉 〈g |+ e i

φ0
2 N ⊗ |e〉 〈e|

UR2 = UR1

UR1

(
|ψ〉 ⊗ |g〉

)
= 1√

2
(|ψ〉 ⊗ |g〉+ |ψ〉 ⊗ |e〉)

UCUR1

(
|ψ〉 ⊗ |g〉

)
= 1√

2

((
e−i

φ0
2 N |ψ〉

)
⊗ |g〉+

(
e i
φ0
2 N |ψ〉

)
⊗ |e〉

)

|Ψ〉R2
= 1

2

((
e−i

φ0
2 N |ψ〉

)
⊗ (|g〉+ |e〉) +

(
e i
φ0
2 N |ψ〉

)
⊗ (− |g〉+ |e〉)

)
=
(
− i sin(φ0

2 N) |ψ〉
)
⊗ |g〉+

(
cos(φ0

2 N) |ψ〉
)
⊗ |e〉

Thus Mg = −i sin(φ0
2 N) and Me = cos(φ0

2 N).
Quantum Monte-Carlo simulations with MATLAB: QNDphoton.m

4M. Brune, . . . : Manipulation of photons in a cavity by dispersive atom-field
coupling: quantum non-demolition measurements and generation of "Schrödinger cat"
states . Physical Review A, 45:5193-5214, 1992.
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An idea due to Bennet and Brassard in 1984 (BB84)

17
GAP Optique
Geneva University

Alice's Bit Sequence

0   1    0     -  0   1   1     1     1   -    1  0

-    1     -   -   0  1   -   -    1     -  1     0

Bob's Bases

Bob's Results

Key

Alice

Bob

Polarizers
Horizontal - Vertical

Diagonal (-45 , +45 )° °

H/V Basis

45  Basis°

BB84 protocol
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BB84

A first quantum sequence via a quantum communication channel:

1. Alice sends to Bob a large number N of linearly polarized photons (i.e. qubits
|ψ〉 = a0 |0〉+ a1 |1〉) along 4 possible directions:

I horizontal (|0〉) or vertical (|1〉).
I +π/4 ( |0〉+|1〉√

2
) or −π/4 ( |0〉−|1〉√

2
).

2. For each photon received from Alice, Bob chooses a measurement
I H/V: Z = |0〉 〈0| − |1〉 〈1|
I ±π/4: X = |1〉 〈0|+ |0〉 〈1| =

(
|0〉+|1〉√

2

)(
〈0|+〈1|√

2

)
−
(
|0〉−|1〉√

2

)(
〈0|−〈1|√

2

)
A second classical sequence via a public communication channel:

1. For each photon, Alice and Bob exchange the type of chosen polarization Z or
X (but not its value).

2. For 50% of the photons sharing the same polarization (around N/4), Alice and
Bob exchange their values (H/V or ±π/4).

3. For 50% of the photons with same polarization (around N/4), Alice and Bob
keep secret their values

If the exchanged values (H/V or ±π/4) coincide, Alice and Bob are convinced that
the quantum communication was not spied by the bad Oscar. The remaining values
(around N/4 and kept secret) will then form a coding key exploited by Alice and Bob
in a classical cryptographic protocol.
Security: Oscar cannot clone the photon emitted by Alice.
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Impossibility of quantum cloning (Wootters and Zurek 1982)

Assume that exists a quantum machine copying the original qubit onto a
second clone qubit. The initial wave function of the composite system (original
qubit, clone qubit, quantum machine) reads

|Ξ〉t=0 = |ψ〉 ⊗ |b〉 ⊗ |fb〉 .

where |ψ〉 ∈ C2 is the original state, |b〉 the initial state of the clone (b for
blank) and |fb〉 the initial state of the cloning machine.
The cloning process is associated to a unitary transformation UT independent
of |Ξ〉t=0 and satisfying

∀ |ψ〉 , |ψ〉 ⊗ |ψ〉 ⊗
∣∣f|ψ〉〉 = UT

(
|ψ〉 ⊗ |b〉 ⊗ |fb〉

)
.

In particular

|0〉 ⊗ |0〉 ⊗
∣∣f|0〉〉 = UT (|0〉 ⊗ |b〉 ⊗ |fb〉)(

|0〉+|1〉√
2

)
⊗
(
|0〉+|1〉√

2

)
⊗
∣∣∣∣f |0〉+|1〉√

2

〉
= UT

((
|0〉+|1〉√

2

)
⊗ |b〉 ⊗ |fb〉

)
Impossible with |Ξ〉 = |0〉 ⊗ |b〉 ⊗ |fb〉 and |Λ〉 =

(
|0〉+|1〉√

2

)
⊗ |b〉 ⊗ |fb〉

1√
2

=
∣∣ 〈Ξ|Λ〉 ∣∣ > 1

2 ≥
∣∣ 〈Ξ|U†TUT |Λ〉

∣∣
since UT preserves Hermitian product:
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Factoring algorithm and its reduction to order finding (Shor 1994)

• Input: composite odd number n.
• Output: a non trivial factor a of n in
O
(
(log n)2(log log n)(log log log n)

)
universal classical/quantum

operations.
• Algorithm:

1. Check whether n = ab with a, b > 1 (polynomial classical
algorithm); possible return of a and stop.

2. Otherwise, choose randomly x ∈ {2, . . . , n − 1}. If
a = gcd(x , n) > 1 (Euclidian division), return a and stop.

3. Otherwise determine with a quantum computer the order r of
x modulo n (the smallest r > 1 such that x r = 1 mod (n)) 5

I If r even and 1 < gcd(x r/2 ± 1, n) < n, then return
a = gcd(x r/2 ± 1, n) and stop.

I Otherwise (probability ≤ η < 1 independent of n) goto step 2.
5Shor’s algorithm is detailed in Chapter 5 of M.A. Nielsen, I.L. Chuang:

Quantum Computation and Quantum Information. Cambridge University Press,
2000.
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A quantum gate appearing in Shor’s order-finding algorithm.

• The canonical `-qubit basis (basis of C2` ≡ (C2)⊗
`

) is labelled by
{0, . . . 2` − 1} 3 j ≡ (j1, . . . , j`) ∈ {0, 1}` with
|j〉 = |j1j2 . . . j`〉 = |j1〉 ⊗ |j2〉 ⊗ . . .⊗ |j`〉 and j =

∑`
s=1 js2

`−s .
• To the data 1 < x < n < 2` with gcd(x , n) = 1 is associated U a
unitary transformation on `-qubits (permutation between vectors |j〉)

if y ≤ n − 1, U |y〉 = |xy mod(n)〉 , otherwise U |y〉 = |y〉 .

• For r the order of x mod(n) and any s ∈ {0, . . . , r −1} the `-qubit state

|us〉 = 1√
r

r−1∑
k=0

e
−2iπ sk

r
∣∣xk mod(n)

〉
satisfies U |us〉 = e

−2iπ s
r |us〉

and 1√
r

∑r−1
s=0 |us〉 = |1〉.

• Modular exponentiation algorithm to compute U with O(`3) 1-qubit
gates 6 and CNOT 2-qubit gates 7 (non trivial quantum algorithm...)

6Unitary eıθe−ıαZ/2e−ıβX/2e−ıγZ/2 with (θ, α, β, γ) ∈ [0, 2π].
7CNOT |y1y2〉 = |y1z2〉 where {0, 1} 3 z2 = y1 + y2 mod (2).
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The quantum Fourier transform

• Computations of the usual discrete Fourier transform
C2` 3 (x0, . . . , x2`−1) 7→ (y0, . . . , y2`−1) ∈ C2`

yj = 1
2`/2

2`−1∑
j=0

e
2iπ jk

2` xk ; xk = 1
2`/2

2`−1∑
j=0

e
−2iπ jk

2` yj

requires O(`2`) additions and multiplications (FFT).
• It is also a unitary transformation of C2` ≡ (C2)⊗

`

, the quantum Fourier
transform (QFT)

|j1〉 . . . |j`〉 = |j〉 7→
∑2`−1

k=0 e
2iπ jk

2` |k〉
2`/2

with the binary decomposition j =
∑`

s=1 js2
`−s .

• The identity underlying the quantum circuit implementing the QFT with
O(`2) 1-qubit gates and 2-qubit gates:∑2`−1

k=0 e
2iπ jk

2` |k〉
2`/2

=

(
|0〉+ e2iπ 0.j` |1〉

) (
|0〉+ e2iπ 0.j`−1 j` |1〉

)
. . .
(
|0〉+ e2iπ 0.j1...j` |1〉

)
2`/2

with binary fraction notations 0.js js+1 jm = js/2 + js+1/4 + . . .+ jm/2m−s+1.
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Efficient Circuit for the quantum Fourier transform

With Hadamard gate, H =
(
|0〉+|1〉√

2

)
〈0|+

(
|0〉−|1〉√

2

)
〈1|, and

Controlled-Rk gate (2-qubit) where Rk = |0〉 〈0|+ e2iπ/2k |1〉 〈1|,
the circuit

followed by a simple swap circuit reversing the order of the ` qubits, one
gets the QFT:

|j1 . . . j`〉 7→
(
|0〉+ e2iπ 0.j` |1〉

) (
|0〉+ e2iπ 0.j`−1 j` |1〉

)
. . .
(
|0〉+ e2iπ 0.j1...j` |1〉

)
2`/2
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The simplest classical error correction code

• Single bit error model: the bit b ∈ {0, 1} flips with probability p < 1/2
during ∆t (for usual DRAM: p/∆t ≤ 10−14 s−1).
• Multi-bit error model: each bit bk ∈ {0, 1} flips with probability
p < 1/2 during ∆t; no correlation between the bit flips.
•Use redundancy to construct with several physical bits bk of flip
probability p, a logical bit bL with a flip probability pL < p.
• The simplest solution, the 3-bit code (sampling time ∆t):

t = 0: bL = [bbb] with b ∈ {0, 1}
t = ∆t: measure the three physical bits of bL = [b1b2b3]

(instantaneous) :

1. if all 3 bits coincide, nothing to do.
2. if one bit differs from the two other ones, flip this bit

(instantaneous);

• Since the flip probability laws of the physical bits are independent, the
probability that the logical bit bL (protected with the above error
correction code) flips during ∆t is pL = 3p2 − 2p3 < p since p < 1/2.
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The 3-qubit bit flip code

• Local bit-flip errors: each physical qubit |ψ〉 = α |0〉+ β |1〉 becomes
X |ψ〉 = α |1〉+ β |0〉 8 with probability p < 1/2 during ∆t.
(for actual super-conducting qubit p/∆t > 103 s−1).
• t = 0: |ψL〉 = α |0L〉+ β |1L〉 ∈ C8 with |0L〉 = |000〉 and |1L〉 = |111〉.
• t = ∆t: |ψL〉 becomes with

1 flip:

 α |100〉+ β |011〉
α |010〉+ β |101〉
α |001〉+ β |110〉

; 2 flips:

 α |110〉+ β |001〉
α |101〉+ β |010〉
α |011〉+ β |100〉

; 3 flips: α |111〉+β |000〉 .

• Key fact: 4 orthogonal planes Pc = span(|000〉 , |111〉), P1 = span(|100〉 , |011〉),
P2 = span(|010〉 , |101〉) and P3 = span(|001〉 , |110〉).
• Error syndromes: 3 commuting observables S1 = I ⊗ Z ⊗ Z , S2 = Z ⊗ I ⊗ Z and
S3 = Z ⊗ Z ⊗ I with spectrum {−1,+1} and outcomes (s1, s2, s3) ∈ {−1,+1}.

-1- s1 = s2 = s3: Pc 3 |ψL〉 =

{
α |000〉+ β |111〉 0 flip
β |000〉+ α |111〉 3 flips ; no correction

-2- s1 6= s2 = s3: P1 3 |ψL〉 =

{
α |100〉+ β |011〉 1 flip
β |100〉+ α |011〉 2 flips ; (X ⊗ I ⊗ I ) |ψL〉 ∈ Pc .

-3- s2 6= s3 = s1: P2 3 |ψL〉 =

{
α |010〉+ β |101〉 1 flip
β |010〉+ α |101〉 2 flips ; (I ⊗ X ⊗ I ) |ψL〉 ∈ Pc .

-4- s3 6= s1 = s2: P3 3 |ψL〉 =

{
α |001〉+ β |110〉 1 flip
β |001〉+ α |110〉 2 flips ; (I ⊗ I ⊗ X ) |ψL〉 ∈ Pc .

8
X = |1〉 〈0| + |0〉 〈1| and Z = |0〉 〈0| − |1〉 〈1|.

25 / 43



The 3-qubit phase flip code

• Local phase-flip error: each physical qubit |ψ〉 = α |0〉+ β |1〉 becomes
Z |ψ〉 = α |0〉 − β |0〉 9 with probability p < 1/2 during ∆t.
• Since X = HZH and Z = HXH (H2 = I ), use the 3-qubit bit flip code in the
frame defined by H:

|0〉 7→
|0〉+ |1〉
√
2

, |+〉 , |1〉 7→
|0〉 − |1〉
√
2

, |−〉 , X 7→ HXH = Z = |+〉〈+|+ |−〉〈−| .

• t = +: |ψL〉 = α |+L〉 + β |−L〉 with |+L〉 = |+ + +〉 and |−L〉 = |− − −〉.
• t = ∆t: |ψL〉 becomes with

1 flip:

 α |− + +〉 + β |+−−〉
α |+− +〉 + β |− +−〉
α |+ +−〉 + β |− − +〉

; 2 flips:

 α |− − +〉 + β |+ +−〉
α |− +−〉 + β |+− +〉
α |+−−〉 + β |− + +〉

; 3 flips: α |− − −〉 + β |+ + +〉 .

• Key fact: 4 orthogonal planes Pc = span(|+ + +〉 , |− − −〉), P1 = span(|− + +〉 , |+−−〉,
P2 = span(|+− +〉 , |− +−〉) and P3 = span(|+ +−〉 , |− − +〉).
• Error syndromes: 3 commuting observables S1 = I ⊗ X ⊗ X , S2 = X ⊗ I ⊗ X and S3 = X ⊗ X ⊗ I
with spectrum {−1,+1} and outcomes (s1, s2, s3) ∈ {−1,+1}.

-1- s1 = s2 = s3: Pc 3 |ψL〉 =

{
α |+ + +〉 + β |− − −〉 0 flip
β |+ + +〉 + α |− − −〉 3 flips ; no correction

-2- s1 6= s2 = s3: P1 3 |ψL〉 =

{
α |− + +〉 + β |+−−〉 1 flip
β |− + +〉 + α |+−−〉 2 flips ; (Z ⊗ I ⊗ I ) |ψL〉 ∈ Pc .

-3- s2 6= s3 = s1: P2 3 |ψL〉 =

{
α |+− +〉 + β |− +−〉 1 flip
β |+− +〉 + α |− +−〉 2 flips ; (I ⊗ Z ⊗ I ) |ψL〉 ∈ Pc .

-4- s3 6= s1 = s2: P3 3 |ψL〉 =

{
α |+ +−〉 + β |− − +〉 1 flip
β |+ +−〉 + α |− − +〉 2 flips ; (I ⊗ I ⊗ Z) |ψL〉 ∈ Pc .

9
X = |1〉 〈0| + |0〉 〈1|, Z = |0〉 〈0| − |1〉 〈1| and H =

(
|0〉+|1〉√

2

)
〈0| +

(
|0〉−|1〉√

2

)
〈1|.
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The Shor code (1995): combination of bit-flip and phase flip codes

• Take the phase flip code |+ + +〉 and |− − −〉. Replace each |+〉 (resp. |−〉) by
|000〉+|111〉√

2
(resp. |000〉−|111〉√

2
). New logical qubit |ψL〉 = α |0L〉+ β |1L〉 ∈ C29 :

|0L〉 =

(
|000〉+|111〉

)(
|000〉+|111〉

)(
|000〉+|111〉

)
2
√
2

, |1L〉 =

(
|000〉−|111〉

)(
|000〉−|111〉

)(
|000〉−|111〉

)
2
√
2

• Local errors: each of the 9 physical qubits can have a bit-flip X , a phase flip Z or a
bit flip followed by a phase flip ZX = iY 10 with probability p during ∆t.
• Denote by X k (resp. Y k and Zk ), the local operator X (resp. Y and Z) acting on
physical qubit no k ∈ {1, . . . , 9}. Denote by Pc = span(|0L〉 , |1L〉) the code space.
One get a family of the 1 + 3× 9 = 28 orthogonal planes:

Pc ,
(
X kPc

)
k=1,...,9

,
(
Y kPc

)
k=1,...,9

,
(
ZkPc

)
k=1,...,9

.

• One can always construct error syndromes to obtain, when there is only one error
among the 9 qubits during ∆t, the number k of the qubit and the error type it has
undergone (X , Y or Z). These 28 planes are then eigen-planes by the syndromes.
• If the physical qubit k is subject to any kind of local errors associated to arbitrary
operator M = g I + aX + bY + cZ (g , a, b, c ∈ C), |ψL〉 7→ Mk |ψL〉√

〈ψL|M
†
k
Mk |ψL〉

, the

syndrome measurements will project the corrupted logical qubit on one of the 4 planes
Pc , X kPc , Y kPc or ZkPc . It is then simple by using either I , X k , Y k or Zk , to
recover up to a global phase the original logical qubit |ψL〉.

10
X = |1〉 〈0| + |0〉 〈1|, Z = |0〉 〈0| − |1〉 〈1| and Y = i |1〉 |0〉 − i |0〉 |1〉.
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Many open issues connected to QEC

• For a logical qubit relying on n physical qubits, the dimension of the
Hilbert has to be larger than 2(1 + 3n) to recover an arbitrary
single-qubit error: 2n ≥ 2(1 + 3n) imposing n ≥ 5.

• Efficient constructions of quantum error-correcting codes: stabilizer
codes, surface codes where the physical qubits are located on a
2D-lattice, topological codes, . . .

• Fault tolerant computations: computing on encoded quantum states;
fault-tolerant operations to avoid propagations of errors during encoding,
gates and measurement; concatenation and threshold theorem, . . .

• Error rates for a DRAM bit ≤ 10−14 s−1 and for a superconducting
qubit ≥ 103 s−1 : high order error-correcting codes; important overhead
(around 1000 physical qubits to encode a logical one11); scalability issues;
. . .

11A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland: Surface codes:
Towards practical large-scale quantum computation. Phys. Rev.
A,86(3):032324, 2012.
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Continuous-time QEC and feedback

• Quantum error correction is a feedback scheme: at each sampling time a
measurement is performed and a correction depending only on the
measurement outcome is applied.

• From a control engineering view point, QEC is based on a static output
feedback scheme (feedback without memory) (called also Markovian feedback).

• In usual discrete-time setting, measurement (sensor) and correction
(actuator) processes are assumed instantaneous.

• Natural question: how to take into account the finite band-width of the
measurement and correction processes.

• Interest of continuous-time formulations for QEC:

1. measurement and correction are faster than the error rates but not
infinitely faster;

2. qubit errors can occur during the measurement and the correction
processes (fault-tolerance issues).

|ψ〉 replaced by ρ (density operator) obeying to a stochastic master equation (SME).
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Flashback to the LKB photon box

C

B

D

R 1
R 2

B R 2

|Ψ〉R2
= USM |Ψ〉B = USM

(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me |ψ〉

)
⊗ |e〉

with M†gMg + M†eMe = I .
• Quantum trajectories (Markov chain, stochastic dynamics):

|ψk+1〉 =


Mg√〈

ψk |M
†
gMg |ψk

〉 |ψk〉 , yk = g with probability
〈
ψk |M†gMg |ψk

〉
;

Me√〈
ψk |M

†
e Me |ψk

〉 |ψk〉 , yk = e with probability
〈
ψk |M†eMe |ψk

〉
;

with state |ψk〉 and measurement outcome yk ∈ {g , e} at time-step k:
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Continuous-time quantum trajectories (diffusive case) 12

• The measurement outcome yk at discrete-time step k, is replaced by the
small among of measurement signal dyt ∈ R obtained during an infinitesimal
time interval [t, t + dt].
• The measurement operator Myk becomes Mdyt close to identity:

Mdyt = I +
(
− i

~H − 1
2

(
L†L
))

dt + dytL

where operator L (not necessarily Hermitian) describes the measurement
process and H is the Hamiltonian corresponding to the coherent evolution.
• The measurement backaction reads

|ψ〉t+dt =
Mdyt |ψ〉t√

〈ψ|tM
†
dyt

Mdyt |ψ〉t

• Probability density of dy ∈ R knowing |ψ〉t :
e
− dy2

2dt√
2πdt

〈ψ|t M†dyMdy |ψ〉t .
Coincides up to order O(dt3/2) terms to dy = 〈ψ|t (L + L†) |ψ〉t dt + dW
where dW is a Wiener process (Gaussian of zero mean and variance dt).
Quantum Monte-Carlo simulations with MATLAB: QNDqubit.m (L = σz , H = 0)

12For a mathematical exposure: A. Barchielli, M. Gregoratti: Quantum Trajectories
and Measurements in Continuous Time: the Diffusive Case. Springer Verlag,2009.
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Why density operators ρ instead of wave functions |ψ〉
Consider once again the LKB photon-box:

|ψk+1〉 =


Mg√〈

ψk |M
†
gMg |ψk

〉 |ψk〉 , yk = g with probability
〈
ψk |M†gMg |ψk

〉
;

Me√〈
ψk |M

†
e Me |ψk

〉 |ψk〉 , yk = e with probability
〈
ψk |M†eMe |ψk

〉
;

Assume known |ψ0〉 and detector out of order (y = ∅): what about |ψ1〉 ?
I Expectation value of |ψ1〉 〈ψ1| knowing |ψ0〉: 13

E (
|ψ1〉 〈ψ1|

∣∣ |ψ0〉
)

= Mg |ψ0〉 〈ψ0|M†g + Me |ψ0〉 〈ψ0|M†e .

I Set K(ρ) , MgρM†g + MeρM†e for any operator ρ.
I ρk expectation of |ψk〉 〈ψk | knowing |ψ0〉:

ρk+1 = K(ρk) and ρ0 = |ψ0〉 〈ψ0| .

Linear map K : trace preserving Kraus map (quantum channel).
Density operators ρ: convex space of Hermitian non-negative operators of trace
one.

13|ψ〉 〈ψ|: orthogonal projector on line spanned by unitary vector |ψ〉.
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Quantum trajectories for the density operator ρ

Detector efficiency η ∈ [0, 1]. Output y ∈ {g , e,∅}:

ρk+1 =



K g (ρk)

Tr (K g (ρk))
, yk = g with probability Tr (K g (ρk));

K e(ρk)

Tr (K e(ρk))
, yk = e with probability Tr (K e(ρk));

K∅(ρk)

Tr (K∅(ρk))
, yk = ∅ with probability Tr (K∅(ρk));

with Kraus maps

K g (ρ) = ηMgρM†g , K e(ρ) = ηMeρM†e

K∅(ρ) = (1− η)
(
MgρM†g + MeρM†e

)
.

We still have:

E (ρk+1

∣∣ ρk) , K (ρk) = MgρkM
†
g + MeρkM

†
e =

∑
y

K y (ρk).
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Discrete-time quantum trajectories for open quantum systems

Four features:

1. Bayes law: P(µ/y) = P(y/µ)P(µ) /
(∑

µ′ P(y/µ′)P(µ′)
)
,

2. Schrödinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation are
induced by the measurement of observables with degenerate spectra.

4. Tensor product for the description of composite systems.

V Discrete-time Q. traj. : Markov processes of state ρ, (density op.):

ρk+1 =
∑m
µ=1 ηy,µMµρkM†µ

Tr(
∑m
µ=1 ηy,µMµρkM†µ)

, with proba. Py (ρk) =
∑m
µ=1 ηy ,µ Tr

(
MµρkM†µ

)
associated to Kraus maps 14 (ensemble average, quantum channel)

E (ρk+1|ρk) = K (ρk) =
∑
µ

MµρkM†µ with
∑
µ

M†µMµ = I

and left stochastic matrices (imperfections, decoherences) (ηy ,µ).
14M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
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Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains
ρk+1 =

∑m
µ=1 ηy,µMµρkM†µ

Tr(
∑m
µ=1 ηy,µMµρkM†µ)

, with proba. Py (ρk) =
∑m
µ=1 ηy ,µ Tr

(
MµρkM†µ

)
with ensemble averages corresponding to Kraus linear maps

E (ρk+1|ρk) = K (ρk) =
∑
µ

MµρkM†µ with
∑
µ

M†µMµ = I

Continuous-time models: stochastic differential systems 15

dρt =
(
− i

~ [H , ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)
)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

driven by Wiener processes dWν,t , with measurements yν,t ,

dyν,t =
√
ην Tr

(
(Lν + L†ν) ρt

)
dt + dWν,t , detection efficiencies

ην ∈ [0, 1] and Lindblad-Kossakowski master equations (ην ≡ 0):

d

dt
ρ = − i

~ [H , ρ] +
∑
ν

LνρL†ν −
1
2

(L†νLνρ+ ρL†νLν)

15A. Barchielli, M. Gregoratti: Quantum Trajectories and Measurements in
Continuous Time: the Diffusive Case. Springer Verlag, 2009. 36 / 43



Positivity-preserving formulation of diffusive SME 16

With a single imperfect measurement dyt =
√
η Tr

(
(L + L†) ρt

)
dt + dWt and

detection efficiency η ∈ [0, 1], the quantum state ρt is usually mixed and obeys
to

dρt =
(
− i

~ [H , ρt ] + LρtL† −
1
2

(L†Lρt + ρtL†L)
)
dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt

With Itō rules, it can be written as the following "discrete-time" Markov model

ρt+dt =
MdytρtM

†
dyt

+ (1− η)LρtL†dt

Tr
(
MdytρtM

†
dyt

+ (1− η)LρtL†dt
)

with Mdyt = I +
(
− i

~H − 1
2

(
L†L
))

dt +
√
ηdytL.

ρ0 density operator 7→ for all t > 0, ρt density operator
16Such SME precisely describe cutting-edge experiments with superconducting

qubits under homodyne and heterodyne continuous-time measurements. See, e.g., the
group of Benjamin Huard at ENS-Lyon: http://www.physinfo.fr/index.html.
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Quantum error correction in the diffusive case

QUANTUM WORLD

decoherence

quantum state

Hilbert space (dissipation)
CLASSICAL WORLD

classical
input u 

classical
reference  

classical
controller 

classical
output dy 

• How to achieve QEC with the above measurement-based feedback scheme
where the controller admits a memory (a dynamical system, possibly
stochastic).

• In 17 QEC is implicitly formulated as feedback stabilization of the code space
Pc under quantum non demolition measurement. Numerical closed-loop
simulations indicate promising convergence properties but a precise
mathematical convergence analysis is missing. Many open issues such as
precise estimates of convergence rates in closed-loop 18

17C. Ahn, A. C. Doherty, and A. J. Landahl. Continuous quantum error correction
via quantum feedback control. Phys. Rev. A, 65:042301, March 2002.

18Preliminary results in, e.g., G. Cardona, A. Sarlette, and PR. Exponential
stochastic stabilization of a two-level quantum system via strict Lyapunov control.
arXiv:1803.07542.
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Coherent feedback (with measurement-based feedback)

• Quantum analogue of Watt speed governor where a dissipative
mechanical system controls another mechanical system19

• Coherent feedback where the controller is another quantum systems20:

QUANTUM WORLD

CLASSICAL WORLD Hilbert space 

classical 
controller 

       quantum
       controller
Hilbert space

Hilbert space
   system S

dissipation 

errors 

classical
input

classical
output

quantum measurement

classical
reference

quantum
interaction

dy

dy

19J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
20Optical pumping (Kastler 1950), coherent population trapping (Arimondo

1996), dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf,
Verstraete, Devoret, Siddiqi, Lloyd, Viola, Ticozzi, Mirrahimi, Sarlette, ...)

40 / 43



Inria Quantic project with ENS, Mines and Yale

readout mode
(measurement-based feedback)

high Q mode a
(logical qubit)

low Q mode b
(coherent feedback)

I

Q

qubit

non-linear mixer: a4b†+h.c

• Quantic in Parisa: 3 theoreticians, 1
experimentalist, 4 PhD, 2 PostDocs.
• Development of theoretical methods
and experimental devices ensuring
robust processing of quantum
information.

ahttps://team.inria.fr/quantic/

• Address Quantum Error Correction (QEC) in a new direction21:
instead of relying on a large number of physical qubits and collective syndrome
measurements to obtain a logical qubit, engineer a logical qubit of tunable high
fidelity, localized in a single harmonic oscillator (cat qubit), relying on
measurement-based and coherent feedback schemes, exploiting typical
nonlinearities of Josephson superconducting circuits, and subject essentially to
one error channel (finite photon life-time).

21M. Mirrahimi, Z. Leghtas, V.V. Albert, S. Touzard, R.J. Schoelkopf, L.
Jiang, and M.H. Devoret. Dynamically protected cat-qubits: a new paradigm
for universal quantum computation. New Journal of Physics, 16:045014, 2014.
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Qubit (2-level system, half-spin) 22

I Hilbert space:
HM = C2 =

{
cg |g〉+ ce |e〉 , cg , ce ∈ C

}
.

I Quantum state space:
D = {ρ ∈ L(HM), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
σ- = |g〉 〈e|, σ+ = σ-

† = |e〉 〈g |
σx = σ- + σ+ = |g〉 〈e|+ |e〉 〈g |;
σy = iσ- − iσ+ = i |g〉 〈e| − i |e〉 〈g |;
σz = σ+σ- − σ-σ+ = |e〉〈e| − |g〉〈g |;
σx

2 = I , σxσy = iσz , [σx ,σy ] = 2iσz , . . .

I Hamiltonian: HM/~ = ωqσz/2 + uqσx .

I Bloch sphere representation:
D =

{
1
2

(
I + xσx + yσy + zσz

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq

22 See S. M. Barnett, P.M. Radmore: Methods in Theoretical Quantum
Optics. Oxford University Press, 2003.
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Quantum harmonic oscillator (spring system) 22

I Hilbert space:
HS =

{∑
n≥0 ψn |n〉 , (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

I Quantum state space:
D = {ρ ∈ L(HS), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
a |n〉 =

√
n |n-1〉, a† |n〉 =

√
n + 1 |n + 1〉;

N = a†a, N |n〉 = n |n〉;
[a, a†] = I , af (N) = f (N + I )a;
Dα = eαa†−α†a.
a = X + iP = 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI/2.

I Hamiltonian: HS/~ = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp,

dp
dt = −ωcx −

√
2uc).

I Classical pure state ≡ coherent state |α〉
α ∈ C : |α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√
n!

)
|n〉; |α〉 ≡ 1

π1/4 e
ı
√

2x=αe−
(x−
√

2<α)2
2

a |α〉 = α |α〉, Dα |0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.

43 / 43


	Quantum cryptography and computation
	RSA public-key system
	Quantum mechanics from scratch
	BB84 quantum key distribution protocol
	Shor's factorization algorithm based on quantum Fourier transform 

	Quantum error correction (QEC)
	Classical error correction
	QEC in discrete-time
	Continuous-time QEC and measurement-based feedback
	Autonomous QEC and coherent feedback

	Appendix: two key quantum systems
	Qubit (half-spin)
	Harmonic oscillator (spring)


