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Interest of flat systems

1. History: ”integrability” for under-determinated systems of
differential equations (Monge, Hilbert, Cartan, ....).

2. Control theory: flat systems admit simple solutions to the
motion planing and tracking problems (Fliess and
coworkers 1991 and later).

3. Books on differentially flat systems:
I H. Sira-Ramirez and S.K. Agarwal: Differentially flat

systems. CRC, 2004.
I J. Lévine: Analysis and Control of Nonlinear Systems : A

Flatness-Based Approach. Springer-Verlag, 2009.
I J. Rudolph: Flatness Based Control of Distributed

Parameter Systems. Shaker, Germany. 2003.



Motion planning: controllability.

?

Difficult problem due to integration of

d
dt x = f (x ,ur (t)), x(0) = p.



Tracking for d
dt x = f (x ,u): stabilization.

real trajectory

reference trajectory

Compute ∆u, u = ur + ∆u, depending ∆x (feedback), such
that ∆x = x − xr tends to 0 (stabilization).



The simplest robot

I Newton ODE):

d2

dt2 θ = −p sin(θ) + u

Non linear oscillator with scalar input
u and parameter p > 0.

I Computed torque method:
ur = d2

dt2 θr + p sin θr provides an
explicit parameterization via KC2

function: t 7→ θr (t), the flat output.
Motion planing and tracking (ξ, ω0 > 0, two feedback gains)

u
(

t , θ, d
dt θ
)

= d2

dt2 θr +p sin θ−2ξω0

(
d
dt θ −

d
dt θr

)
−(ω0)2 sin(θ−θr )

where t 7→ θr (t) defines the reference trajectory (control goal).



Fully actuated mechanical systems

The computed torque method for

d
dt

[
∂L
∂q̇

]
=
∂L
∂q

+ M(q)u

consists in setting t 7→ q(t) to obtain u as a function of q, q̇ and
q̈.
(Fully actuated: dim q = dim u and M(q) invertible).



Oscillators and linear systems
System with 2 ODEs and 3 unknowns (x1, x2,u) (a1,a2 > 0 and
a1 6= a2)

d2

dt2 x1 = −a1(x1 − u), d2

dt2 x2 = −a2(x2 − u)

defines a free module1 with basis y = a2x1−a1x2
a2−a1

:
x1 = y + d2

dt2 y/a2,
d
dt x1 = d

dt y + d3y
dt3 /a2

x2 = y + d2

dt2 y/a1,
d
dt x2 = d

dt y + d3y
dt3 /a1

u = y +
(

1
a1

+ 1
a2

)
d2

dt2 y +
(

1
a1a2

)
d4

dt4 y

Reference trajectory for equilibrium x1 = x2 = u = 0 at t = 0 to
equilibrium x1 = x2 = u = D at t = T > 0:

y(t) = 0 si t ≤ 0,
(t)4

t4 + (T − t)4 D si t ∈ [0,T ], D si t ≥ T .

Generalization to n oscillators and any linear controllable
system, d

dt X = AX + Bu.
1See the work of Alban Quadrat and co-workers....



2kπ juggling robot: prototype of implicit flat system

S

mg

Isochronous punctual pendulum H
(Huygens) :

m d2

dt2 H = ~T + m~g
~T // ~HS

‖ ~HS‖2 = l

I The suspension point S ∈ R3 stands for the control input
I The oscillation center H ∈ R3 is the flat output: since
~T/m = d2

dt2 H − ~g et ~T //
−→
HS, S is solution of the algebraic

system:

−→
HS // d2

dt2 H − ~g and ‖ ~HS‖2 = l .



Return of the pendulum and smooth branch switch

In a vertical plane: H of coordinates (y1, y2) and S of
coordinates (u1,u2) satisfy

(y1−u1)2+(y2−u2)2 = l , (y1−u1)
(

d2

dt2 y2 + g
)

= (y2−u2) d2

dt2 y1.

Find [0,T ] 3 t 7→ y(t) C2 such that y(0) = (0,−l), y(T ) = (0, l)
and y (1,2)(0,T ) = 0, and such that exists also [0,T ] 3 t 7→ u(t)
C0 with u(0) = u(T ) = 0 (switch between the stable and the
unstable branches).



Planning the inversion trajectory

Any smooth trajectory connecting the stable to the unstable
equilibrium is such that Ḧ(t) = ~g for at least one time t . During
the motion there is a switch from the stable root to the unstable
root (singularity crossing when Ḧ = ~g)

stable root

unstable root





Crossing smoothly the singularity Ḧ = ~g

The geometric path followed by H is a half-circle of radius lof
center O:

H(t) = 0 + l
[

sin θ(s)
− cos θ(s)

]
with θ(s) = µ(s)π, s = t/T ∈ [0,1]

where T is the transition time and µ(s) a sigmoid function of the
form:

0 1
s

1





Time scaling and dilatation of Ḧ − ~g

Denote by ′ derivation with respect to s. From

H(t) = 0 + l
[

sin θ(s)
− cos θ(s)

]
, θ(s) = µ(t/T )π

we have
Ḧ = H ′′/T 2.

Changing T to αT yields to a dilation of factor 1/α2 of the
closed geometric path described by Ḧ − ~g for t ∈ [0,T ]
(Ḧ(0) = Ḧ(T ) = 0), the dilation center being −~g.
The inversion time is obtained when this closed path passes
through 0. This construction holds true for generic µ.



The crane

g

H

r
r

d

x

z
T

u1
u2 D

m

O



The geometric construction for the crane

H

DO

Singularity when Ḧ − ~g is horizontal.



Single car 2

P


d
dt x = v cos θ
d
dt y = v sin θ
d
dt θ =

v
l

tanϕ = ω


v = ±‖ d

dt P‖[
cos θ
sin θ

]
=

d
dt P
v

tanϕ = l det(P̈,Ṗ)

v
√
|v |

2For modeling and control of non-holonomic systems, see, e.g.,B.
d’Andréa-Novel, G. Campion, G. Bastin: Control of Nonholonomic Wheeled
Mobile Robots by State Feedback Linearization. International Journal of
Robotics Research December 1995 vol. 14 no. 6 543-559.



The time scaling symmetry

For any T 7→ σ(T ), the transformation

t = σ(T ), (x , y , θ) = (X ,Y ,Θ), (v , ω) = (V ,Ω)/σ′(t)

leave the equations

d
dt x = v cos θ, d

dt y = v sin θ, d
dt θ = ω

unchanged:

d
dT

X = V cos Θ,
d

dT
Y = V sin Θ,

d
dT

Θ = Ω.



SE(2) invariance

For any (a,b, α), the transformation[
x
y

]
=

[
X cosα− Y sinα + a
X sinα + Y cosα + b

]
, θ = Θ− α, (v , ω) = (V ,Ω)

leave the equations

d
dt x = v cos θ, d

dt y = v sin θ, d
dt θ = ω

unchanged:

d
dt

X = V cos Θ,
d
dt

Y = V sin Θ,
d
dt

Θ = Ω.



Invariant tracking3

translation
+ rotation

3For a general setting see: Ph. Martin, P. R., J. Rudolph: Invariant tracking,
ESAIM: Control, Optimisation and Calculus of Variations, 10:1–13,2004.



Invariant tracking for the car: goal

Given the reference trajectory

t 7→ sr 7→ Pr (sr ), θr (sr ), vr = ṡr , ωr = ṡrκr (sr )

and the state (P, θ)
Find an invariant controller

v = vr + . . . , ω = ωr + . . .



Invariant tracking for the car: time-scaling

Set
v = v̄ ṡr , ω = ω̄ ṡr

and denote by ′ derivation versus sr .
Equations remain unchanged

P ′ = v̄ ~τ , ~τ ′ = ω̄ ~ν

with P = (x , y), ~τ = (cos θ, sin θ) and ~ν = (− sin θ, cos θ).



Invariant errors

Construct the decoupling and/or linearizing controller with the
two following invariant errors

e‖ = (P − Pr ) · ~τr , e⊥ = (P − Pr ) · ~νr .



Computations of e‖ and e⊥ derivatives

Since e‖ = (P − Pr ) · ~τr and e⊥ = (P − Pr ) · ~νr we have
(remember that ′ = d/dsr )

e′‖ = (P ′ − P ′r ) · ~τr + (P − Pr ) · ~τ ′r .

But P ′ = v̄~τ , P ′r = ~τr and ~τ ′r = κr~νr , thus

e′‖ = v̄~τ · ~τr − 1 + κr (P − Pr ) · ~νr .

Similar computations for e′⊥ yield:

e′‖ = v̄ cos(θ − θr )− 1 + κr e⊥, e′⊥ = v̄ sin(θ − θr )− κr e‖.



Computations of e‖ and e⊥ second derivatives

Derivation of

e′‖ = v̄ cos(θ − θr )− 1 + κr e⊥, e′⊥ = v̄ sin(θ − θr )− κr e‖

with respect to sr gives

e′′‖ = v̄ ′ cos(θ − θr )− ω̄v̄ sin(θ − θr )

+ 2κr v̄ sin(θ − θr ) + κ′r e⊥ − κ2
r e‖

e′′⊥ = v̄ ′ sin(θ − θr ) + ω̄v̄ cos(θ − θr )

− 2κr v̄ cos(θ − θr )− κ′r e‖ + κr + κ2
r e‖.



The dynamics feedback in sr time-scale

We have obtain

e′′‖ = v̄ ′ cos(θ − θr )− ω̄v̄ sin(θ − θr )

+ 2κr v̄ sin(θ − θr ) + κ′r e⊥ − κ2
r e‖

e′′⊥ = v̄ ′ sin(θ − θr ) + ω̄v̄ cos(θ − θr )

− 2κr v̄ cos(θ − θr )− κ′r e‖ + κr + κ2
r e‖.

Choose v̄ ′ and ω̄ such that

e′′‖ = −

(
1
L1
‖

+
1
L2
‖

)
e′‖ −

(
1

L1
‖L

2
‖

)
e‖

e′′⊥ = −
(

1
L1
⊥

+
1

L2
⊥

)
e′⊥ −

(
1

L1
⊥L2
⊥

)
e⊥

Possible around a large domain around the reference trajectory since
the determinant of the decoupling matrix is v̄ ≈ 1.



The dynamics feedback in physical time-scale

In the sr scale, we have the following dynamic feedback

v̄ ′ = Φ(v̄ ,P,Pr , θ, θr , κr , κ
′
r )

ω̄ = Ψ(v̄ ,P,Pr , θ, θr , κr , κ
′
r )

Since ′ = d/dsr = d/(ṡr dt) we have

dv̄
dt

= Φ(v̄ ,P,Pr , θ, θr , κr , κ
′
r ) ṡr (t)

ω̄ = Ψ(v̄ ,P,Pr , θ, θr , κr , κ
′
r )

and the real control is

v = v̄ ṡr (t), tanφ =
lω̄
v̄

Nothing blows up when ṡr (t) tends to 0: the controller is well
defined around steady-state via a simple use of time-scaling
symmetry



Conversion into chained form destroys SE(2) invariance

The car model

d
dt x = v cos θ, d

dt y = v sin θ, d
dt θ =

v
l

tanϕ

can be transformed into chained form

d
dt x1 = u1,

d
dt x2 = u2,

d
dt x3 = x2u1

via change of coordinates and static feedback

x1 = x , x2 =
dy
dx

= tan θ, x3 = y .

But the symmetries are not preserved in such coordinates: one
privileges axis x versus axis y without any good reason. The
behavior of the system seems to depend on the origin you take
to measure the angle (artificial singularity when θ = ±π/2).



The standard n-trailers system

Pn−1 = Pn + dn
dPn
dsn



Motion planning for the standard n trailers system

initial state

final state



The general 1-trailer system (CDC93)

B
A

C
Rolling without slipping conditions (A = (x , y), u = (v , ϕ) ):

d
dt x = v cosα
d
dt y = v sinα
d
dtα = v

l tanϕ
d
dt β = v

b

(a
l tanϕ cos(β − α) + sin(β − α)

)
.



B
C

AP
D

With δ = B̂CA we have

D = P−L(δ)~ν with L(δ) = ab
∫ π+δ

0

− cosσ√
a2 + b2 + 2ab cosσ

dσ

Curvature is given by

K (δ) =
sin δ

cos δ
√

a2 + b2 − 2ab cos δ − L(δ) sin δ



The geometric construction

Assume that s 7→ P(s) is known. Let us show how to deduce
(A,B, α, β) the system configuration.
We know thus P, ~τ = dP/ds and κ = dθ/ds (θ is the angle of ~τ :

P



The geometric construction

From κ we deduce δ = B̂CA = B̂DA by inverting κ = K (δ).
D is then known since D = P − L(δ)~ν.
Finally ~τ is parallel to AB and DB = a and DA = b.

B
AD a

b



The complete construction

One to one correspondence between P, ~τ and κ and (A, α, β).

B
C

AP
D



Differential forms

Eliminate v from

d
dt x = v cosα, d

dt y = v sinα, d
dtα =

v
l

tanϕ, d
dt β = . . .

to have 3 equations with 5 variables

sinα d
dt x − cosα d

dt y = 0

d
dtα−

(
tanϕ cosα

l

)
d
dt x −

(
tanϕ sinα

l

)
d
dt y = 0

d
dt β . . .

defining a module of differential forms, I = {η1, η2, η3}

η1 = sinα dx − cosα dy

η2 = dα−
(

tanϕ cosα
l

)
dx −

(
tanϕ sinα

l

)
dy

η3 = dβ − . . .



Following 4, compute the sequence I = I(0) ⊇ I(1) ⊇ I(2) . . .
where

I(k+1) = {η ∈ I(k) | dη = 0 mod (I(k))}

and find that

dim I(0) = 3, dim I(1) = 2, dim I(2) = 1, dim I(3) = 0.

The Cartesian coordinates (X ,Y ) of P are obtained via the
Pfaff normal form of the differential form µ generating I(2)

µ = f (α, β) dX + g(α, β) dY .

(X ,Y ) is not unique; SE(2) invariance simplifies computations.

4E. Cartan: Sur l’intégration de certains systèmes indéterminés
d’équations différentielles. J. für reine und angew. Math. Vol. 145, 1915.



Contact systems:

The driftless system d
dt x = f1(x)u1 + f2(x)u2 is also a Pfaffian

system of codimension 2

ωi ≡
n∑

j=1

aj
i (x) dxj = 0, i = 1, . . . ,n − 2.

Pfaffian systems equivalent via changes of x-coordinates to
contact systems (related to chained-form, Murray-Sastry 1993)

dx2 − x3dx1 = 0, dx3 − x4dx1 = 0, . . .dxn−1 − xndx1 = 0

are mainly characterized by the derived flag (Weber(1898),
Cartan(1916), Goursat (1923), Giaro-Kumpera-Ruiz(1978),
Murray (1994), Pasillas-Respondek (2000), . . . ).



Interest of contact systems (chained form):

dx2 − x3dx1 = 0, dx3 − x4dx1 = 0, . . .dxn−1 − xndx1 = 0

The general solution reads in terms of z 7→ w(z) and its
derivatives,

x1 = z, x2 = w(z), , x3 =
dw
dz

, . . . , xn =
dn−2w
dzn−2 .

In this case, the general solution of d
dt x = f1(x)u1 + f2u2 reads

in terms of t 7→ z(t) any C1 time function and any Cn−2 function
of z, z 7→ w(z). The quantities x1 = z(t) and x2 = w(z(t)) play
here a special role. We call them the flat output.



An elementary definition based on inversion

I Explicit control systems: d
dt x = f (x ,u) (x ∈ Rn, u ∈ Rm) is flat, iff,

exist α ∈ N and h(x ,u, . . . ,u(α)) ∈ Rm such that the generic
solution of

d
dt x = f (x ,u), y = h(x ,u, . . . ,u(α))

reads (β ∈ N)

x = A(y , . . . , y (β)), u = B(y , . . . , y (β+1))

I Under-determined systems: F (x , . . . , x (r)) = 0 (x ∈ Rn,
F ∈ Rn−m) is flat, iff, exist α ∈ N and h(x , . . . , x (α)) ∈ Rm such
that the generic solution of

F (x , . . . , x (r)) = 0, y = h(x , . . . , x (α)) reads x = A(y , . . . , y (β))

y is called a flat output: Fliess and co-workers 1991, ....
Integrable under-determined differential systems: Monge (1784),
Darboux, Goursat, Hilbert (1912), Cartan (1914).



Flat systems (Fliess-et-al, 1992,. . . ,1999)

A basic definition extending remark of Isidori-Moog-DeLuca
(CDC86) on dynamic feedback linearization
(Charlet-Lévine-Marino (1989)):

d
dt x = f (x ,u)

is flat, iff, exist m = dim(u) output functions
y = h(x ,u, . . . ,u(p)), dim(h) = dim(u), such that the inverse of
u 7→ y has no dynamics, i.e.,

x = Λ
(

y , ẏ , . . . , y (q)
)
, u = Υ

(
y , ẏ , . . . , y (q+1)

)
.

Behind this: an equivalence relationship exchanging
trajectories (absolute equivalence of Cartan and dynamic
feedback: Shadwick (1990), Sluis (1992), Nieuwstadt-et-al
(1994), Pomet et al (1992), Pomet (1995),. . . Lévine (2011) ).



Equivalence and flatness (intrinsic point of view, IEEE-AC 1999)

Take d
dt x = f (x ,u), (x ,u) ∈ X × U ⊂ Rn × Rm. It generates a

system (F ,M), (D-variety) where

M := X × U × R∞m

with the vector field F (x ,u,u1, . . . ) := (f (x ,u),u1,u2, . . . ).
(F ,M) is equivalent to (G,N) (ż = g(z, v): N := Z × V × R∞m
with the vector field G(z, v , v1, . . . ) := (g(z, v), v1, v2, . . . )) iff
exists an invertible transformation Φ : M 7−→ N such that

∀ξ := (x ,u,u1, . . . ) ∈M, G(Φ(ξ)) = DΦ(ξ) · F (ξ).



Equivalence and flatness (extrinsic point of view)

Elimination of u from the n state equations d
dt x = f (x ,u)

provides an under-determinate system of n −m equations with
n unknowns

F
(

x , d
dt x
)

= 0.

An endogenous transformation x 7→ z is defined by

z = Φ(x , ẋ , . . . , x (p)), x = Ψ(z, ż, . . . , z(q))

(nonlinear analogue of uni-modular matrices, the ”integral free”
transformations of Hilbert).
Two systems are equivalents, iff, exists an endogenous
transformation exchanging the equations.
A system equivalent to the trivial equation z1 = 0 with
z = (z1, z2) is flat with z2 the flat output.



The time dependent definition

We present here the simplest version of this definition (Murray
and co-workers (SIAM JCO 1998)):

d
dt x = f (t , x ,u)

is flat, iff, exist m = dim(u) output functions
y = h(t , x ,u, . . . ,u(p)), dim(h) = dim(u), such that the inverse
of u 7→ y has no dynamics, i.e.,

x = Λ
(

t , y , ẏ , . . . , y (q)
)
, u = Υ

(
t , y , ẏ , . . . , y (q+1)

)
.



The general n-trailer system for n ≥ 2 is not flat.

Proof: by pure chance, the characterization of codimension 2
contact systems is also a characterization of drifless flat
systems (Cartan 1914, Martin-R. 1994) (adding integrator,
endogenous or exogenous or singular dynamic feedbacks are
useless here).



When the number n of trailers becomes large. . .

tends to 



The nonholonomic snake: a trivial delay system.

P(r,t)
Tail Q Head 

r=0

r=L
Implicit partial differential nonlinear system:∥∥∥∥∂P

∂r

∥∥∥∥ = 1,
∂P
∂r
∧ ∂P
∂t

= 0.

General solution via s 7→ Q(s) arbitrary smooth:

P(r , t) = Q(s(t) + L− r) ≡
∑
k≥0

(L− r)k

k !

dQk

dsk (s(t)).



Two linearized pendulum in series

u

Flat output y = u + l1θ1 + l2θ2:

θ2 = − ÿ
g
, θ1 = −m1(

¨︷ ︸︸ ︷
y − l2θ2)

(m1 + m2)g
+

m2

m1 + m2
θ2

and u = y − l1θ1 − l2θ2 is a linear combination of (y , y (2), y (4)).



n pendulum in series

u y

Flat output y = u + l1θ1 + . . .+ lnθn:

u = y + a1y (2) + a2y (4) + . . .+ any (2n).

When n tends to∞ the system tends to a partial differential
equation.



The heavy chain 5

Flat output y(t) = X (0, t) with

U(t) =
1

2π

∫ 2π

0
y
(

t − 2
√

L/g sin ζ
)

dζ

5N. Petit,P. R.: motion planning for heavy chain systems. SIAM J. Control
and Optim., 41:475-495, 2001.



With the same flat output, for a discrete approximation (n
pendulums in series, n large) we have

u(t) = y(t) + a1ÿ(t) + a2y (4)(t) + . . .+ any (2n)(t),

for a continuous approximation (the heavy chain) we have

U(t) =
1

2π

∫ 2π

0
y
(

t + 2
√

L/g sin ζ
)

dζ.

Why? Because formally

y(t + 2
√

L/g sin ζ) = y(t) + . . .+

(
2
√

L/g sin ζ
)n

n!
y (n)(t) + . . .

But integral formula is preferable (divergence of the series. . . ).



The general solution of the PDE

∂2X
∂t2 =

∂

∂z

(
gz
∂X
∂z

)
is

X (z, t) =
1

2π

∫ 2π

0
y
(

t − 2
√

z/g sin ζ
)

dζ

where t 7→ y(t) is any time function.
Proof: replace d

dt by s, the Laplace variable, to obtain a singular
second order ODE in z with bounded solutions. Symbolic
computations and operational calculus on

s2X =
∂

∂z

(
gz
∂X
∂z

)
.



Symbolic computations in the Laplace domain

Thanks to x = 2
√

z
g

, we get

x
∂2X
∂x2 (x , t) +

∂X
∂x

(x , t)− x
∂2X
∂t2 (x , t) = 0.

Use Laplace transform of X with respect to the variable t

x
∂2X̂
∂x2 (x , s) +

∂X̂
∂x

(x , s)− xs2X̂ (x , s) = 0.

This is a the Bessel equation defining J0 and Y0:

X̂ (z, s) = A(s) J0(2ıs
√

z/g) + B(s) Y0(2ıs
√

z/g).

Since we are looking for a bounded solution at z = 0 we
have B(s) = 0 and (remember that J0(0) = 1):

X̂ (z, s) = J0(2ıs
√

z/g)X̂ (0, s).



X̂ (z, s) = J0(2ıs
√

z/g)X̂ (0, s).

Using Poisson’s integral representation of J0

J0(ζ) =
1

2π

∫ 2π

0
exp(ıζ sin θ) dθ, ζ ∈ C

we have

J0(2ıs
√

x/g) =
1

2π

∫ 2π

0
exp(2s

√
x/g sin θ) dθ.

In terms of Laplace transforms, this last expression is a
combination of delay operators:

X (z, t) =
1

2π

∫ 2π

0
y(t + 2

√
z/g sin θ) dθ

with y(t) = X (0, t).



Explicit parameterization of the heavy chain

The general solution of

∂2X
∂t2 =

∂

∂z

(
gz
∂X
∂z

)
, U(t) = X (L, t)

reads

X (z, t) =
1

2π

∫ 2π

0
y(t + 2

√
z/g sin θ) dθ

There is a one to one correspondence between the (smooth)
solutions of the PDE and the (smooth) functions t 7→ y(t).



Heavy chain with a variable section


τ ′(z)

g
∂2X
∂t2 =

∂

∂z

(
τ(z)

∂X
∂z

)
X (L, t) = u(t)

z=0

z=L

X(z,t)



The general solution of
τ ′(z)

g
∂2X
∂t2 =

∂

∂z

(
τ(z)

∂X
∂z

)
X (L, t) = u(t)

where τ(z) ≥ 0 is the tension in the rope, can be parameterized
by an arbitrary time function y(t), the position of the free end of
the system y = X (0, t), via delay and advance operators with
compact support.



Sketch of the proof.

Main difficulty: τ(0) = 0. The bounded solution B(z, s) of

∂

∂z

(
τ(z)

∂X
∂z

)
=

s2τ ′(z)

g
X

is an entire function of s, is of exponential type and

R 3 ω 7→ B(z, ıω)

is L2 modulo some J0. By the Paley-Wiener theorem B(z, s)
can be described via∫ b

a
K (z, ζ) exp(sζ) dζ.



is equivalent to 

The following maps exchange the trajectories:


x(t) = X (0, t)

u(t) = ∂2X
∂t2 (0, t)


X (z, t) = 1

2π

∫ 2π

0
x
(

t − 2
√

z/g sin ζ
)

dζ

U(t) = 1
2π

∫ 2π

0
x
(

t − 2
√

L/g sin ζ
)

dζ



The Indian rope.

∂

∂z

(
gz
∂X
∂z

)
+
∂2X
∂t2 = 0

X (L, t) = U(t)

The equation becomes elliptic and the Cauchy problem is not
well posed in the sense of Hadamard. Nevertheless formulas
are still valid with a complex time and y holomorphic

X (z, t) =
1

2π

∫ 2π

0
y
(

t − (2
√

z/g sin ζ)
√
−1
)

dζ.



A computation due to Holmgren6

Take the 1D-heat equation, ∂θ∂t (x , t) = ∂2θ
∂x2 (x , t) for x ∈ [0,1] and

set, formally, θ =
∑∞

i=0 ai(t)x i

i! . Since,

∂θ

∂t
=
∞∑
i=0

dai

dt

(
x i

i!

)
,

∂2θ

∂x2 =
∞∑
i=0

ai+2

(
x i

i!

)

the heat equation ∂θ
∂t = ∂2θ

∂x2 reads d
dt ai = ai+2 and thus

a2i+1 = a(i)
1 , a2i = a(i)

0

With two arbitrary smooth time-functions f (t) and g(t), playing
the role of a0 and a1, the general solution reads:

θ(x , t) =
∞∑
i=0

f (i)(t)
(

x2i

(2i)!

)
+ g(i)(t)

(
x2i+1

(2i + 1)!

)
.

Convergence issues ?
6E. Holmgren, Sur l’équation de la propagation de la chaleur. Arkiv für

Math. Astr. Physik, t. 4, (1908), p. 1-4



Gevrey functions7

I A C∞-function [0,T ] 3 t 7→ f (t) is of Gevrey-order α when,

∃ M,A > 0, ∀t ∈ [0,T ],∀i ≥ 0, |f (i)(t)| ≤ MAiΓ(1 + αi)

where Γ is the gamma function with n! = Γ(n + 1), ∀n ∈ N.
I Analytic functions correspond to Gevrey-order ≤ 1.
I When α > 1, the set of C∞-functions with Gevrey-order α

contains non-zero functions with compact supports.
Prototype of such functions:

t 7→ f (t) =

exp
(
−
(

1
t(1−t)

) 1
α−1
)

if t ∈]0,1[

0 otherwise.

7M. Gevrey: La nature analytique des solutions des équations aux
dérivées partielles, Ann. Sc. Ecole Norm. Sup., vol.25, pp:129–190, 1918.



Gevrey functions and exponential decay8

I Take, in the complex plane, the open bounded sector S
those vertex is the origin. Assume that f is analytic on S
and admits an exponential decay of order σ > 0 and type A
in S:

∃C, ρ > 0, ∀z ∈ S, |f (z)| ≤ C|z|ρ exp
(
−1

A|z|σ

)
Then in any closed sub-sector S̃ of S with origin as vertex,
exists M > 0 such that

∀z ∈ S̃/{0}, |f (i)(z)| ≤ MAi Γ

(
1 + i

(
1
σ

+ 1
))

I Rule of thumb: if a piece-wise analytic f admits an
exponential decay of order σ then it is of Gevrey-order
α = 1

σ + 1.
8J.P. Ramis: Dévissage Gevrey. Astérisque, vol:59-60, pp:173–204, 1978.

See also J.P. Ramis: Séries Divergentes et Théories Asymptotiques; SMF,
Panoramas et Synthèses, 1993.



Gevrey space and ultra-distributions9

Denote by Dα the set of functions R 7→ R of order α > 1 and
with compact supports. As for the class of C∞ functions, most
of the usual manipulations remain in Dα:

I Dα is stable by addition, multiplication, derivation,
integration, ....

I if f ∈ Dα and F is an analytic function on the image of f ,
then F (f ) remains in Dα.

I if f ∈ Dα and F ∈ L1
loc(R) then the convolution f ∗ F is of

Gevrey-order α on any compact interval.

As for the construction of D′, the space of distributions (the dual
of D the space of C∞ functions of compact supports), one can
construct D′α ⊃ D′, a space of ultra-distributions, the dual of
Dα ⊂ D.

9See, e.g., I.M. Guelfand and G.E. Chilov: Les Distributions, tomes 2 et 3.
Dunod, Paris,1964.



Symbolic computations: s := d/dt , s ∈ C
The general solution of θ′′ = sθ reads (′ := d/dx)

θ = cosh(x
√

s) f (s) +
sinh(x

√
s)√

s
g(s)

where f (s) and g(s) are the two constants of integration. Since
cosh and sinh gather the even and odd terms of the series
defining exp, we have

cosh(x
√

s) =
∑
i≥0

si x2i

(2i)!
,

sinh(x
√

s)√
s

=
∑
i≥0

si x2i+1

(2i + 1)!

and we recognize θ =
∑∞

i=0 f (i)(t)
(

x2i

(2i)!

)
+ g(i)(t)

(
x2i+1

(2i+1)!

)
.

For each x , the operators cosh(x
√

s) and sinh(x
√

s)/
√

s are
ultra-distributions of D′2− :∑

i≥0

(−1)ix2i

(2i)!
δ(i)(t),

∑
i≥0

(−1)ix2i+1

(2i + 1)!
δ(i)(t)

with δ, the Dirac distribution.



Entire functions of s = d/dt as ultra-distributions
I C 3 s 7→ P(s) =

∑
i≥0 aisi is an entire function when the

radius of convergence is infinite.
I If its order at infinity is σ > 0 and its type is finite, i.e.,
∃M,K > 0 such that ∀s ∈ C, |P(s)| ≤ M exp(K |s|σ), then

∃A,B > 0 | ∀i ≥ 0, |ai | ≤ A
Bi

Γ(i/σ + 1)
.

cosh(
√

s) and sinh(
√

s)/
√

s are entire functions of order
σ = 1/2 and of type 1.

I Take P(s) of order σ < 1 with s = d/dt . Then P ∈ D′1
σ

− :

P(s)f (s) corresponds, in the time domain, to absolutely
convergent series

P(s)y(s) ≡
∞∑

i=0

ai f (i)(t)

when t 7→ f (t) is a C∞-function of Gevrey-order α < 1/σ.



Motion planning for the 1D heat equation
∂x θ(0, t) = 0

θ(1, t) = uθ(x, t)

x0 1

The data are:
1. the model relating the control input u(t) to the state,

(θ(x , t))x∈[0,1]:

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t), x ∈ [0,1]

∂θ

∂x
(0, t) = 0 θ(1, t) = u(t).

2. A transition time T > 0, the initial (resp. final) state:
[0,1] 3 x 7→ p(x) (resp. q(x))

The goal is to find the open-loop control [0,T ] 3 t 7→ u(t)
steering θ(x , t) from the initial profile θ(x ,0) = p(x) to the final
profile θ(x ,T ) = q(x).



Series solutions
Set, formally

θ =
∞∑

i=0

ai(t)
x i

i!
,

∂θ

∂t
=
∞∑

i=0

dai

dt

(
x i

i!

)
,

∂2θ

∂x2 =
∞∑

i=0

ai+2

(
x i

i!

)

and ∂θ
∂t = ∂2θ

∂x2 reads d
dt ai = ai+2. Since a1 = ∂θ

∂x (0, t) = 0 and
a0 = θ(0, t) we have

a2i+1 = 0, a2i = a(i)
0

Set y := a0 = θ(0, t) we have, in the time domain,

θ(x , t) =
∞∑

i=0

(
x2i

(2i)!

)
y (i)(t), u(t) =

∞∑
i=0

(
1

(2i)!

)
y (i)(t)

that also reads in the Laplace domain (s = d/dt):

θ(x , s) = cosh(x
√

s) y(s), u(s) = cosh(
√

s)y(s).



An explicit parameterization of trajectories
For any C∞-function y(t) of Gevrey-order α < 2, the time
function

u(t) =
+∞∑
i=1

y (i)(t)
(2i)!

is well defined and smooth. The (x , t)-function

θ(x , t) =
+∞∑
i=1

y (i)(t)
(2i)!

x2i

is also well defined (entire versus x and smooth versus t). More
over for all t and x ∈ [0,1], we have, whatever t 7→ y(t) is,

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t),
∂θ

∂x
(0, t) = 0, θ(1, t) = u(t)

An infinite dimensional analogue of differential flatness.10

10Fliess et al: Flatness and defect of nonlinear systems: introductory theory
and examples, International Journal of Control. vol.61, pp:1327–1361. 1995.



Motion planning of the heat equation11

Take
∑

i≥0 ai
ξi

i! and
∑

i≥0 bi
ξi

i! entire functions of ξ. With σ > 1

y(t) =

∑
i≥0

ai
t i

i!

( e
−Tσ

(T−t)σ

e
−Tσ

tσ + e
−Tσ

(T−t)σ

)
+

∑
i≥0

bi
t i

i!

( e
−Tσ

tσ

e
−Tσ

tσ + e
−Tσ

(T−t)σ

)

the series

θ(x , t) =
+∞∑
i=1

y (i)(t)
(2i)!

x2i , u(t) =
+∞∑
i=1

y (i)(t)
(2i)!

.

are convergent and provide a trajectory from

θ(x ,0) =
∑
i≥0

ai
x2i

(2i)!
to θ(x ,T ) =

∑
i≥0

bi
x2i

(2i)!

11B. Laroche, Ph. Martin, P. R.: Motion planning for the heat equation. Int.
Journal of Robust and Nonlinear Control. Vol.10, pp:629–643, 2000.



Real-time motion planning for the heat equation
Take σ > 1 and ε > 0. Consider the positive function

φε(t) =
exp

(
−ε2σ

(−t(t+ε))σ

)
Aε

for t ∈ [−ε,0]

prolonged by 0 outside [−ε,0] and where the normalization
constant Aε > 0 is such that

∫
φε = 1.

For any L1
loc signal t 7→ Y (t), set yr = φε ∗Y : its order 1 + 1/σ is

less than 2. Then θr = cosh(x
√

s)yr reads

θr (x , t) = Φx ,ε ∗ Y (t), ur (t) = Φ1,ε ∗ Y (t),

where for each x , Φx ,ε = cosh(x
√

s)φε is a smooth time
function with support contained in [−ε,0]. Since ur (t) and the
profile θr (·, t) depend only on the values of Y on [t − ε, t ], such
computations are well adapted to real-time generation of
reference trajectories t 7→ (θr ,ur ) (see matlab code heat.m).



Quantum particle inside a moving box12

Schrödinger equation in a Galilean frame:

ı
∂φ

∂t
= −1

2
∂2φ

∂z2 , z ∈ [v − 1
2
, v +

1
2

],

φ(v − 1
2
, t) = φ(v +

1
2
, t) = 0

12P.R.: Control of a quantum particle in a moving potential well. IFAC 2nd
Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,
2003. See, for the proof of nonlinear controllability, K. Beauchard and J.-M.
Coron: Controllability of a quantum particle in a moving potential well; J. of
Functional Analysis, vol.232, pp:328–389, 2006.



Particle in a moving box of position v

I In a Galilean frame

ı
∂φ

∂t
= −1

2
∂2φ

∂z2 , z ∈ [v − 1
2
, v +

1
2

],

φ(v − 1
2
, t) = φ(v +

1
2
, t) = 0

where v is the position of the box and z is an absolute
position.

I In the box frame x = z − v :

ı
∂ψ

∂t
= −1

2
∂2ψ

∂x2 + v̈xψ, x ∈ [−1
2
,
1
2

],

ψ(−1
2
, t) = ψ(

1
2
, t) = 0



Tangent linearization around state ψ̄ of energy ω̄

With13 −1
2
∂2ψ̄
∂x2 = ω̄ψ̄, ψ̄(−1

2) = ψ̄(1
2) = 0 and with

ψ(x , t) = exp(−ıω̄t)(ψ̄(x) + Ψ(x , t))

Ψ satisfies

ı
∂Ψ

∂t
+ ω̄Ψ = −1

2
∂2Ψ

∂x2 + v̈x(ψ̄ + Ψ)

0 = Ψ(−1
2
, t) = Ψ(

1
2
, t).

Assume Ψ and v̈ small and neglecte the second order term
v̈xΨ:

ı
∂Ψ

∂t
+ ω̄Ψ = −1

2
∂2Ψ

∂x2 + v̈xψ̄, Ψ(−1
2
, t) = Ψ(

1
2
, t) = 0.

13Remember that
∫ 1/2
−1/2 ψ̄

2(x)dx = 1.



Operational computations s = d/dt

The general solution of (′ stands for d/dx)

(ıs + ω̄)Ψ = −1
2

Ψ′′ + s2vxψ̄

is
Ψ = A(s, x)a(s) + B(s, x)b(s) + C(s, x)v(s)

where

A(s, x) = cos
(

x
√

2ıs + 2ω̄
)

B(s, x) =
sin
(
x
√

2ıs + 2ω̄
)

√
2ıs + 2ω̄

C(s, x) = (−ısxψ̄(x) + ψ̄′(x)).



Case x 7→ φ̄(x) even

The boundary conditions imply

A(s,1/2)a(s) = 0, B(s,1/2)b(s) = −ψ′(1/2)v(s).

a(s) is a torsion element: the system is not controllable.
Nevertheless, for steady-state controllability, we have

b(s) = −ψ̄′(1/2)
sin
(1

2

√
−2ıs + 2ω̄

)
√
−2ıs + 2ω̄

y(s)

v(s) =
sin
(1

2

√
2ıs + 2ω̄

)
√

2ıs + 2ω̄
sin
(1

2

√
−2ıs + 2ω̄

)
√
−2ıs + 2ω̄

y(s)

Ψ(s, x) = B(s, x)b(s) + C(s, x)v(s)



Series and convergence

v(s) =
sin
(1

2

√
2ıs + 2ω̄

)
√

2ıs + 2ω̄
sin
(1

2

√
−2ıs + 2ω̄

)
√
−2ıs + 2ω̄

y(s) = F (s)y(s)

where the entire function s 7→ F (s) is of order 1/2,

∃K ,M > 0, ∀s ∈ C, |F (s)| ≤ K exp(M|s|1/2).

Set F (s) =
∑

n≥0 ansn where |an| ≤ K n/Γ(1 + 2n) with K > 0
independent of n. Then F (s)y(s) corresponds, in the time
domain, to ∑

n≥0

any (n)(t)

that is convergent when t 7→ y(t) is C∞ of Gevrey-order α < 2.



Steady state controllability

Steering from Ψ = 0, v = 0 at time t = 0, to Ψ = 0, v = D at
t = T is possible with the following C∞-function of
Gevrey-order σ + 1:

[0,T ] 3 t 7→ y(t) =



0 for t ≤ 0

D̄
exp

(
−( T

t )
1
σ

)
exp

(
−( T

t )
1
σ

)
+exp

(
−( T

T−t )
1
σ

) for 0 < t < T

D̄ for t ≥ T

with D̄ = 2ω̄D
sin2(
√
ω̄/2)

. The fact that this C∞-function is of

Gevrey-order σ + 1 results from its exponential decay of order
1/σ around 0 and T .



Practical computations via Cauchy formula

Using the ”magic” Cauchy formula

y (n)(t) =
Γ(n + 1)

2ıπ

∮
γ

y(t + ξ)

ξn+1 dξ

where γ is a closed path around zero,
∑

n≥0 any (n)(t) becomes

∑
n≥0

an
Γ(n + 1)

2ıπ

∮
γ

y(t + ξ)

ξn+1 dξ =
1

2ıπ

∮
γ

∑
n≥0

an
Γ(n + 1)

ξn+1

 y(t+ξ) dξ.

But ∑
n≥0

an
Γ(n + 1)

ξn+1 =

∫
Dδ

F (s) exp(−sξ)ds = B1(F )(ξ)

is the Borel/Laplace transform of F in direction δ ∈ [0,2π].



Practical computations via Cauchy formula (end)
(matlab code Qbox.m)

In the time domain F (s)y(s) corresponds to

1
2ıπ

∮
γ

B1(F )(ξ)y(t + ξ) dξ

where γ is a closed path around zero. Such integral
representation is very useful when y is defined by convolution
with a real signal Y ,

y(ζ) =
1

ε
√

2π

∫ +∞

−∞
exp(−(ζ − t)2/2ε2)Y (t) dt

where R 3 t 7→ Y (t) ∈ R is any measurable and bounded
function. Approximate motion planning with:

v(t) =

∫ +∞

−∞

[
1

ıε(2π)
3
2

∮
γ

B1(F )(ξ) exp(−(ξ − τ)2/2ε2) dξ

]
Y (t−τ) dτ.



A free-boundary Stefan problem14

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t)− ν ∂θ
∂x

(x , t)− ρθ2(x , t), x ∈ [0, y(t)]

θ(0, t) = u(t), θ(y(t), t) = 0
∂θ

∂x
(y(t), t) = − d

dt y(t)

with ν, ρ ≥ 0 parameters.
14W. Dunbar, N. Petit, P. R., Ph. Martin. Motion planning for a non-linear

Stefan equation. ESAIM: Control, Optimisation and Calculus of Variations,
9:275–296, 2003.



Series solutions

I Set θ(x , t) =
∑∞

i=0 ai(t)
(x−y(t))i

i! in

∂θ

∂t
(x , t) =

∂2θ

∂x2 (x , t)− ν ∂θ
∂x

(x , t)− ρθ2(x , t), x ∈ [0, y(t)]

θ(0, t) = u(t), θ(y(t), t) = 0,
∂θ

∂x
(y(t), t) = − d

dt y(t)

Then ∂θ
∂t = ∂2θ

∂x2 yields

ai+2 = d
dt ai − ai−1

d
dt y + νai+1 + ρ

i∑
k=0

(
i
k

)
ai−kak

and the boundary conditions: a0 = 0 and a1 = − d
dt y .

I The series defining θ admits a strictly positive radius of
convergence as soon as y is of Gevrey-order α strictly less
than 2.



Growth of the liquide zone with θ ≥ 0
ν = 0.5, ρ = 1.5, y goes from 1 to 2.



Conclusion for PDE
I For other 1D PDE of engineering interest with motion

planning see the book of J. Rudolph: Flatness Based
Control of Distributed Parameter Systems
(Shaker-Germany, 2003)

I For tracking and feedback stabilization on linear 1D
diffusion and wave equations, see the book of M. Krstić
and A. Smyshlyaev : Boundary Control of PDEs: a Course
on Backstepping Designs (SIAM, 2008).

I Open questions:
I Combine divergent series and smallest-term summation

(see the PhD of Th. Meurer: Feedforward and Feedback
Tracking Control of Diffusion-Convection-Reaction Systems
using Summability Methods (Stuttgart, 2005)).

I 2D heat equation with a scalar control u(t): with modal
decomposition and symbolic computations, we get
u(s) = P(s)y(s) with P(s) an entire function (coding the
spectrum) of order 1 but infinite type
|P(s)| ≤ M exp(K |s| log(|s|)). It yields divergence series for
any C∞ function y 6= 0 with compact support.



u(s) = P(s)y(s) for 1D and 2D heat equations
I 1D heat equation: eigenvalue asymptotics λn ∼ −n2:

Prototype: P(s) =
+∞∏
n=1

(
1− s

n2

)
=

sinh(π
√

s)

π
√

s

entire function of order 1/2.
I 2D heat equation in a domain Ω with a single scalar control

u(t) on the boundary ∂Ω1 (∂Ω = ∂Ω1
⋃
∂Ω2):

∂θ

∂t
= ∆θ on Ω, θ = u(t) on ∂Ω1,

∂θ

∂n
= 0 on ∂Ω2

Eigenvalue asymptotics λn ∼ −n

Prototype: P(s) =
+∞∏
n=1

(
1 +

s
n

)
exp(−s/n) =

exp(−γs)

sΓ(s)

entire function of order 1 but of infinite type15

15For the links between the distributions of the zeros and the order at infinity
of entire functions see the book of B.Ja Levin: Distribution of Zeros of Entire
Functions; AMS, 1972.



Symbolic computations with Laplace variable s = d
dt

I Wave 1D: u = cosh(s)y . General case is similar: u = P(s)y
where the zeros of P are the eigen-values ±iωn with asymptotic
ωn ∼ n; P(s) entire function of order 1 and finite type (in time
domain: advance/delay operator with compact support).

I Diffusion 1D: u = cosh
(√

s
)

u. General case is similar:
u = P(s)y where the zeros of P are the eigen-values −λn with
asymptotic λn ∼ n2; P(s) entire function of order 1/2 (in time
domain: ultra-distribution made of an infinite sum of Dirac
derivatives applied on Gevrey functions with compact support of
order < 2).

I Wave 2D: since ωn ∼
√

n, P entire with order 2 but infinite type;
prototype P(s) =

∏+∞
n=1

(
1− s2

n

)
exp(s2/n) = − exp(γs2)

s2Γ(−s2)
.

Diffusion 2D: since λn ∼ −n, P entire with order 1 but infinite
type; prototype P(s) =

∏+∞
n=1

(
1 + s

n

)
exp(−s/n) = exp(−γs)

sΓ(s) .
Open Question: interpretation of P(s) in time domain as
operator on a set of time functions y(t)...



Wave 1D with internal damping
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case ε = 1/50 ∂2H
∂t2 =

∂2H
∂x2 + ε

∂3H
∂x2∂t

H(0, t) = 0, H(1, t) = u(t)

where the eigenvalues are the
zeros of

P(s) = cosh
(

s√
εs + 1

)
.

Approximate controllability depends on the functional space
chosen to have a well-posed Cauchy problem16

16Rosier-R, CAO’06. 13th IFAC Workshop on Control Applications of
Optimisation. 2006.



Dispersive wave 1D (Maxwell-Lorentz)
Propagation of electro-magnetic wave in a partially transparent
medium:

∂2

∂t2 (E + D) = c2 ∂
2

∂x2 E ,
∂2D
∂t2 = ω2

0(εE − D)

where ω0 is associated to an adsorption ray and ε is the
coupling constant between medium of polarization P and
travelling field E

I The eigenvalues rely on the analytic function (s = d/dt
Laplace variable, L length)

Q±(s,L) = exp

±Ls
c

√√√√(1 +
εs2

ω2
0 + s2

)
The essential singularity in s = ±ıω0 yields an
accumulation of eigenvalues around ±ω0.

I Few works on this kind of PDE with spectrum that
accumulates at finite distance.



The flatness characterization problem

d
dt x = f (x ,u) is said r -flat if exists a flat output y only function of
(x ,u, u̇, . . . ,u(r−1)); 0-flat means y = h(x).
Example:

x (α1)
1 = u1, x (α2)

2 = u2,
d
dt x3 = u1u2

is [r := min(α1, α2)− 1]-flat with

y1 = x3 +

α1∑
i=1

(−1)ix (α1−i)
1 u(i−1)

2 , y2 = x2,

Conjecture: there is no flat output depending on derivatives of u
of order less than r − 1.
The main difficulty: for d

dt x = f (x ,u) with y = h(x ,u, . . . ,u(p))
as flat output, we do not know an upper-bound on p with
respect to n = dim(x), m = dim(u), . . . .



Systems linearizable by static feedback

I A system which is linearizable by static feedback and
coordinate change is flat: geometric necessary and
sufficient conditions by Jakubczyk and Respondek (1980)
(see also Hunt et al. (1983)).

I When there is only one control input, flatness reduces to
static feedback linearizability (Charlet et al. (1989))



Affine control systems of small co-dimension

I Affine systems of codimension 1.

d
dt x = f0(x) +

n−1∑
j=1

ujgj(x), x ∈ Rn,

is 0-flat as soon as it is controllable, Charlet et al. (1989)
I Affine systems with 2 inputs and 4 states. Necessary and

sufficient conditions for 1-flatness (Pomet (1997)) give a
good idea of the complexity of checking r -flatness even for
r small.



Driftless systems with two controls.

I
d
dt x = f1(x)u1 + f2(x)u2

is flat if and only if the generic rank of Ek is equal to k + 2
for k = 0, . . . ,n − 2 where

E0 := span{f1, f2}
Ek+1 := span{Ek , [Ek ,Ek ]}, k ≥ 0.

Proof: Martin and R. (1994) with a theorem of Cartan
(1916) on Pfaffian systems.

I A flat two-input driftless system satisfying some additional
regularity conditions (Murray (1994)) can be put into the
chained system

d
dt x1 = u1,

d
dt x2 = u2

d
dt x3 = x2u1, . . . , d

dt xn = xn−1u1.



Codimension 2 driftless systems

I

d
dt x =

n−2∑
i=1

ui fi(x), x ∈ Rn

is flat as soon as it is controllable (Martin and R. (1995))
I Tools: exterior differential systems.
I Many nonholonomic control systems are flat.



The ruled-manifold criterion (R. (1995))

I Assume ẋ = f (x ,u) is flat. The projection on the p-space
of the submanifold p = f (x ,u), where x is considered as a
parameter, is a ruled submanifold for all x .

I Otherwise stated: eliminating u from ẋ = f (x ,u) yields a
set of equations F (x , ẋ) = 0: for all (x ,p) such that
F (x ,p) = 0, there exists a ∈ Rn, a 6= 0 such that

∀λ ∈ R, F (x ,p + λa) = 0.

I Proof elementary and derived from Hilbert (1912).
I Restricted version proposed by Sluis (1993).

Why static linearization coincides with flatness for single input
systems ? Because a ruled-manifold of dimension 1 is just a
straight line.



Proving that a multi-input system is not flat

d
dt x1 = u1,

d
dt x2 = u2,

d
dt x3 = (u1)2 + (u2)3

is not flat The submanifold p3 = p2
1 + p3

2 is not ruled: there is no
a ∈ R3, a 6= 0, such that

∀λ ∈ R,p3 + λa3 = (p1 + λa1)2 + (p2 + λa2)3.

Indeed, the cubic term in λ implies a2 = 0, the quadratic term
a1 = 0 hence a3 = 0.

The system d
dt x3 =

(
d
dt x1

)2
+
(

d
dt x2

)2
does not define a ruled

submanifold of R3: it is not flat in R. But it defines a ruled
submanifold in C3: in fact it is flat in C, with the flat output

y1 = x3 − (ẋ1 − ẋ2
√
−1)(x1 + x2

√
−1)

y2 = x1 + x2
√
−1.



JBP result on equivalent systems SIAM JCO (2010)

I Take two explicit analytic systems d
dt x = f (x ,u) and

d
dt z = g(z, v) with dim u = dim v but not necessarily dim x
equals to dim z. Assume that they are equivalent via a
possible dynamic state feedback. Then we have

I if dim x < dim z then d
dt x = f (x ,u) is ruled.

I if dim z < dim x then d
dt z = g(z, v) is ruled.

I if dim x = dim z either they are equivalent by static
feedback or they are both ruled.

I The system d
dt x = f (x ,u) (resp. d

dt z = g(z, v) is said ruled
when after elimination of u (resp. v ), the implicit system
F (x d

dt x) = 0 (resp. G(x , d
dt x) = 0) is ruled in the sense of

the ruled manifold criterion explained here above.



Geometric construction: SE(2) invariance

Pn−1 = Pn + dn
dPn
dsn

I Invariance versus actions of the group SE(2).
I Flat outputs are not unique: (ξ = xn, ζ = yn + d

dt xn) is
another flat output since xn = ξ and yn = ζ − d

dt ξ.
I The flat output (xn, yn) formed by the cartesian coordinates

of Pn seems more adapted than (ξ, ζ): the output map h
isequivariant.



Why the flat output z := (x , y) is better than the flat output

z̃ := (x , y + ẋ) ?

Each symmetry of the system induces a transformation on the
flat output z(

x
y

)
=

(
z1
z2

)
7−→

(
Z1
Z2

)
=

(
X
Y

)
=

(
z1 cosα− z2 sinα + a
z1 sinα + z2 cosα + b

)
which does not involve derivatives of z
This point transformation, generates an endogenous
transformation (z, ż, . . . ) 7→ (Z , Ż , . . . ) that is holonomic.



Why the flat output z := (x , y) is better than the flat output

z̃ := (x , y + ẋ) ?

On the contrary(
x

y + ẋ

)
=

(
z̃1
z̃2

)
7−→

(
Z̃1

Z̃2

)
=

(
X

Y + Ẋ

)
=

(
z̃1 cosα + ( ˙̃z1 − z̃2) sinα + a

z̃1 sinα + z̃2 cosα + ( ¨̃z1 − ˙̃z2) sinα + b

)

is not a point transformation and does not give to a holonomic
transformation. It is endogenous since its inverse is(

Z̃1

Z̃2

)
7−→

(
z̃1
z̃2

)
=

(
(Z̃1 − a) cosα− (

˙̃Z1 − Z̃2) sinα

(Z̃1 − a) sinα + (Z̃2 − b) cosα− (
¨̃Z1 − ˙̃Z2) sinα

)



Symmetry preserving flat output
I Take the implicit system F (x , . . . , x (r)) = 0 with flat output

y = h(x , . . . , x (α)) ∈ Rm (i.e. x = A(y , . . . , y (β))
I Assume that the group G acting on the x-space via the

family of diffeomorphism X = φg(x) (x = φg−1(X )) leaves
the ideal associated to the set of equation F = 0 invariante:

F (x , . . . , x (r)) = 0⇐⇒ F
(

(φg(x), . . . , φ
(r)
g (x , . . . , x (r))

)
= 0

I Question: we wonder if exists always an equivariante flat
output ȳ = h̄(x , . . . , x̄ (ᾱ)), i.e. such that exists an action of
G on the y -space via the family of diffeomorphisms
Ȳ = ρg(ȳ) satisfying

ρg(y) ≡ h
(
φg(x), . . . φ

(ᾱ)
g (x , . . . , x (r̄))

)
.

two different flat outputs correspond via a ”non-linear
uni-modular transformation ”:

ȳ = ψ(y , . . . , y (µ)) with inverse y = ψ̄(ȳ , . . . , ȳ (µ̄))



Flat outputs as potentials and gauge degree of freedom

Maxwell’s equations in vacuum imply that the magnetic field H
is divergent free:

∂H1

∂x1
+
∂H2

∂x2
+
∂H3

∂x3
= 0

When H = ∇× A the constraint ∇ · H = 0 is automatically
satisfied
The potential A is a priori not uniquely defined, but up to an
arbitrary gradient field, the gauge degree of freedom. The
symmetries indicate how to use this degree of freedom to fix a
“natural” potential.
For flat systems: a flat output is a “potential” for the
underdetermined differential equation ẋ − f (x ,u) = 0;
endogenous transformations on the flat output correspond to
gauge degrees of freedom.



Open problems

I d
dt x = f (x ,u) with y = h(x ,u, ...,u(r)), r -flatness: bounds
on r with respect to dim(x) and dim(u).

I Symmetries and flat-output preserving symmetries: are
time-invariant systems flat with a time invariant flat output
map (a first step to prove that linearization via exogenous
dynamics feedback, implies flatness).

I Are the intrinsic and extrinsic definitions of flat systems
equivalent ?

I Flatness of JBP example



Jean-Baptiste Pomet example SIAM JCO (2010)

I The system

d
dt x3 − x2 −

(
d
dt x1

) (
d
dt x2 − x3

d
dt x1

)2
= 0

is ruled with a single linear direction
a(x , ẋ) = (1, x3, (ẋ2 − x3ẋ1)2)T .

I There is no flat output y depending only on x and ẋ (this
system is not 1-flat)

I Conjecture: this system is not flat.
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