Motion planing and tracking for differentially flat systems

Pierre Rouchon
Mines-ParisTech,
Centre Automatique et Systèmes
Mathématiques et Systèmes
pierre.rouchon@mines-paristech.fr

CIRM, November 2012

Outline

Introduction
Two ODE examples
Pendulum systems
Nonholonomic car with trailers
ODE: several definitions of flat-systems
An elementary definition based on inversion
The intrinsic definition with D-variety (diffiety)
An extrinsic definition
A time dependent definition
PDE: two kind of flat examples
Wave and delays
Diffusion and Gevrey functions

Conclusion for PDE

Conclusion for ODE: flatness characterization is an open problem
Systems with only one control
Driftless systems as Pfaffian system
Ruled manifold criterion
Symmetry preserving flat-output

Interest of flat systems

1. History: "integrability" for under-determinated systems of differential equations (Monge, Hilbert, Cartan,).
2. Control theory: flat systems admit simple solutions to the motion planing and tracking problems (Fliess and coworkers 1991 and later).
3. Books on differentially flat systems:

- H. Sira-Ramirez and S.K. Agarwal: Differentially flat systems. CRC, 2004.
- J. Lévine: Analysis and Control of Nonlinear Systems : A Flatness-Based Approach. Springer-Verlag, 2009.
- J. Rudolph: Flatness Based Control of Distributed Parameter Systems. Shaker, Germany. 2003.

Motion planning: controllability.

Difficult problem due to integration of

$$
\frac{d}{d t} x=f\left(x, u_{r}(t)\right), \quad x(0)=p .
$$

Tracking for $\frac{d}{d t} x=f(x, u)$: stabilization.

Compute $\Delta u, u=u_{r}+\Delta u$, depending Δx (feedback), such that $\Delta x=x-x_{r}$ tends to 0 (stabilization).

The simplest robot

- Newton ODE):

$$
\frac{d^{2}}{d t^{2}} \theta=-p \sin (\theta)+u
$$

Non linear oscillator with scalar input u and parameter $p>0$.

- Computed torque method: $u_{r}=\frac{d^{2}}{d t^{2}} \theta_{r}+p \sin \theta_{r}$ provides an explicit parameterization via $K C^{2}$ function: $t \mapsto \theta_{r}(t)$, the flat output.
Motion planing and tracking ($\xi, \omega_{0}>0$, two feedback gains)
$u\left(t, \theta, \frac{d}{d t} \theta\right)=\frac{d^{2}}{d t^{2}} \theta_{r}+p \sin \theta-2 \xi \omega_{0}\left(\frac{d}{d t} \theta-\frac{d}{d t} \theta_{r}\right)-\left(\omega_{0}\right)^{2} \sin \left(\theta-\theta_{r}\right)$
where $t \mapsto \theta_{r}(t)$ defines the reference trajectory (control goal).

Fully actuated mechanical systems

The computed torque method for

$$
\frac{d}{d t}\left[\frac{\partial L}{\partial \dot{q}}\right]=\frac{\partial L}{\partial q}+M(q) u
$$

consists in setting $t \mapsto q(t)$ to obtain u as a function of q, \dot{q} and \ddot{q}.
(Fully actuated: $\operatorname{dim} q=\operatorname{dim} u$ and $M(q)$ invertible).

Oscillators and linear systems

System with 2 ODEs and 3 unknowns (x_{1}, x_{2}, u) ($a_{1}, a_{2}>0$ and $a_{1} \neq a_{2}$)

$$
\frac{d^{2}}{d t^{2}} x_{1}=-a_{1}\left(x_{1}-u\right), \quad \frac{d^{2}}{d t^{2}} x_{2}=-a_{2}\left(x_{2}-u\right)
$$

defines a free module ${ }^{1}$ with basis $y=\frac{a_{2} x_{1}-a_{1} x_{2}}{a_{2}-a_{1}}$:

$$
\begin{cases}x_{1}=y+\frac{d^{2}}{d t^{2}} y / a_{2}, & \frac{d}{d x} x_{1}=\frac{d}{d t} y+\frac{d^{3} y}{d t^{3}} / a_{2} \\ x_{2}=y+\frac{d^{2}}{d t^{2}} y / a_{1}, & \frac{d}{d t} x_{2}=\frac{d}{d t} y+\frac{d^{3} y}{d t^{3}} / a_{1} \\ u=y+\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right) \frac{d^{2}}{d t^{2}} y+\left(\frac{1}{a_{1} a_{2}}\right) \frac{d^{4}}{d d^{4}} y\end{cases}
$$

Reference trajectory for equilibrium $x_{1}=x_{2}=u=0$ at $t=0$ to equilibrium $x_{1}=x_{2}=u=D$ at $t=T>0$:
$y(t)=\quad 0$ si $t \leq 0, \quad \frac{(t)^{4}}{t^{4}+(T-t)^{4}} D$ si $t \in[0, T], \quad D$ si $t \geq T$.
Generalization to n oscillators and any linear controllable system, $\frac{d}{d t} X=A X+B u$.
${ }^{1}$ See the work of Alban Quadrat and co-workers.

$2 k \pi$ juggling robot: prototype of implicit flat system

Isochronous punctual pendulum H (Huygens) :

$$
\begin{aligned}
m \frac{d^{2}}{d t^{2}} H & =\vec{T}+m \vec{g} \\
\vec{T} & \| \overrightarrow{H S} \\
\|\overrightarrow{H S}\|^{2} & =1
\end{aligned}
$$

- The suspension point $S \in \mathbb{R}^{3}$ stands for the control input
- The oscillation center $H \in \mathbb{R}^{3}$ is the flat output: since $\vec{T} / m=\frac{d^{2}}{d t^{2}} H-\vec{g}$ et $\vec{T} / / \overrightarrow{H S}, S$ is solution of the algebraic system:

$$
\overrightarrow{H S} / / \frac{d^{2}}{d t^{2}} H-\vec{g} \text { and }\|\overrightarrow{H S}\|^{2}=1
$$

Return of the pendulum and smooth branch switch

In a vertical plane: H of coordinates $\left(y_{1}, y_{2}\right)$ and S of coordinates (u_{1}, u_{2}) satisfy
$\left(y_{1}-u_{1}\right)^{2}+\left(y_{2}-u_{2}\right)^{2}=I, \quad\left(y_{1}-u_{1}\right)\left(\frac{d^{2}}{d t^{2}} y_{2}+g\right)=\left(y_{2}-u_{2}\right) \frac{d^{2}}{d t^{2}} y_{1}$.
Find $[0, T] \ni t \mapsto y(t) C^{2}$ such that $y(0)=(0,-l), y(T)=(0, I)$ and $y^{(1,2)}(0, T)=0$, and such that exists also $[0, T] \ni t \mapsto u(t)$ C^{0} with $u(0)=u(T)=0$ (switch between the stable and the unstable branches).

Planning the inversion trajectory

Any smooth trajectory connecting the stable to the unstable equilibrium is such that $\dot{H}(t)=\vec{g}$ for at least one time t. During the motion there is a switch from the stable root to the unstable root (singularity crossing when $\ddot{H}=\vec{g}$)

Crossing smoothly the singularity $\ddot{H}=\vec{g}$

The geometric path followed by H is a half-circle of radius lof center O :

$$
H(t)=0+I\left[\begin{array}{c}
\sin \theta(s) \\
-\cos \theta(s)
\end{array}\right] \text { with } \theta(s)=\mu(s) \pi, \quad s=t / T \in[0,1]
$$

where T is the transition time and $\mu(\boldsymbol{s})$ a sigmoid function of the form:

Time scaling and dilatation of $\ddot{H}-\vec{g}$

Denote by ' derivation with respect to s. From

$$
H(t)=0+I\left[\begin{array}{c}
\sin \theta(s) \\
-\cos \theta(s)
\end{array}\right], \quad \theta(s)=\mu(t / T) \pi
$$

we have

$$
\ddot{H}=H^{\prime \prime} / T^{2} .
$$

Changing T to αT yields to a dilation of factor $1 / \alpha^{2}$ of the closed geometric path described by $\ddot{H}-\vec{g}$ for $t \in[0, T]$ $(\ddot{H}(0)=\ddot{H}(T)=0)$, the dilation center being $-\vec{g}$. The inversion time is obtained when this closed path passes through 0 . This construction holds true for generic μ.

The crane

The geometric construction for the crane

Singularity when $\ddot{H}-\vec{g}$ is horizontal.

Single car ${ }^{2}$

$$
\left\{\begin{array}{l}
\frac{d}{d t} x=v \cos \theta \\
\frac{d}{d t} y=v \sin \theta \\
\frac{d}{d t} \theta=\frac{v}{l} \tan \varphi=\omega
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
v= \pm\left\|\frac{d}{d t} P\right\| \\
{\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]=\frac{d}{d t} P} \\
v \\
\tan \varphi=\frac{I \operatorname{det}(\ddot{P}, \dot{P})}{v \sqrt{|v|}}
\end{array}\right.
$$

${ }^{2}$ For modeling and control of non-holonomic systems, see, e.g.,B. d'Andréa-Novel, G. Campion, G. Bastin: Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization. International Journal of Robotics Research December 1995 vol. 14 no. 6 543-559.

The time scaling symmetry

For any $T \mapsto \sigma(T)$, the transformation

$$
t=\sigma(T), \quad(x, y, \theta)=(X, Y, \Theta), \quad(v, \omega)=(V, \Omega) / \sigma^{\prime}(t)
$$

leave the equations

$$
\frac{d}{d t} x=v \cos \theta, \quad \frac{d}{d t} y=v \sin \theta, \quad \frac{d}{d t} \theta=\omega
$$

unchanged:

$$
\frac{d}{d T} X=V \cos \Theta, \quad \frac{d}{d T} Y=V \sin \Theta, \quad \frac{d}{d T} \Theta=\Omega .
$$

SE(2) invariance

For any (a, b, α), the transformation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
X \cos \alpha-Y \sin \alpha+a \\
X \sin \alpha+Y \cos \alpha+b
\end{array}\right] \quad, \theta=\Theta-\alpha, \quad(v, \omega)=(V, \Omega)
$$

leave the equations

$$
\frac{d}{d t} x=v \cos \theta, \quad \frac{d}{d t} y=v \sin \theta, \quad \frac{d}{d t} \theta=\omega
$$

unchanged:

$$
\frac{d}{d t} X=V \cos \Theta, \quad \frac{d}{d t} Y=V \sin \Theta, \quad \frac{d}{d t} \Theta=\Omega
$$

${ }^{3}$ For a general setting see: Ph. Martin, P. R., J. Rudolph: Invariant tracking, ESAIM: Control, Optimisation and Calculus of Variations, $10: 1-13,2004$.

Invariant tracking for the car: goal

Given the reference trajectory

$$
t \mapsto s_{r} \mapsto P_{r}\left(s_{r}\right), \quad \theta_{r}\left(s_{r}\right), \quad v_{r}=\dot{s}_{r}, \quad \omega_{r}=\dot{s}_{r} \kappa_{r}\left(s_{r}\right)
$$

and the state (P, θ)
Find an invariant controller

$$
v=v_{r}+\ldots, \quad \omega=\omega_{r}+\ldots
$$

Invariant tracking for the car: time-scaling

Set

$$
v=\bar{v} \dot{s}_{r}, \quad \omega=\bar{\omega} \dot{s}_{r}
$$

and denote by ' derivation versus s_{r}.
Equations remain unchanged

$$
P^{\prime}=\bar{v} \vec{\tau}, \quad \vec{\tau}^{\prime}=\bar{\omega} \vec{\nu}
$$

with $P=(x, y), \vec{\tau}=(\cos \theta, \sin \theta)$ and $\vec{\nu}=(-\sin \theta, \cos \theta)$.

Invariant errors

Construct the decoupling and/or linearizing controller with the two following invariant errors

$$
e_{\|}=\left(P-P_{r}\right) \cdot \vec{\tau}_{r}, \quad e_{\perp}=\left(P-P_{r}\right) \cdot \vec{\nu}_{r} .
$$

Computations of $e_{\|}$and e_{\perp} derivatives

Since $e_{\|}=\left(P-P_{r}\right) \cdot \vec{\tau}_{r}$ and $e_{\perp}=\left(P-P_{r}\right) \cdot \vec{\nu}_{r}$ we have
(remember that ${ }^{\prime}=d / d s_{r}$)

$$
e_{\|}^{\prime}=\left(P^{\prime}-P_{r}^{\prime}\right) \cdot \vec{\tau}_{r}+\left(P-P_{r}\right) \cdot \vec{\tau}_{r}^{\prime}
$$

But $P^{\prime}=\bar{v} \vec{\tau}, P_{r}^{\prime}=\vec{\tau}_{r}$ and $\vec{\tau}_{r}^{\prime}=\kappa_{r} \vec{\nu}_{r}$, thus

$$
e_{\|}^{\prime}=\bar{v} \vec{\tau} \cdot \vec{\tau}_{r}-1+\kappa_{r}\left(P-P_{r}\right) \cdot \vec{\nu}_{r}
$$

Similar computations for e_{\perp}^{\prime} yield:

$$
\boldsymbol{e}_{\|}^{\prime}=\bar{v} \cos \left(\theta-\theta_{r}\right)-1+\kappa_{r} \boldsymbol{e}_{\perp}, \quad \boldsymbol{e}_{\perp}^{\prime}=\bar{v} \sin \left(\theta-\theta_{r}\right)-\kappa_{r} e_{\|} .
$$

Computations of $e_{\|}$and e_{\perp} second derivatives

Derivation of

$$
e_{\|}^{\prime}=\bar{v} \cos \left(\theta-\theta_{r}\right)-1+\kappa_{r} e_{\perp}, \quad e_{\perp}^{\prime}=\bar{v} \sin \left(\theta-\theta_{r}\right)-\kappa_{r} e_{\|}
$$

with respect to s_{r} gives

$$
\begin{aligned}
e_{\|}^{\prime \prime} & =\bar{v}^{\prime} \cos \left(\theta-\theta_{r}\right)-\bar{\omega} \bar{v} \sin \left(\theta-\theta_{r}\right) \\
& +2 \kappa_{r} \bar{v} \sin \left(\theta-\theta_{r}\right)+\kappa_{r}^{\prime} e_{\perp}-\kappa_{r}^{2} e_{\|} \\
e_{\perp}^{\prime \prime} & =\bar{v}^{\prime} \sin \left(\theta-\theta_{r}\right)+\bar{\omega} \bar{v} \cos \left(\theta-\theta_{r}\right) \\
& -2 \kappa_{r} \bar{v} \cos \left(\theta-\theta_{r}\right)-\kappa_{r}^{\prime} e_{\|}+\kappa_{r}+\kappa_{r}^{2} e_{\|} .
\end{aligned}
$$

The dynamics feedback in s_{r} time-scale

We have obtain

$$
\begin{aligned}
e_{\|}^{\prime \prime} & =\bar{v}^{\prime} \cos \left(\theta-\theta_{r}\right)-\bar{\omega} \bar{v} \sin \left(\theta-\theta_{r}\right) \\
& +2 \kappa_{r} \bar{v} \sin \left(\theta-\theta_{r}\right)+\kappa_{r}^{\prime} e_{\perp}-\kappa_{r}^{2} e_{\|} \\
e_{\perp}^{\prime \prime} & =\bar{v}^{\prime} \sin \left(\theta-\theta_{r}\right)+\bar{\omega} \bar{v} \cos \left(\theta-\theta_{r}\right) \\
& -2 \kappa_{r} \bar{v} \cos \left(\theta-\theta_{r}\right)-\kappa_{r}^{\prime} e_{\|}+\kappa_{r}+\kappa_{r}^{2} e_{\|}
\end{aligned}
$$

Choose \bar{v}^{\prime} and $\bar{\omega}$ such that

$$
\begin{aligned}
& e_{\|}^{\prime \prime}=-\left(\frac{1}{L_{\|}^{1}}+\frac{1}{L_{\|}^{2}}\right) e_{\|}^{\prime}-\left(\frac{1}{L_{\|}^{1} L_{\|}^{2}}\right) e_{\|} \\
& e_{\perp}^{\prime \prime}=-\left(\frac{1}{L_{\perp}^{1}}+\frac{1}{L_{\perp}^{2}}\right) e_{\perp}^{\prime}-\left(\frac{1}{L_{\perp}^{1} L_{\perp}^{2}}\right) e_{\perp}
\end{aligned}
$$

Possible around a large domain around the reference trajectory since the determinant of the decoupling matrix is $\bar{v} \approx 1$.

The dynamics feedback in physical time-scale

In the s_{r} scale, we have the following dynamic feedback

$$
\begin{aligned}
& \bar{v}^{\prime}=\Phi\left(\bar{v}, P, P_{r}, \theta, \theta_{r}, \kappa_{r}, \kappa_{r}^{\prime}\right) \\
& \bar{\omega}=\Psi\left(\bar{v}, P, P_{r}, \theta, \theta_{r}, \kappa_{r}, \kappa_{r}^{\prime}\right)
\end{aligned}
$$

Since ${ }^{\prime}=d / d s_{r}=d /\left(\dot{s}_{r} d t\right)$ we have

$$
\begin{aligned}
\frac{d \bar{v}}{d t} & =\Phi\left(\bar{v}, P, P_{r}, \theta, \theta_{r}, \kappa_{r}, \kappa_{r}^{\prime}\right) \dot{s}_{r}(t) \\
\bar{\omega} & =\Psi\left(\bar{v}, P, P_{r}, \theta, \theta_{r}, \kappa_{r}, \kappa_{r}^{\prime}\right)
\end{aligned}
$$

and the real control is

$$
v=\bar{v} \dot{s}_{r}(t), \quad \tan \phi=\frac{l \bar{\omega}}{\bar{v}}
$$

Nothing blows up when $\dot{s}_{r}(t)$ tends to 0 : the controller is well defined around steady-state via a simple use of time-scaling symmetry

Conversion into chained form destroys $\operatorname{SE}(2)$ invariance

The car model

$$
\frac{d}{d t} x=v \cos \theta, \quad \frac{d}{d t} y=v \sin \theta, \quad \frac{d}{d t} \theta=\frac{v}{l} \tan \varphi
$$

can be transformed into chained form

$$
\frac{d}{d t} x_{1}=u_{1}, \quad \frac{d}{d t} x_{2}=u_{2}, \quad \frac{d}{d t} x_{3}=x_{2} u_{1}
$$

via change of coordinates and static feedback

$$
x_{1}=x, \quad x_{2}=\frac{d y}{d x}=\tan \theta, \quad x_{3}=y
$$

But the symmetries are not preserved in such coordinates: one privileges axis x versus axis y without any good reason. The behavior of the system seems to depend on the origin you take to measure the angle (artificial singularity when $\theta= \pm \pi / 2$).

The standard n-trailers system

Motion planning for the standard n trailers system

The general 1-trailer system (CDC93)

Rolling without slipping conditions $(A=(x, y), u=(v, \varphi))$:

$$
\begin{aligned}
& \frac{d}{d t} x=v \cos \alpha \\
& \frac{d}{d t} y=v \sin \alpha \\
& \frac{d}{d t} \alpha=\frac{v}{l} \tan \varphi \\
& \frac{d}{d t} \beta=\frac{v}{b}\left(\frac{a}{T} \tan \varphi \cos (\beta-\alpha)+\sin (\beta-\alpha)\right) .
\end{aligned}
$$

With $\delta=\widehat{B C A}$ we have
$D=P-L(\delta) \vec{\nu} \quad$ with $\quad L(\delta)=a b \int_{0}^{\pi+\delta} \frac{-\cos \sigma}{\sqrt{a^{2}+b^{2}+2 a b \cos \sigma}} d \sigma$
Curvature is given by

$$
K(\delta)=\frac{\sin \delta}{\cos \delta \sqrt{a^{2}+b^{2}-2 a b \cos \delta}-L(\delta) \sin \delta}
$$

The geometric construction

Assume that $s \mapsto P(s)$ is known. Let us show how to deduce (A, B, α, β) the system configuration.
We know thus $P, \vec{\tau}=d P / d s$ and $\kappa=d \theta / d s(\theta$ is the angle of $\vec{\tau}$:

The geometric construction

From κ we deduce $\delta=\widehat{B C A}=\widehat{B D A}$ by inverting $\kappa=K(\delta)$.
D is then known since $D=P-L(\delta) \vec{\nu}$.
Finally $\vec{\tau}$ is parallel to $A B$ and $D B=a$ and $D A=b$.

The complete construction

One to one correspondence between $P, \vec{\tau}$ and κ and (A, α, β).

Differential forms

Eliminate v from

$$
\frac{d}{d t} x=v \cos \alpha, \quad \frac{d}{d t} y=v \sin \alpha, \quad \frac{d}{d t} \alpha=\frac{v}{l} \tan \varphi, \quad \frac{d}{d t} \beta=\ldots
$$

to have 3 equations with 5 variables

$$
\begin{aligned}
& \sin \alpha \frac{d}{d t} x-\cos \alpha \frac{d}{d t} y=0 \\
& \frac{d}{d t} \alpha-\left(\frac{\tan \varphi \cos \alpha}{l}\right) \frac{d}{d t} x-\left(\frac{\tan \varphi \sin \alpha}{l}\right) \frac{d}{d t} y=0 \\
& \frac{d}{d t} \beta \ldots
\end{aligned}
$$

defining a module of differential forms, $I=\left\{\eta_{1}, \eta_{2}, \eta_{3}\right\}$

$$
\begin{aligned}
& \eta_{1}=\sin \alpha d x-\cos \alpha d y \\
& \eta_{2}=d \alpha-\left(\frac{\tan \varphi \cos \alpha}{I}\right) d x-\left(\frac{\tan \varphi \sin \alpha}{I}\right) d y \\
& \eta_{3}=d \beta-\ldots
\end{aligned}
$$

Following ${ }^{4}$, compute the sequence $I=I^{(0)} \supseteq I^{(1)} \supseteq I^{(2)} \ldots$ where

$$
I^{(k+1)}=\left\{\eta \in I^{(k)} \mid d \eta=0 \quad \bmod \left(I^{(k)}\right)\right\}
$$

and find that

$$
\operatorname{dim} I^{(0)}=3, \quad \operatorname{dim} I^{(1)}=2, \quad \operatorname{dim} I^{(2)}=1, \quad \operatorname{dim} I^{(3)}=0 .
$$

The Cartesian coordinates (X, Y) of P are obtained via the Pfaff normal form of the differential form μ generating $I^{(2)}$

$$
\mu=f(\alpha, \beta) d X+g(\alpha, \beta) d Y
$$

(X, Y) is not unique; $S E(2)$ invariance simplifies computations.

[^0]
Contact systems:

The driftless system $\frac{d}{d t} x=f_{1}(x) u_{1}+f_{2}(x) u_{2}$ is also a Pfaffian system of codimension 2

$$
\omega_{i} \equiv \sum_{j=1}^{n} a_{i}^{j}(x) d x_{j}=0, \quad i=1, \ldots, n-2 .
$$

Pfaffian systems equivalent via changes of x-coordinates to contact systems (related to chained-form, Murray-Sastry 1993)

$$
d x_{2}-x_{3} d x_{1}=0, \quad d x_{3}-x_{4} d x_{1}=0, \quad \ldots d x_{n-1}-x_{n} d x_{1}=0
$$

are mainly characterized by the derived flag (Weber(1898), Cartan(1916), Goursat (1923), Giaro-Kumpera-Ruiz(1978), Murray (1994), Pasillas-Respondek (2000), ...).

Interest of contact systems (chained form):

$$
d x_{2}-x_{3} d x_{1}=0, \quad d x_{3}-x_{4} d x_{1}=0, \quad \ldots d x_{n-1}-x_{n} d x_{1}=0
$$

The general solution reads in terms of $z \mapsto w(z)$ and its derivatives,

$$
x_{1}=z, \quad x_{2}=w(z), \quad, x_{3}=\frac{d w}{d z}, \quad \cdots \quad, x_{n}=\frac{d^{n-2} w}{d z^{n-2}} .
$$

In this case, the general solution of $\frac{d}{d t} x=f_{1}(x) u_{1}+f_{2} u_{2}$ reads in terms of $t \mapsto z(t)$ any C^{1} time function and any C^{n-2} function of $z, z \mapsto w(z)$. The quantities $x_{1}=z(t)$ and $x_{2}=w(z(t))$ play here a special role. We call them the flat output.

An elementary definition based on inversion

- Explicit control systems: $\frac{d}{d t} x=f(x, u)\left(x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}\right)$ is flat, iff, exist $\alpha \in \mathbb{N}$ and $h\left(x, u, \ldots, u^{(\alpha)}\right) \in \mathbb{R}^{m}$ such that the generic solution of

$$
\frac{d}{d t} x=f(x, u), \quad y=h\left(x, u, \ldots, u^{(\alpha)}\right)
$$

reads $(\beta \in \mathbb{N})$

$$
x=\mathcal{A}\left(y, \ldots, y^{(\beta)}\right), \quad u=\mathcal{B}\left(y, \ldots, y^{(\beta+1)}\right)
$$

- Under-determined systems: $F\left(x, \ldots, x^{(r)}\right)=0\left(x \in \mathbb{R}^{n}\right.$, $\left.F \in \mathbb{R}^{n-m}\right)$ is flat, iff, exist $\alpha \in \mathbb{N}$ and $h\left(x, \ldots, x^{(\alpha)}\right) \in \mathbb{R}^{m}$ such that the generic solution of

$$
F\left(x, \ldots, x^{(r)}\right)=0, \quad y=h\left(x, \ldots, x^{(\alpha)}\right) \quad \text { reads } \quad x=\mathcal{A}\left(y, \ldots, y^{(\beta)}\right)
$$

y is called a flat output: Fliess and co-workers 1991, Integrable under-determined differential systems: Monge (1784), Darboux, Goursat, Hilbert (1912), Cartan (1914).

Flat systems (Fliess-et-al, 1992,...,1999)

A basic definition extending remark of Isidori-Moog-DeLuca (CDC86) on dynamic feedback linearization (Charlet-Lévine-Marino (1989)):

$$
\frac{d}{d t} x=f(x, u)
$$

is flat, iff, exist $m=\operatorname{dim}(u)$ output functions
$y=h\left(x, u, \ldots, u^{(p)}\right), \operatorname{dim}(h)=\operatorname{dim}(u)$, such that the inverse of $u \mapsto y$ has no dynamics, i.e.,

$$
x=\Lambda\left(y, \dot{y}, \ldots, y^{(q)}\right), \quad u=\Upsilon\left(y, \dot{y}, \ldots, y^{(q+1)}\right) .
$$

Behind this: an equivalence relationship exchanging trajectories (absolute equivalence of Cartan and dynamic feedback: Shadwick (1990), Sluis (1992), Nieuwstadt-et-al (1994), Pomet et al (1992), Pomet (1995),. . Lévine (2011)).

Equivalence and flatness (intrinsic point of view, IEEE-AC 1999)

Take $\frac{d}{d t} x=f(x, u),(x, u) \in X \times U \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$. It generates a system (F, \mathfrak{M}), (D-variety) where

$$
\mathfrak{M}:=X \times U \times \mathbb{R}_{m}^{\infty}
$$

with the vector field $F\left(x, u, u^{1}, \ldots\right):=\left(f(x, u), u^{1}, u^{2}, \ldots\right)$. (F, \mathfrak{M}) is equivalent to $(G, \mathfrak{N})\left(\dot{z}=g(z, v): \mathfrak{N}:=Z \times V \times \mathbb{R}_{m}^{\infty}\right.$ with the vector field $\left.G\left(z, v, v^{1}, \ldots\right):=\left(g(z, v), v^{1}, v^{2}, \ldots\right)\right)$ iff exists an invertible transformation $\Phi: \mathfrak{M} \longmapsto \mathfrak{N}$ such that

$$
\forall \xi:=\left(x, u, u^{1}, \ldots\right) \in \mathfrak{M}, \quad G(\Phi(\xi))=D \Phi(\xi) \cdot F(\xi) .
$$

Equivalence and flatness (extrinsic point of view)

Elimination of u from the n state equations $\frac{d}{d t} x=f(x, u)$ provides an under-determinate system of $n-m$ equations with n unknowns

$$
F\left(x, \frac{d}{d t} x\right)=0 .
$$

An endogenous transformation $x \mapsto z$ is defined by

$$
z=\Phi\left(x, \dot{x}, \ldots, x^{(p)}\right), \quad x=\Psi\left(z, \dot{z}, \ldots, z^{(q)}\right)
$$

(nonlinear analogue of uni-modular matrices, the "integral free" transformations of Hilbert).
Two systems are equivalents, iff, exists an endogenous transformation exchanging the equations.
A system equivalent to the trivial equation $z_{1}=0$ with
$z=\left(z_{1}, z_{2}\right)$ is flat with z_{2} the flat output.

The time dependent definition

We present here the simplest version of this definition (Murray and co-workers (SIAM JCO 1998)):

$$
\frac{d}{d t} x=f(t, x, u)
$$

is flat, iff, exist $m=\operatorname{dim}(u)$ output functions
$y=h\left(t, x, u, \ldots, u^{(p)}\right), \operatorname{dim}(h)=\operatorname{dim}(u)$, such that the inverse of $u \mapsto y$ has no dynamics, i.e.,

$$
x=\Lambda\left(t, y, \dot{y}, \ldots, y^{(q)}\right), \quad u=\Upsilon\left(t, y, \dot{y}, \ldots, y^{(q+1)}\right) .
$$

The general n-trailer system for $n \geq 2$ is not flat.

Proof: by pure chance, the characterization of codimension 2 contact systems is also a characterization of drifless flat systems (Cartan 1914, Martin-R. 1994) (adding integrator, endogenous or exogenous or singular dynamic feedbacks are useless here).

When the number n of trailers becomes large...

The nonholonomic snake: a trivial delay system.

Implicit partial differential nonlinear system:

$$
\left\|\frac{\partial P}{\partial r}\right\|=1, \quad \frac{\partial P}{\partial r} \wedge \frac{\partial P}{\partial t}=0
$$

General solution via $s \mapsto Q(s)$ arbitrary smooth:

$$
P(r, t)=Q(s(t)+L-r) \equiv \sum_{k \geq 0} \frac{(L-r)^{k}}{k!} \frac{d Q^{k}}{d s^{k}}(s(t))
$$

Two linearized pendulum in series

Flat output $y=u+l_{1} \theta_{1}+l_{2} \theta_{2}$:

$$
\theta_{2}=-\frac{\ddot{y}}{g}, \quad \theta_{1}=-\frac{m_{1}(\overbrace{y-l_{2} \theta_{2}})}{\left(m_{1}+m_{2}\right) g}+\frac{m_{2}}{m_{1}+m_{2}} \theta_{2}
$$

and $u=y-l_{1} \theta_{1}-l_{2} \theta_{2}$ is a linear combination of $\left(y, y^{(2)}, y^{(4)}\right)$.
n pendulum in series

Flat output $y=u+I_{1} \theta_{1}+\ldots+I_{n} \theta_{n}$:

$$
u=y+a_{1} y^{(2)}+a_{2} y^{(4)}+\ldots+a_{n} y^{(2 n)}
$$

When n tends to ∞ the system tends to a partial differential equation.

The heavy chain ${ }^{5}$

Flat output $y(t)=X(0, t)$ with

$$
U(t)=\frac{1}{2 \pi} \quad \int_{0}^{2 \pi} y(t-2 \sqrt{L / g} \sin \zeta) d \zeta
$$

${ }^{5}$ N. Petit,P. R.: motion planning for heavy chain systems. SIAM J. Control and Optim., 41:475-495, 2001.

With the same flat output, for a discrete approximation (n pendulums in series, n large) we have

$$
u(t)=y(t)+a_{1} \ddot{y}(t)+a_{2} y^{(4)}(t)+\ldots+a_{n} y^{(2 n)}(t)
$$

for a continuous approximation (the heavy chain) we have

$$
U(t)=\frac{1}{2 \pi} \quad \int_{0}^{2 \pi} y(t+2 \sqrt{L / g} \sin \zeta) d \zeta .
$$

Why? Because formally
$y(t+2 \sqrt{L / g} \sin \zeta)=y(t)+\ldots+\frac{(2 \sqrt{L / g} \sin \zeta)^{n}}{n!} y^{(n)}(t)+\ldots$
But integral formula is preferable (divergence of the series...).

The general solution of the PDE

$$
\frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial}{\partial z}\left(g z \frac{\partial X}{\partial z}\right)
$$

is

$$
X(z, t)=\frac{1}{2 \pi} \quad \int_{0}^{2 \pi} y(t-2 \sqrt{z / g} \sin \zeta) d \zeta
$$

where $t \mapsto y(t)$ is any time function.
Proof: replace $\frac{d}{d t}$ by s, the Laplace variable, to obtain a singular second order ODE in z with bounded solutions. Symbolic computations and operational calculus on

$$
s^{2} X=\frac{\partial}{\partial z}\left(g z \frac{\partial X}{\partial z}\right)
$$

Symbolic computations in the Laplace domain
Thanks to $x=2 \sqrt{\frac{z}{g}}$, we get

$$
x \frac{\partial^{2} X}{\partial x^{2}}(x, t)+\frac{\partial X}{\partial x}(x, t)-x \frac{\partial^{2} X}{\partial t^{2}}(x, t)=0 .
$$

Use Laplace transform of X with respect to the variable t

$$
x \frac{\partial^{2} \hat{X}}{\partial x^{2}}(x, s)+\frac{\partial \hat{X}}{\partial x}(x, s)-x s^{2} \hat{X}(x, s)=0 .
$$

This is a the Bessel equation defining J_{0} and Y_{0} :

$$
\hat{X}(z, s)=A(s) J_{0}(2 \imath s \sqrt{z / g})+B(s) Y_{0}(2 \imath s \sqrt{z / g}) .
$$

Since we are looking for a bounded solution at $z=0$ we have $B(s)=0$ and (remember that $J_{0}(0)=1$):

$$
\hat{X}(z, s)=J_{0}(2 \imath s \sqrt{z / g}) \hat{X}(0, s) .
$$

$$
\hat{X}(z, s)=J_{0}(2 \imath s \sqrt{z / g}) \hat{X}(0, s)
$$

Using Poisson's integral representation of J_{0}

$$
J_{0}(\zeta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (\imath \zeta \sin \theta) d \theta, \quad \zeta \in \mathbb{C}
$$

we have

$$
J_{0}(2 \imath s \sqrt{x / g})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (2 s \sqrt{x / g} \sin \theta) d \theta
$$

In terms of Laplace transforms, this last expression is a combination of delay operators:

$$
X(z, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} y(t+2 \sqrt{z / g} \sin \theta) d \theta
$$

with $y(t)=X(0, t)$.

Explicit parameterization of the heavy chain

The general solution of

$$
\frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial}{\partial z}\left(g z \frac{\partial X}{\partial z}\right), \quad U(t)=X(L, t)
$$

reads

$$
X(z, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} y(t+2 \sqrt{z / g} \sin \theta) d \theta
$$

There is a one to one correspondence between the (smooth) solutions of the PDE and the (smooth) functions $t \mapsto y(t)$.

Heavy chain with a variable section

$$
\begin{aligned}
& \left\{\begin{aligned}
\frac{\tau^{\prime}(z)}{g} \quad \frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial}{\partial z}\left(\tau(z) \frac{\partial X}{\partial z}\right) & z=0 \\
X(L, t)=u(t) &
\end{aligned}\right.
\end{aligned}
$$

The general solution of

$$
\left\{\begin{array}{rl}
\frac{\tau^{\prime}(z)}{g} & \frac{\partial^{2} X}{\partial t^{2}}
\end{array}=\frac{\partial}{\partial z}\left(\tau(z) \frac{\partial X}{\partial z}\right)\right.
$$

where $\tau(z) \geq 0$ is the tension in the rope, can be parameterized by an arbitrary time function $y(t)$, the position of the free end of the system $y=X(0, t)$, via delay and advance operators with compact support.

Sketch of the proof.

Main difficulty: $\tau(0)=0$. The bounded solution $B(z, s)$ of

$$
\frac{\partial}{\partial z}\left(\tau(z) \frac{\partial X}{\partial z}\right)=\frac{s^{2} \tau^{\prime}(z)}{g} X
$$

is an entire function of s, is of exponential type and

$$
\mathbb{R} \ni \omega \mapsto B(z, \imath \omega)
$$

is L^{2} modulo some J_{0}. By the Paley-Wiener theorem $B(z, s)$ can be described via

$$
\int_{a}^{b} K(z, \zeta) \exp (s \zeta) d \zeta
$$

The following maps exchange the trajectories:

$$
\left\{\begin{array} { l }
{ x (t) = X (0 , t) } \\
{ u (t) = \frac { \partial ^ { 2 } X } { \partial t ^ { 2 } } (0 , t) }
\end{array} \left\{\begin{array}{l}
x(z, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t-2 \sqrt{z / g} \sin \zeta) d \zeta \\
U(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t-2 \sqrt{L / g} \sin \zeta) d \zeta
\end{array}\right.\right.
$$

The Indian rope.

$$
\begin{aligned}
\frac{\partial}{\partial z}\left(g z \frac{\partial X}{\partial z}\right)+\frac{\partial^{2} X}{\partial t^{2}} & =0 \\
X(L, t) & =U(t)
\end{aligned}
$$

The equation becomes elliptic and the Cauchy problem is not well posed in the sense of Hadamard. Nevertheless formulas are still valid with a complex time and y holomorphic

$$
X(z, t)=\frac{1}{2 \pi} \quad \int_{0}^{2 \pi} y(t-(2 \sqrt{z / g} \sin \zeta) \sqrt{-1}) d \zeta .
$$

A computation due to Holmgren ${ }^{6}$

Take the 1D-heat equation, $\frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t)$ for $x \in[0,1]$ and set, formally, $\theta=\sum_{i=0}^{\infty} a_{i}(t) \frac{x^{i}}{1!}$. Since,

$$
\frac{\partial \theta}{\partial t}=\sum_{i=0}^{\infty} \frac{d a_{i}}{d t}\left(\frac{x^{i}}{i!}\right), \quad \frac{\partial^{2} \theta}{\partial x^{2}}=\sum_{i=0}^{\infty} a_{i+2}\left(\frac{x^{i}}{i!}\right)
$$

the heat equation $\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}$ reads $\frac{d}{d t} a_{i}=a_{i+2}$ and thus

$$
a_{2 i+1}=a_{1}^{(i)}, \quad a_{2 i}=a_{0}^{(i)}
$$

With two arbitrary smooth time-functions $f(t)$ and $g(t)$, playing the role of a_{0} and a_{1}, the general solution reads:

$$
\theta(x, t)=\sum_{i=0}^{\infty} f^{(i)}(t)\left(\frac{x^{2 i}}{(2 i)!}\right)+g^{(i)}(t)\left(\frac{x^{2 i+1}}{(2 i+1)!}\right) .
$$

Convergence issues?

${ }^{6}$ E. Holmgren, Sur l'équation de la propagation de la chaleur. Arkiv für Math. Astr. Physik, t. 4, (1908), p. 1-4

Gevrey functions ${ }^{7}$

- A C^{∞}-function $[0, T] \ni t \mapsto f(t)$ is of Gevrey-order α when,

$$
\exists M, A>0, \quad \forall t \in[0, T], \forall i \geq 0, \quad\left|f^{(i)}(t)\right| \leq M A^{i} \Gamma(1+\alpha i)
$$ where Γ is the gamma function with $n!=\Gamma(n+1), \forall n \in \mathbb{N}$.

- Analytic functions correspond to Gevrey-order ≤ 1.
- When $\alpha>1$, the set of C^{∞}-functions with Gevrey-order α contains non-zero functions with compact supports. Prototype of such functions:

$$
t \mapsto f(t)= \begin{cases}\exp \left(-\left(\frac{1}{t(1-t)}\right)^{\frac{1}{\alpha-1}}\right) & \text { if } t \in] 0,1[\\ 0 & \text { otherwise }\end{cases}
$$

[^1]
Gevrey functions and exponential decay ${ }^{8}$

- Take, in the complex plane, the open bounded sector \mathcal{S} those vertex is the origin. Assume that f is analytic on \mathcal{S} and admits an exponential decay of order $\sigma>0$ and type A in \mathcal{S} :

$$
\exists C, \rho>0, \quad \forall z \in \mathcal{S}, \quad|f(z)| \leq C|z|^{\rho} \exp \left(\frac{-1}{A|z|^{\sigma}}\right)
$$

Then in any closed sub-sector $\tilde{\mathcal{S}}$ of \mathcal{S} with origin as vertex, exists $M>0$ such that

$$
\forall z \in \tilde{\mathcal{S}} /\{0\}, \quad\left|f^{(i)}(z)\right| \leq M A^{i} \Gamma\left(1+i\left(\frac{1}{\sigma}+1\right)\right)
$$

- Rule of thumb: if a piece-wise analytic f admits an exponential decay of order σ then it is of Gevrey-order $\alpha=\frac{1}{\sigma}+1$.

[^2]
Gevrey space and ultra-distributions ${ }^{9}$

Denote by \mathcal{D}_{α} the set of functions $\mathbb{R} \mapsto \mathbb{R}$ of order $\alpha>1$ and with compact supports. As for the class of C^{∞} functions, most of the usual manipulations remain in \mathcal{D}_{α} :

- \mathcal{D}_{α} is stable by addition, multiplication, derivation, integration,
- if $f \in \mathcal{D}_{\alpha}$ and F is an analytic function on the image of f, then $F(f)$ remains in \mathcal{D}_{α}.
- if $f \in \mathcal{D}_{\alpha}$ and $F \in L_{\text {loc }}^{1}(\mathbb{R})$ then the convolution $f * F$ is of Gevrey-order α on any compact interval.

As for the construction of \mathcal{D}^{\prime}, the space of distributions (the dual of \mathcal{D} the space of C^{∞} functions of compact supports), one can construct $\mathcal{D}_{\alpha}^{\prime} \supset \mathcal{D}^{\prime}$, a space of ultra-distributions, the dual of $\mathcal{D}_{\alpha} \subset \mathcal{D}$.
${ }^{9}$ See, e.g., I.M. Guelfand and G.E. Chilov: Les Distributions, tomes 2 et 3. Dunod, Paris, 1964.

Symbolic computations: $s:=d / d t, s \in \mathbb{C}$

The general solution of $\theta^{\prime \prime}=s \theta$ reads $\left(^{\prime}:=d / d x\right)$

$$
\theta=\cosh (x \sqrt{s}) f(s)+\frac{\sinh (x \sqrt{s})}{\sqrt{s}} g(s)
$$

where $f(s)$ and $g(s)$ are the two constants of integration. Since cosh and sinh gather the even and odd terms of the series defining exp, we have

$$
\cosh (x \sqrt{s})=\sum_{i \geq 0} s^{i} \frac{x^{2 i}}{(2 i)!}, \quad \frac{\sinh (x \sqrt{s})}{\sqrt{s}}=\sum_{i \geq 0} s^{i} \frac{x^{2 i+1}}{(2 i+1)!}
$$

and we recognize $\theta=\sum_{i=0}^{\infty} f^{(i)}(t)\left(\frac{x^{2 i}}{(2 i)!}\right)+g^{(i)}(t)\left(\frac{x^{2 i+1}}{(2 i+1)!}\right)$. For each x, the operators $\cosh (x \sqrt{s})$ and $\sinh (x \sqrt{s}) / \sqrt{s}$ are ultra-distributions of $\mathcal{D}_{2^{-}}^{\prime}$:

$$
\sum_{i \geq 0} \frac{(-1)^{i} x^{2 i}}{(2 i)!} \delta^{(i)}(t), \quad \sum_{i \geq 0} \frac{(-1)^{i} x^{2 i+1}}{(2 i+1)!} \delta^{(i)}(t)
$$

with δ, the Dirac distribution.

Entire functions of $s=d / d t$ as ultra-distributions

- $\mathbb{C} \ni s \mapsto P(s)=\sum_{i \geq 0} a_{i} s^{i}$ is an entire function when the radius of convergence is infinite.
- If its order at infinity is $\sigma>0$ and its type is finite, i.e., $\exists M, K>0$ such that $\forall s \in \mathbb{C},|P(s)| \leq M \exp \left(K|s|^{\sigma}\right)$, then

$$
\exists A, B>0|\forall i \geq 0, \quad| a_{i} \left\lvert\, \leq A \frac{B^{i}}{\Gamma(i / \sigma+1)} .\right.
$$

$\cosh (\sqrt{s})$ and $\sinh (\sqrt{s}) / \sqrt{s}$ are entire functions of order $\sigma=1 / 2$ and of type 1 .

- Take $P(s)$ of order $\sigma<1$ with $s=d / d t$. Then $P \in \mathcal{D}_{\frac{1}{\sigma}}^{\prime}$: $P(s) f(s)$ corresponds, in the time domain, to absolutely convergent series

$$
P(s) y(s) \equiv \sum_{i=0}^{\infty} a_{i} f^{(i)}(t)
$$

when $t \mapsto f(t)$ is a C^{∞}-function of Gevrey-order $\alpha<1 / \sigma$.

Motion planning for the 1D heat equation

$$
\partial_{x} \theta(0, t)=0
$$

The data are:

1. the model relating the control input $u(t)$ to the state, $(\theta(x, t))_{x \in[0,1]}$:

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t), \quad x \in[0,1] \\
& \frac{\partial \theta}{\partial x}(0, t)=0 \quad \theta(1, t)=u(t) .
\end{aligned}
$$

2. A transition time $T>0$, the initial (resp. final) state:

$$
[0,1] \ni x \mapsto p(x)(\text { resp. } q(x))
$$

The goal is to find the open-loop control $[0, T] \ni t \mapsto u(t)$ steering $\theta(x, t)$ from the initial profile $\theta(x, 0)=p(x)$ to the final profile $\theta(x, T)=q(x)$.

Series solutions

Set, formally

$$
\theta=\sum_{i=0}^{\infty} a_{i}(t) \frac{x^{i}}{i!}, \quad \frac{\partial \theta}{\partial t}=\sum_{i=0}^{\infty} \frac{d a_{i}}{d t}\left(\frac{x^{i}}{i!}\right), \quad \frac{\partial^{2} \theta}{\partial x^{2}}=\sum_{i=0}^{\infty} a_{i+2}\left(\frac{x^{i}}{i!}\right)
$$

and $\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}$ reads $\frac{d}{d t} a_{i}=a_{i+2}$. Since $a_{1}=\frac{\partial \theta}{\partial x}(0, t)=0$ and $a_{0}=\theta(0, t)$ we have

$$
a_{2 i+1}=0, \quad a_{2 i}=a_{0}^{(i)}
$$

Set $y:=a_{0}=\theta(0, t)$ we have, in the time domain,

$$
\theta(x, t)=\sum_{i=0}^{\infty}\left(\frac{x^{2 i}}{(2 i)!}\right) y^{(i)}(t), \quad u(t)=\sum_{i=0}^{\infty}\left(\frac{1}{(2 i)!}\right) y^{(i)}(t)
$$

that also reads in the Laplace domain $(s=d / d t)$:

$$
\theta(x, s)=\cosh (x \sqrt{s}) y(s), \quad u(s)=\cosh (\sqrt{s}) y(s)
$$

An explicit parameterization of trajectories

For any C^{∞}-function $y(t)$ of Gevrey-order $\alpha<2$, the time function

$$
u(t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!}
$$

is well defined and smooth. The (x, t)-function

$$
\theta(x, t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!} x^{2 i}
$$

is also well defined (entire versus x and smooth versus t). More over for all t and $x \in[0,1]$, we have, whatever $t \mapsto y(t)$ is,

$$
\frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t), \quad \frac{\partial \theta}{\partial x}(0, t)=0, \quad \theta(1, t)=u(t)
$$

An infinite dimensional analogue of differential flatness. ${ }^{10}$
${ }^{10}$ Fliess et al: Flatness and defect of nonlinear systems: introductory theory and examples, International Journal of Control. vol.61, pp:1327-1361.1995;

Motion planning of the heat equation ${ }^{11}$

Take $\sum_{i \geq 0} a_{i} \frac{\xi^{i}}{i!}$ and $\sum_{i \geq 0} b_{i} \frac{\xi^{i}}{i!}$ entire functions of ξ. With $\sigma>1$
$y(t)=\left(\sum_{i \geq 0} a_{i} \frac{t^{i}}{i!}\right)\left(\frac{e^{\frac{-T^{\sigma}}{(T-t)^{\sigma}}}}{e^{\frac{-T^{\sigma}}{T^{\sigma}}}+e^{\frac{-T^{\sigma}}{(T-t)^{\sigma}}}}\right)+\left(\sum_{i \geq 0} b_{i} \frac{t^{i}}{i!}\right)\left(\frac{e^{-\frac{T^{\sigma}}{T^{\sigma}}}}{e^{\frac{-T^{\sigma}}{t^{\sigma}}}+e^{\frac{-T^{\sigma}}{(T-t)^{\sigma}}}}\right)$
the series

$$
\theta(x, t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!} x^{2 i}, \quad u(t)=\sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2 i)!}
$$

are convergent and provide a trajectory from

$$
\theta(x, 0)=\sum_{i \geq 0} a_{i} \frac{x^{2 i}}{(2 i)!} \text { to } \theta(x, T)=\sum_{i \geq 0} b_{i} \frac{x^{2 i}}{(2 i)!}
$$

[^3]
Real-time motion planning for the heat equation

Take $\sigma>1$ and $\epsilon>0$. Consider the positive function

$$
\phi_{\epsilon}(t)=\frac{\exp \left(\frac{-\epsilon^{2 \sigma}}{(-t(t+\epsilon))^{\sigma}}\right)}{A_{\epsilon}} \text { for } t \in[-\epsilon, 0]
$$

prolonged by 0 outside $[-\epsilon, 0]$ and where the normalization constant $A_{\epsilon}>0$ is such that $\int \phi_{\epsilon}=1$.
For any $L_{l o c}^{1}$ signal $t \mapsto Y(t)$, set $y_{r}=\phi_{\epsilon} * Y$: its order $1+1 / \sigma$ is less than 2. Then $\theta_{r}=\cosh (x \sqrt{s}) y_{r}$ reads

$$
\theta_{r}(x, t)=\Phi_{x, \epsilon} * Y(t), \quad u_{r}(t)=\Phi_{1, \epsilon} * Y(t)
$$

where for each $x, \Phi_{x, \epsilon}=\cosh (x \sqrt{s}) \phi_{\epsilon}$ is a smooth time function with support contained in $[-\epsilon, 0]$. Since $u_{r}(t)$ and the profile $\theta_{r}(\cdot, t)$ depend only on the values of Y on $[t-\epsilon, t]$, such computations are well adapted to real-time generation of reference trajectories $t \mapsto\left(\theta_{r}, u_{r}\right)$ (see matlab code heat. m).

Quantum particle inside a moving box ${ }^{12}$

Schrödinger equation in a Galilean frame:

$$
\begin{aligned}
\imath \frac{\partial \phi}{\partial t} & =-\frac{1}{2} \frac{\partial^{2} \phi}{\partial z^{2}}, \quad z \in\left[v-\frac{1}{2}, v+\frac{1}{2}\right], \\
\phi\left(v-\frac{1}{2}, t\right) & =\phi\left(v+\frac{1}{2}, t\right)=0
\end{aligned}
$$

${ }^{12}$ P.R.: Control of a quantum particle in a moving potential well. IFAC 2nd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, 2003. See, for the proof of nonlinear controllability, K. Beauchard and J.-M. Coron: Controllability of a quantum particle in a moving potential well; J. of Functional Analysis, vol.232, pp:328-389, 2006.

Particle in a moving box of position v

- In a Galilean frame

$$
\begin{aligned}
\imath \frac{\partial \phi}{\partial t} & =-\frac{1}{2} \frac{\partial^{2} \phi}{\partial z^{2}}, \quad z \in\left[v-\frac{1}{2}, v+\frac{1}{2}\right] \\
\phi\left(v-\frac{1}{2}, t\right) & =\phi\left(v+\frac{1}{2}, t\right)=0
\end{aligned}
$$

where v is the position of the box and z is an absolute position.

- In the box frame $x=z-v$:

$$
\begin{aligned}
\imath \frac{\partial \psi}{\partial t} & =-\frac{1}{2} \frac{\partial^{2} \psi}{\partial x^{2}}+\ddot{v} x \psi, \quad x \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\
\psi\left(-\frac{1}{2}, t\right) & =\psi\left(\frac{1}{2}, t\right)=0
\end{aligned}
$$

Tangent linearization around state $\bar{\psi}$ of energy $\bar{\omega}$

With ${ }^{13}-\frac{1}{2} \frac{\partial^{2} \bar{\psi}}{\partial x^{2}}=\bar{\omega} \bar{\psi}, \bar{\psi}\left(-\frac{1}{2}\right)=\bar{\psi}\left(\frac{1}{2}\right)=0$ and with

$$
\psi(x, t)=\exp (-\imath \bar{\omega} t)(\bar{\psi}(x)+\Psi(x, t))
$$

ψ satisfies

$$
\begin{aligned}
\imath \frac{\partial \Psi}{\partial t}+\bar{\omega} \Psi & =-\frac{1}{2} \frac{\partial^{2} \Psi}{\partial x^{2}}+\ddot{v} x(\bar{\psi}+\Psi) \\
0 & =\Psi\left(-\frac{1}{2}, t\right)=\Psi\left(\frac{1}{2}, t\right)
\end{aligned}
$$

Assume ψ and \ddot{v} small and neglecte the second order term $\ddot{v} x \Psi$:

$$
\imath \frac{\partial \psi}{\partial t}+\bar{\omega} \Psi=-\frac{1}{2} \frac{\partial^{2} \psi}{\partial x^{2}}+\ddot{v} x \bar{\psi}, \quad \Psi\left(-\frac{1}{2}, t\right)=\Psi\left(\frac{1}{2}, t\right)=0 .
$$

${ }^{13}$ Remember that $\int_{-1 / 2}^{1 / 2} \bar{\psi}^{2}(x) d x=1$.

Operational computations $s=d / d t$

The general solution of (' stands for $d / d x$)

$$
(\imath s+\bar{\omega}) \Psi=-\frac{1}{2} \psi^{\prime \prime}+s^{2} v x \bar{\psi}
$$

is

$$
\psi=A(s, x) a(s)+B(s, x) b(s)+C(s, x) v(s)
$$

where

$$
\begin{aligned}
& A(s, x)=\cos (x \sqrt{2 \imath s+2 \bar{\omega}}) \\
& B(s, x)=\frac{\sin (x \sqrt{2 \imath s+2 \bar{\omega}})}{\sqrt{2 \imath s+2 \bar{\omega}}} \\
& C(s, x)=\left(-\imath s x \bar{\psi}(x)+\bar{\psi}^{\prime}(x)\right)
\end{aligned}
$$

Case $x \mapsto \bar{\phi}(x)$ even

The boundary conditions imply

$$
A(s, 1 / 2) a(s)=0, \quad B(s, 1 / 2) b(s)=-\psi^{\prime}(1 / 2) v(s)
$$

$a(s)$ is a torsion element: the system is not controllable. Nevertheless, for steady-state controllability, we have

$$
\begin{aligned}
b(s) & =-\bar{\psi}^{\prime}(1 / 2) \frac{\sin \left(\frac{1}{2} \sqrt{-2 \imath s+2 \bar{\omega}}\right)}{\sqrt{-2 \imath s+2 \bar{\omega}}} y(s) \\
v(s) & =\frac{\sin \left(\frac{1}{2} \sqrt{2 \imath s+2 \bar{\omega}}\right)}{\sqrt{2 \imath s+2 \bar{\omega}}} \frac{\sin \left(\frac{1}{2} \sqrt{-2 \imath s+2 \bar{\omega}}\right)}{\sqrt{-2 \imath s+2 \bar{\omega}}} y(s) \\
\Psi(s, x) & =B(s, x) b(s)+C(s, x) v(s)
\end{aligned}
$$

Series and convergence

$$
v(s)=\frac{\sin \left(\frac{1}{2} \sqrt{2 \imath s+2 \bar{\omega}}\right)}{\sqrt{2 \imath s+2 \bar{\omega}}} \frac{\sin \left(\frac{1}{2} \sqrt{-2 \imath s+2 \bar{\omega}}\right)}{\sqrt{-2 \imath s+2 \bar{\omega}}} y(s)=F(s) y(s)
$$

where the entire function $s \mapsto F(s)$ is of order $1 / 2$,

$$
\exists K, M>0, \forall s \in \mathbb{C}, \quad|F(s)| \leq K \exp \left(M|s|^{1 / 2}\right)
$$

Set $F(s)=\sum_{n \geq 0} a_{n} s^{n}$ where $\left|a_{n}\right| \leq K^{n} / \Gamma(1+2 n)$ with $K>0$ independent of n. Then $F(s) y(s)$ corresponds, in the time domain, to

$$
\sum_{n \geq 0} a_{n} y^{(n)}(t)
$$

that is convergent when $t \mapsto y(t)$ is C^{∞} of Gevrey-order $\alpha<2$.

Steady state controllability

Steering from $\Psi=0, v=0$ at time $t=0$, to $\psi=0, v=D$ at $t=T$ is possible with the following C^{∞}-function of
Gevrey-order $\sigma+1$:
$[0, T] \ni t \mapsto y(t)= \begin{cases}0 & \text { for } t \leq 0 \\ \bar{D} \frac{\exp \left(-\left(\frac{T}{t}\right)^{\frac{1}{\sigma}}\right)}{\exp \left(-\left(\frac{T}{t}\right)^{\frac{1}{\sigma}}\right)+\exp \left(-\left(\frac{T}{T-t}\right)^{\frac{1}{\sigma}}\right)} & \text { for } 0<t<T \\ \bar{D} & \text { for } t \geq T\end{cases}$
with $\bar{D}=\frac{2 \bar{\omega} D}{\sin ^{2}(\sqrt{\bar{\omega}} / 2)}$. The fact that this C^{∞}-function is of
Gevrey-order $\sigma+1$ results from its exponential decay of order $1 / \sigma$ around 0 and T.

Practical computations via Cauchy formula

Using the "magic" Cauchy formula

$$
y^{(n)}(t)=\frac{\Gamma(n+1)}{2 \imath \pi} \oint_{\gamma} \frac{y(t+\xi)}{\xi^{n+1}} d \xi
$$

where γ is a closed path around zero, $\sum_{n \geq 0} a_{n} y^{(n)}(t)$ becomes

$$
\sum_{n \geq 0} a_{n} \frac{\Gamma(n+1)}{2 \imath \pi} \oint_{\gamma} \frac{y(t+\xi)}{\xi^{n+1}} d \xi=\frac{1}{2 \imath \pi} \oint_{\gamma}\left(\sum_{n \geq 0} a_{n} \frac{\Gamma(n+1)}{\xi^{n+1}}\right) y(t+\xi) d \xi
$$

But

$$
\sum_{n \geq 0} a_{n} \frac{\Gamma(n+1)}{\xi^{n+1}}=\int_{D_{\delta}} F(s) \exp (-s \xi) d s=B_{1}(F)(\xi)
$$

is the Borel/Laplace transform of F in direction $\delta \in[0,2 \pi]$.

Practical computations via Cauchy formula (end)

 (matlab code Qbox.m)In the time domain $F(s) y(s)$ corresponds to

$$
\frac{1}{2 i \pi} \oint_{\gamma} B_{1}(F)(\xi) y(t+\xi) d \xi
$$

where γ is a closed path around zero. Such integral representation is very useful when y is defined by convolution with a real signal Y,

$$
y(\zeta)=\frac{1}{\varepsilon \sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-(\zeta-t)^{2} / 2 \varepsilon^{2}\right) Y(t) d t
$$

where $\mathbb{R} \ni t \mapsto Y(t) \in \mathbb{R}$ is any measurable and bounded function. Approximate motion planning with:
$v(t)=\int_{-\infty}^{+\infty}\left[\frac{1}{\varepsilon(2 \pi)^{\frac{3}{2}}} \oint_{\gamma} B_{1}(F)(\xi) \exp \left(-(\xi-\tau)^{2} / 2 \varepsilon^{2}\right) d \xi\right] Y(t-\tau) d \tau$.

A free-boundary Stefan problem ${ }^{14}$

Mobile interface

with $\nu, \rho \geq 0$ parameters.
${ }^{14}$ W. Dunbar, N. Petit, P. R., Ph. Martin. Motion planning for a non-linear Stefan equation. ESAIM: Control, Optimisation and Calculus of Variations, 9:275-296, 2003.

Series solutions

- Set $\theta(x, t)=\sum_{i=0}^{\infty} a_{i}(t) \frac{(x-y(t))^{i}}{i!}$ in

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}(x, t)=\frac{\partial^{2} \theta}{\partial x^{2}}(x, t)-\nu \frac{\partial \theta}{\partial x}(x, t)-\rho \theta^{2}(x, t), \quad x \in[0, y(t)] \\
& \theta(0, t)=u(t), \quad \theta(y(t), t)=0, \quad \frac{\partial \theta}{\partial x}(y(t), t)=-\frac{d}{d t} y(t)
\end{aligned}
$$

Then $\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}$ yields

$$
a_{i+2}=\frac{d}{d t} a_{i}-a_{i-1} \frac{d}{d t} y+\nu a_{i+1}+\rho \sum_{k=0}^{i}\binom{i}{k} a_{i-k} a_{k}
$$

and the boundary conditions: $a_{0}=0$ and $a_{1}=-\frac{d}{d t} y$.

- The series defining θ admits a strictly positive radius of convergence as soon as y is of Gevrey-order α strictly less than 2.

Growth of the liquide zone with $\theta \geq 0$

$\nu=0.5, \rho=1.5, y$ goes from 1 to 2.

Conclusion for PDE

- For other 1D PDE of engineering interest with motion planning see the book of J. Rudolph: Flatness Based Control of Distributed Parameter Systems (Shaker-Germany, 2003)
- For tracking and feedback stabilization on linear 1D diffusion and wave equations, see the book of M. Krstić and A. Smyshlyaev : Boundary Control of PDEs: a Course on Backstepping Designs (SIAM, 2008).
- Open questions:
- Combine divergent series and smallest-term summation (see the PhD of Th. Meurer: Feedforward and Feedback Tracking Control of Diffusion-Convection-Reaction Systems using Summability Methods (Stuttgart, 2005)).
- 2D heat equation with a scalar control $u(t)$: with modal decomposition and symbolic computations, we get $u(s)=P(s) y(s)$ with $P(s)$ an entire function (coding the spectrum) of order 1 but infinite type $|P(s)| \leq M \exp (K|s| \log (|s|))$. It yields divergence series for any C^{∞} function $y \neq 0$ with compact support.

$u(s)=P(s) y(s)$ for 1D and 2D heat equations

- 1D heat equation: eigenvalue asymptotics $\lambda_{n} \sim-n^{2}$:

$$
\text { Prototype: } \quad P(s)=\prod_{n=1}^{+\infty}\left(1-\frac{s}{n^{2}}\right)=\frac{\sinh (\pi \sqrt{s})}{\pi \sqrt{s}}
$$

entire function of order $1 / 2$.

- 2D heat equation in a domain Ω with a single scalar control $u(t)$ on the boundary $\partial \Omega_{1}\left(\partial \Omega=\partial \Omega_{1} \bigcup \partial \Omega_{2}\right)$:

$$
\frac{\partial \theta}{\partial t}=\Delta \theta \text { on } \Omega, \quad \theta=u(t) \text { on } \partial \Omega_{1}, \quad \frac{\partial \theta}{\partial n}=0 \text { on } \partial \Omega_{2}
$$

Eigenvalue asymptotics $\lambda_{n} \sim-n$

$$
\text { Prototype: } \quad P(s)=\prod_{n=1}^{+\infty}\left(1+\frac{s}{n}\right) \exp (-s / n)=\frac{\exp (-\gamma s)}{s \Gamma(s)}
$$

entire function of order 1 but of infinite type ${ }^{15}$

[^4]
Symbolic computations with Laplace variable $s=\frac{d}{d t}$

- Wave 1D: $u=\cosh (s) y$. General case is similar: $u=P(s) y$ where the zeros of P are the eigen-values $\pm i \omega_{n}$ with asymptotic $\omega_{n} \sim n ; P(s)$ entire function of order 1 and finite type (in time domain: advance/delay operator with compact support).
- Diffusion 1D: $u=\cosh (\sqrt{s}) u$. General case is similar: $u=P(s) y$ where the zeros of P are the eigen-values $-\lambda_{n}$ with asymptotic $\lambda_{n} \sim n^{2} ; P(s)$ entire function of order $1 / 2$ (in time domain: ultra-distribution made of an infinite sum of Dirac derivatives applied on Gevrey functions with compact support of order <2).
- Wave 2D: since $\omega_{n} \sim \sqrt{n}, P$ entire with order 2 but infinite type; prototype $P(s)=\prod_{n=1}^{+\infty}\left(1-\frac{s^{2}}{n}\right) \exp \left(s^{2} / n\right)=\frac{-\exp \left(\gamma s^{2}\right)}{s^{2} \Gamma\left(-s^{2}\right)}$. Diffusion 2D: since $\lambda_{n} \sim-n, P$ entire with order 1 but infinite type; prototype $P(s)=\prod_{n=1}^{+\infty}\left(1+\frac{s}{n}\right) \exp (-s / n)=\frac{\exp (-\gamma s)}{s \Gamma(s)}$. Open Question: interpretation of $P(s)$ in time domain as operator on a set of time functions $y(t) \ldots$

Wave 1D with internal damping

$$
\begin{aligned}
& \frac{\partial^{2} H}{\partial t^{2}}=\frac{\partial^{2} H}{\partial x^{2}}+\epsilon \frac{\partial^{3} H}{\partial x^{2} \partial t} \\
& H(0, t)=0, \quad H(1, t)=u(t)
\end{aligned}
$$

where the eigenvalues are the zeros of

$$
P(s)=\cosh \left(\frac{s}{\sqrt{\epsilon S+1}}\right) .
$$

Approximate controllability depends on the functional space chosen to have a well-posed Cauchy problem ${ }^{16}$

[^5] Optimisation. 2006.

Dispersive wave 1D (Maxwell-Lorentz)

Propagation of electro-magnetic wave in a partially transparent medium:

$$
\frac{\partial^{2}}{\partial t^{2}}(E+D)=c^{2} \frac{\partial^{2}}{\partial x^{2}} E, \quad \frac{\partial^{2} D}{\partial t^{2}}=\omega_{0}^{2}(\epsilon E-D)
$$

where ω_{0} is associated to an adsorption ray and ϵ is the coupling constant between medium of polarization P and travelling field E

- The eigenvalues rely on the analytic function ($s=d / d t$ Laplace variable, L length)

$$
Q^{ \pm}(s, L)=\exp \left(\pm \frac{L s}{c} \sqrt{\left(1+\frac{\epsilon s^{2}}{\omega_{0}^{2}+s^{2}}\right)}\right)
$$

The essential singularity in $s= \pm \imath \omega_{0}$ yields an accumulation of eigenvalues around $\pm \omega_{0}$.

- Few works on this kind of PDE with spectrum that accumulates at finite distance.

The flatness characterization problem

$\frac{d}{d t} x=f(x, u)$ is said r-flat if exists a flat output y only function of $\left(x, u, \dot{u}, \ldots, u^{(r-1)}\right) ; 0$-flat means $y=h(x)$.
Example:

$$
x_{1}^{\left(\alpha_{1}\right)}=u_{1}, \quad x_{2}^{\left(\alpha_{2}\right)}=u_{2}, \quad \frac{d}{d t} x_{3}=u_{1} u_{2}
$$

is $\left[r:=\min \left(\alpha_{1}, \alpha_{2}\right)-1\right]$-flat with

$$
y_{1}=x_{3}+\sum_{i=1}^{\alpha_{1}}(-1)^{i} x_{1}^{\left(\alpha_{1}-i\right)} u_{2}^{(i-1)}, \quad y_{2}=x_{2},
$$

Conjecture: there is no flat output depending on derivatives of u of order less than $r-1$.
The main difficulty: for $\frac{d}{d t} x=f(x, u)$ with $y=h\left(x, u, \ldots, u^{(p)}\right)$ as flat output, we do not know an upper-bound on p with respect to $n=\operatorname{dim}(x), m=\operatorname{dim}(u), \ldots$.

Systems linearizable by static feedback

- A system which is linearizable by static feedback and coordinate change is flat: geometric necessary and sufficient conditions by Jakubczyk and Respondek (1980) (see also Hunt et al. (1983)).
- When there is only one control input, flatness reduces to static feedback linearizability (Charlet et al. (1989))

Affine control systems of small co-dimension

- Affine systems of codimension 1.

$$
\frac{d}{d t} x=f_{0}(x)+\sum_{j=1}^{n-1} u_{j} g_{j}(x), \quad x \in \mathbb{R}^{n}
$$

is 0-flat as soon as it is controllable, Charlet et al. (1989)

- Affine systems with 2 inputs and 4 states. Necessary and sufficient conditions for 1-flatness (Pomet (1997)) give a good idea of the complexity of checking r-flatness even for r small.

Driftless systems with two controls.

$$
\frac{d}{d t} x=f_{1}(x) u_{1}+f_{2}(x) u_{2}
$$

is flat if and only if the generic rank of E_{k} is equal to $k+2$ for $k=0, \ldots, n-2$ where

$$
\begin{aligned}
& E_{0}:=\operatorname{span}\left\{f_{1}, f_{2}\right\} \\
& E_{k+1}:=\operatorname{span}\left\{E_{k},\left[E_{k}, E_{k}\right]\right\}, \quad k \geq 0 .
\end{aligned}
$$

Proof: Martin and R. (1994) with a theorem of Cartan (1916) on Pfaffian systems.

- A flat two-input driftless system satisfying some additional regularity conditions (Murray (1994)) can be put into the chained system

$$
\begin{gathered}
\frac{d}{d t} x_{1}=u_{1}, \quad \frac{d}{d t} x_{2}=u_{2} \\
\frac{d}{d t} x_{3}=x_{2} u_{1}, \quad \ldots, \quad \frac{d}{d t} x_{n}=x_{n-1} u_{1}
\end{gathered}
$$

Codimension 2 driftless systems

$$
\frac{d}{d t} x=\sum_{i=1}^{n-2} u_{i} f_{i}(x), \quad x \in \mathbb{R}^{n}
$$

is flat as soon as it is controllable (Martin and R. (1995))

- Tools: exterior differential systems.
- Many nonholonomic control systems are flat.

The ruled-manifold criterion (R. (1995))

- Assume $\dot{x}=f(x, u)$ is flat. The projection on the p-space of the submanifold $p=f(x, u)$, where x is considered as a parameter, is a ruled submanifold for all x.
- Otherwise stated: eliminating u from $\dot{x}=f(x, u)$ yields a set of equations $F(x, \dot{x})=0$: for all (x, p) such that $F(x, p)=0$, there exists $a \in \mathbb{R}^{n}, a \neq 0$ such that

$$
\forall \lambda \in \mathbb{R}, \quad F(x, p+\lambda a)=0
$$

- Proof elementary and derived from Hilbert (1912).
- Restricted version proposed by Sluis (1993).

Why static linearization coincides with flatness for single input systems ? Because a ruled-manifold of dimension 1 is just a straight line.

Proving that a multi-input system is not flat

$$
\frac{d}{d t} x_{1}=u_{1}, \quad \frac{d}{d t} x_{2}=u_{2}, \quad \frac{d}{d t} x_{3}=\left(u_{1}\right)^{2}+\left(u_{2}\right)^{3}
$$

is not flat The submanifold $p_{3}=p_{1}^{2}+p_{2}^{3}$ is not ruled: there is no $a \in \mathbb{R}^{3}, a \neq 0$, such that

$$
\forall \lambda \in \mathbb{R}, p_{3}+\lambda a_{3}=\left(p_{1}+\lambda a_{1}\right)^{2}+\left(p_{2}+\lambda a_{2}\right)^{3} .
$$

Indeed, the cubic term in λ implies $a_{2}=0$, the quadratic term $a_{1}=0$ hence $a_{3}=0$.
The system $\frac{d}{d t} x_{3}=\left(\frac{d}{d t} x_{1}\right)^{2}+\left(\frac{d}{d t} x_{2}\right)^{2}$ does not define a ruled submanifold of \mathbb{R}^{3} : it is not flat in \mathbb{R}. But it defines a ruled submanifold in \mathbb{C}^{3} : in fact it is flat in \mathbb{C}, with the flat output

$$
\begin{aligned}
& y_{1}=x_{3}-\left(\dot{x}_{1}-\dot{x}_{2} \sqrt{-1}\right)\left(x_{1}+x_{2} \sqrt{-1}\right) \\
& y_{2}=x_{1}+x_{2} \sqrt{-1} .
\end{aligned}
$$

JBP result on equivalent systems SIAM JCO (2010)

- Take two explicit analytic systems $\frac{d}{d t} x=f(x, u)$ and $\frac{d}{d t} z=g(z, v)$ with $\operatorname{dim} u=\operatorname{dim} v$ but not necessarily $\operatorname{dim} x$ equals to $\operatorname{dim} z$. Assume that they are equivalent via a possible dynamic state feedback. Then we have
- if $\operatorname{dim} x<\operatorname{dim} z$ then $\frac{d}{d t} x=f(x, u)$ is ruled.
- if $\operatorname{dim} z<\operatorname{dim} x$ then $\frac{d}{d t} z=g(z, v)$ is ruled.
- if $\operatorname{dim} x=\operatorname{dim} z$ either they are equivalent by static feedback or they are both ruled.
- The system $\frac{d}{d t} x=f(x, u)$ (resp. $\frac{d}{d t} z=g(z, v)$ is said ruled when after elimination of u (resp. v), the implicit system $F\left(x \frac{d}{d t} x\right)=0$ (resp. $\left.G\left(x, \frac{d}{d t} x\right)=0\right)$ is ruled in the sense of the ruled manifold criterion explained here above.

Geometric construction: $S E(2)$ invariance

- Invariance versus actions of the group $S E(2)$.
- Flat outputs are not unique: $\left(\xi=x_{n}, \zeta=y_{n}+\frac{d}{d t} x_{n}\right)$ is another flat output since $x_{n}=\xi$ and $y_{n}=\zeta-\frac{d}{d t} \xi$.
- The flat output (x_{n}, y_{n}) formed by the cartesian coordinates of P_{n} seems more adapted than (ξ, ζ) : the output map h isequivariant.

Why the flat output $z:=(x, y)$ is better than the flat output $\tilde{z}:=(x, y+\dot{x})$?

Each symmetry of the system induces a transformation on the flat output z

$$
\binom{x}{y}=\binom{z_{1}}{z_{2}} \longmapsto\binom{Z_{1}}{Z_{2}}=\binom{X}{Y}=\binom{z_{1} \cos \alpha-z_{2} \sin \alpha+a}{z_{1} \sin \alpha+z_{2} \cos \alpha+b}
$$

which does not involve derivatives of z
This point transformation, generates an endogenous transformation $(z, \dot{z}, \ldots) \mapsto(Z, \dot{Z}, \ldots)$ that is holonomic.

Why the flat output $z:=(x, y)$ is better than the flat output $\tilde{z}:=(x, y+\dot{x})$?

On the contrary

$$
\begin{aligned}
\binom{x}{y+\dot{x}}=\binom{\tilde{z}_{1}}{\tilde{z}_{2}} & \longmapsto\binom{\tilde{z}_{1}}{z_{2}}=\binom{x}{Y+\dot{x}} \\
& =\binom{\tilde{z}_{1} \cos \alpha+\left(\dot{\tilde{z}}_{1}-\tilde{z}_{2}\right) \sin \alpha+a}{\tilde{z}_{1} \sin \alpha+\tilde{z}_{2} \cos \alpha+\left(\tilde{z}_{1}-\tilde{z}_{2}\right) \sin \alpha+b}
\end{aligned}
$$

is not a point transformation and does not give to a holonomic transformation. It is endogenous since its inverse is

$$
\binom{\tilde{Z}_{1}}{\tilde{Z}_{2}} \longmapsto\binom{\tilde{z}_{1}}{\tilde{z}_{2}}=\binom{\left(\tilde{Z}_{1}-a\right) \cos \alpha-\left(\dot{\bar{Z}}_{1}-\tilde{Z}_{2}\right) \sin \alpha}{\left(\tilde{Z}_{1}-a\right) \sin \alpha+\left(\tilde{Z}_{2}-b\right) \cos \alpha-\left(\tilde{z}_{1}-\dot{\tilde{Z}}_{2}\right) \sin \alpha}
$$

Symmetry preserving flat output

- Take the implicit system $F\left(x, \ldots, x^{(r)}\right)=0$ with flat output $y=h\left(x, \ldots, x^{(\alpha)}\right) \in \mathbb{R}^{m}$ (i.e. $x=\mathcal{A}\left(y, \ldots, y^{(\beta)}\right)$
- Assume that the group G acting on the x-space via the family of diffeomorphism $X=\phi_{g}(x)\left(x=\phi_{g^{-1}}(X)\right)$ leaves the ideal associated to the set of equation $F=0$ invariante:

$$
F\left(x, \ldots, x^{(r)}\right)=0 \Longleftrightarrow F\left(\left(\phi_{g}(x), \ldots, \phi_{g}^{(r)}\left(x, \ldots, x^{(r)}\right)\right)=0\right.
$$

- Question: we wonder if exists always an equivariante flat output $\bar{y}=\bar{h}\left(x, \ldots, \bar{x}^{(\bar{\alpha})}\right)$, i.e. such that exists an action of G on the y-space via the family of diffeomorphisms $\bar{Y}=\rho_{g}(\bar{y})$ satisfying

$$
\rho_{g}(y) \equiv h\left(\phi_{g}(x), \ldots \phi_{g}^{(\bar{\alpha})}\left(x, \ldots, x^{(\bar{r})}\right)\right)
$$

two different flat outputs correspond via a "non-linear uni-modular transformation ":

$$
\bar{y}=\psi\left(y, \ldots, y^{(\mu)}\right) \quad \text { with inverse } \quad y=\bar{\psi}\left(\bar{y}, \ldots, \bar{y}^{(\bar{\mu})}\right)
$$

Flat outputs as potentials and gauge degree of freedom

Maxwell's equations in vacuum imply that the magnetic field H is divergent free:

$$
\frac{\partial H_{1}}{\partial x_{1}}+\frac{\partial H_{2}}{\partial x_{2}}+\frac{\partial H_{3}}{\partial x_{3}}=0
$$

When $H=\nabla \times A$ the constraint $\nabla \cdot H=0$ is automatically satisfied
The potential A is a priori not uniquely defined, but up to an arbitrary gradient field, the gauge degree of freedom. The symmetries indicate how to use this degree of freedom to fix a "natural" potential.
For flat systems: a flat output is a "potential" for the underdetermined differential equation $\dot{x}-f(x, u)=0$; endogenous transformations on the flat output correspond to gauge degrees of freedom.

Open problems

- $\frac{d}{d t} x=f(x, u)$ with $y=h\left(x, u, \ldots, u^{(r)}\right), r$-flatness: bounds on r with respect to $\operatorname{dim}(x)$ and $\operatorname{dim}(u)$.
- Symmetries and flat-output preserving symmetries: are time-invariant systems flat with a time invariant flat output map (a first step to prove that linearization via exogenous dynamics feedback, implies flatness).
- Are the intrinsic and extrinsic definitions of flat systems equivalent?
- Flatness of JBP example

Jean-Baptiste Pomet example SIAM JCO (2010)

- The system

$$
\frac{d}{d t} x_{3}-x_{2}-\left(\frac{d}{d t} x_{1}\right)\left(\frac{d}{d t} x_{2}-x_{3} \frac{d}{d t} x_{1}\right)^{2}=0
$$

is ruled with a single linear direction $a(x, \dot{x})=\left(1, x_{3},\left(\dot{x}_{2}-x_{3} \dot{x}_{1}\right)^{2}\right)^{T}$.

- There is no flat output y depending only on x and \dot{x} (this system is not 1-flat)
- Conjecture: this system is not flat.

[^0]: ${ }^{4}$ E. Cartan: Sur l'intégration de certains systèmes indéterminés d'équations différentielles. J. für reine und angew. Math. Vol. 145; 1915.

[^1]: ${ }^{7}$ M. Gevrey: La nature analytique des solutions des équations aux dérivées partielles, Ann. Sc. Ecole Norm. Sup., vol.25,pp:129-190, 1918.

[^2]: ${ }^{8}$ J.P. Ramis: Dévissage Gevrey. Astérisque, vol:59-60, pp:173-204, 1978. See also J.P. Ramis: Séries Divergentes et Théories Asymptotiques; SMF, Panoramas et Synthèses, 1993.

[^3]: ${ }^{11}$ B. Laroche, Ph. Martin, P. R.: Motion planning for the heat equation. Int. Journal of Robust and Nonlinear Control. Vol.10, pp:629-643, 2000.

[^4]: ${ }^{15}$ For the links between the distributions of the zeros and the order at infinity of entire functions see the book of B.Ja Levin: Distribution of Zeros of Entire Functions; AMS, 1972.

[^5]: ${ }^{16}$ Rosier-R, CAO'06. 13th IFAC Workshop on Control Applications of

