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Particle imaging velocimetry1

1From: "Particle tracking velocimetry" of Wikipedia and PhD "A
Spatio-Temporal Matching Algorithm for 3D Particle Tracking Velocimetry" by
Jochen Willneff (2003) (Diss. ETH No. 15276).



3D Particle Tracking Velocimetry: example of experimental setup2

2From: PhD of Jochen Willneff (2003)



3D Particle Tracking: examples of 3D trajectories 3

3From: PhD of Jochen Willneff (2003)



From 3D trajectories to velocities

▶ Lagrangian point of view. Denote by �(t , x) ∈ ℝ3 the
Cartesian position at time t of the particle that was at
x ∈ ℝ3 at time 0 (�(0, x) ≡ x). 3D Particle Tracking
provides �(t , x) sampled in time and in space.

▶ Eulerian point of view. Differentiation versus t provides
v⃗(t , x), the velocity field at time t and position x (kinematic
relation)

∂�

∂t
(t , x) = v⃗(t , �t (x))

If we assume the fluid perfect, homogeneous and
incompressible, then v⃗ is tangent to the boundary ∂Ω and
obeys to the Euler equations inside the domain Ω:

∂v⃗
∂t

+ v⃗ ⋅ ∇v⃗ = −∇�, ∇ ⋅ v⃗ = 0.

The scalar field � (pressure) depends implicitly on v⃗ via the
incompressibility conditions.



Euler equations as geodesics equations4

G Id
q �v⃗

t = gU�
�
�
�

HHH
HHH

H
HHH

HH

�
�
�
�

v⃗(t , )��*
�⃗(t , )

���
q

R̃g v⃗(t , )
���

R̃g �⃗(t , )

BBN

▶ G: "Lie group" of volume
preserving
diffeomorphisms g on Ω

▶ TGId = U is the Lie
algebra of vector fields
in Ω of zero divergence
and tangent to ∂Ω.

The metric on G defined by the following scalar product:

< �⃗, v⃗ >g=

∫ ∫ ∫
Ω

�⃗(g(x)) ⋅ v⃗(g(x)) dx =

∫ ∫ ∫
Ω

�⃗(x) ⋅ v⃗(x) dx

is invariant versus right translation: Rg : h ∈ G→ h ∘ g ∈ G.
Covariant derivative reads:

∇⃗v �⃗ =
∂�⃗

∂t
+ (v⃗ ⋅ ∇)�⃗ +∇�, with v⃗(t , ) and �⃗(t , ) ∈ U

.
4V.I. Arnol’d. Sur la géométrie différentielle des groupes de Lie de

dimension infinie et ses applications à l’hydrodynamique des fluides parfaits.
Ann. Inst. Fourier, 16:319–361, 1966.



The covariant derivative 5 ∇⃗v �⃗
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The covariant differentiation, with respect to v⃗ , of �⃗(t , ⋅) ∈ U
corresponding to an element of TG�v⃗

t
, is given by

∇⃗v �⃗ =
∂�⃗

∂t
+ (v⃗ ⋅ ∇) �⃗ +∇�

where � is a real function such that
∂�⃗

∂t
+ (v⃗ ⋅ ∇) �⃗ +∇� belongs to U

(Δ� +∇ ⋅ ((v⃗ ⋅ ∇) �⃗) = 0 and ∇� + (v⃗ ⋅ ∇) �⃗ tangent to ∂Ω).

5J.J. Moreau, J.J.: Une méthode de cinématique fonctionnelle en
hydrodynamique. C.R. Acad. Sci. Paris, pp:2156–2158, Nov 1959.



PIV, geodesics and velocity observers for mechanical systems

Geodesics correspond to mechanical systems those
Lagrangian coincides with kinetic energy: if q is a set of
coordinates on the configuration manifold M,
L(q, q̇) = 1

2gij(q)q̇i q̇j yields to the second-order ODE:

d
dt

(
∂L
∂q̇i

(q, q̇)

)
=

d
dt

(
gij(q)q̇j

)
=

1
2
∂gkj

∂qi
q̇k q̇j =

∂L
∂qi

(q, q̇)

that reads geometrically q̇ = v , ∇v v = 0 where ∇v v is the
covariant derivative.
Similarities between velocity observer for mechanical systems
and PIV:

▶ measured positions qi(t) −→ the 3D-trajectories �(t , x);
▶ q̇ = v −→ ∂�

∂t (t , x) = v⃗(t , �(t , x));

▶ ODE ∇v v = 0 −→ PDE ∇⃗v v⃗ = 0;
▶ estimation of v = q̇ −→ estimation of the velocity field v⃗ .



Velocity observer for mechanical systems 7

For any constant gains � > 0 and � > 0, the following intrinsic
observer is locally convergent:

˙̂q = v̂ − � gradq̂F (q̂,q)

∇ ˙̂q v̂ = −� gradq̂F (q̂,q) + R(v̂ ,gradq̂F (q̂,q))v̂

where: F (q̂,q) is half of the square of the geodesic distance
between q and q̂; R is the curvature tensor. Here ∇ and gradq
are the Levi-Civita connexion and the gradient operator
associated to the Riemnanian structure derived from the gij ’s.

▶ For q̂ close to q, gradq̂F (q̂,q) ≈ q̂i − qi

▶ When q lives on a Lie Group, the above asymptotic
observers simplify a little6.

6D. H. S. Maithripala, W. P. Dayawansa, and J. M. Berg. Intrinsic
observer-based stabilization for simple mechanical systems on Lie groups.
SIAM J. Control and Optim., 44:1691–1711, 2005.

7N. Aghannan and PR. An intrinsic observer for a class of Lagrangian
systems. IEEE AC, 48(6):936–945, 2003.



Heuristic extension to perfect incompressible fluid

Replace q̂ − q by �̂− � and use curvature formulae given in 8:

∂�̂

∂t
(t , x) = ˆ⃗v(t , �̂(t , x))− �e⃗(t , �̂(t , x))

∂ ˆ⃗v
∂t

+
(

(ˆ⃗v − �e⃗) ⋅ ∇
)

ˆ⃗v = −∇� − �e⃗ + (e⃗ ⋅ ∇)∇p̂ − (ˆ⃗v ⋅ ∇)∇�̂

where:
▶ e⃗ ∈ U corresponds to the position errors q̂ − q, i.e.,

e⃗(t , �(t , x)) ≈ �̂(t , x)− �(t , x); Right invariance implies that in
the second equation e⃗ ≈ �̂(t , �−1

t (x))− x .

▶ the gradient field ∇� ensures ∂ ˆ⃗v
∂t ∈ U ; (e⃗ ⋅ ∇)∇p̂ − (ˆ⃗v ⋅ ∇)∇�̂ is

the curvature term R(v̂ , q̂ − q)v̂ ; ∇p̂ is such that
∇p̂ + (ˆ⃗v ⋅ ∇)ˆ⃗v ∈ U ; ∇�̂ is such that ∇�̂ + (ˆ⃗v ⋅ ∇)e⃗ ∈ U .

8PR. Jacobi equation, Riemannian curvature and the motion of a perfect
incompressible fluid. European Journal of Mechanics /B Fluids, 11:317–336,
1992.



Concluding remarks

▶ How to increase precision of ˆ⃗v (turbulence investigations)?
interesting question relying on image processing, SE(3)
invariance and the PDE underlying fluid mechanics.

▶ Invariance and geometry should play a central role in such data
assimilation processes and filtering (for recent investigations on
invariant asymptotic observers see 9).

▶ For perfect fluids, intrinsic asymptotic observers could be of
some interest for velocity estimation: they are based on
geometry.

▶ Possible extension to compressible perfect fluids (use 10).

9S. Bonnabel, Ph. Martin, PR: Symmetry-preserving observers. IEEE
Trans. Automatic Control. Vol 53, pp:2514-2526, 2008.
S. Bonnabel, D. Auroux: Symmetry-preserving nudging: theory and
application to a shallow water model. CDPS 2009.

10D.G. Ebin: The Motion of Sightly Compressible Fluids Viewed as a Motion
With Strong Constraining Force. Annals of Math. Vol.105, pp:141–200,1977.
PR: Dynamique des fluides parfaits, principe de moindre action, stabilité
lagrangienne. Technical Report 13/3446 EN, ONERA, 1991.
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