# Modeling and Control of the LKB Photon-Box: ${ }^{1}$ Spin-Spring Systems 

## Pierre Rouchon

pierre.rouchon@mines-paristech.fr
Würzburg, July 2011
${ }^{1}$ LKB: Laboratoire Kastler Brossel, ENS, Paris.
Several slides have been used during the IHP course (fall 2010) given with Mazyar Mirrahimi (INRIA) see:
http://cas.ensmp.fr/~rouchon/QuantumSyst $\neq$ index.html $\equiv$

## Outline

1 Spring systems: the quantum harmonic oscillator

2 Spin-spring systems: the Jaynes-Cummings model

Classical Hamiltonian formulation of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x$

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right) .
$$

Quantization: probability wave function $|\psi\rangle_{t} \sim(\psi(x, t))_{x \in \mathbb{R}}$ with $|\psi\rangle_{t} \sim \psi(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ obeys to the Schrödinger equation ( $\hbar=1$ in all the lectures)

$$
i \frac{d}{d t}|\psi\rangle=H|\psi\rangle, \quad H=\omega\left(P^{2}+X^{2}\right)=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}
$$

where $H$ results from $\mathbb{H}$ by replacing $x$ by position operator $\sqrt{2} X$ and $p$ by impulsion operator $\sqrt{2} P=-i \frac{\partial}{\partial x}$.
PDE model: $i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\frac{\omega}{2} x^{2} \psi(x, t), \quad x \in \mathbb{R}$.
${ }^{2}$ Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique Quantique, volume I\& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.

Oxford University Press, 2003.

Averaged position $\langle X\rangle_{t}=\langle\psi| X|\psi\rangle$ and impulsion $\langle P\rangle_{t}=\langle\psi| P|\psi\rangle^{3}$ :

$$
\langle X\rangle_{t}=\frac{1}{\sqrt{2}} \int_{-\infty}^{+\infty} x|\psi|^{2} d x,, \quad\langle P\rangle_{t}=-\frac{i}{\sqrt{2}} \int_{-\infty}^{+\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x
$$

Annihilation a and creation operators $a^{\dagger}$ :

$$
a=X+i P=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right), \quad a^{\dagger}=X-i P=\frac{1}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)
$$

Commutation relationships:

$$
[X, P]=\frac{i}{2}, \quad\left[a, a^{\dagger}\right]=1, \quad H=\omega\left(P^{2}+X^{2}\right)=\omega\left(a^{\dagger} a+\frac{1}{2}\right)
$$

Set $X_{\lambda}=\frac{1}{2}\left(e^{-i \lambda} a+e^{i \lambda} a^{\dagger}\right)$ for any angle $\lambda$ :

$$
\left[X_{\lambda}, X_{\lambda+\frac{\pi}{2}}\right]=\frac{i}{2}
$$

${ }^{3}$ We assume everywhere that for each $t, x \mapsto \psi(x, t)$ is of the Schwartz class (fast decay at infinity + smooth).
$\left[a, a^{\dagger}\right]=1$ and $\operatorname{Ker}(a)$ of dimension one imply that the spectrum of $N=a^{\dagger} a$ is non-degenerate and is $\mathbb{N}$. More we have the useful commutations for any entire function $f$ :

$$
a f(N)=f(N+I) a, \quad f(N) a^{\dagger}=a^{\dagger} f(N+I)
$$

Fock state with $n$ photon(s): the eigen-state of $N$ associated to the eigen-value $n$ :

$$
N|n\rangle=n|n\rangle, \quad a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle .
$$

The ground state $|0\rangle$ ( 0 photon state or vacuum state) satisfies $a|0\rangle=0$ and corresponds to the Gaussian function:

$$
|0\rangle \sim \psi_{0}(x)=\frac{1}{\pi^{1 / 4}} \exp \left(-x^{2} / 2\right)
$$

The operator $a$ (resp. $a^{\dagger}$ ) is the annihilation (resp. creation) operator since it transfers $|n\rangle$ to $|n-1\rangle$ (resp. $|n+1\rangle$ ) and thus decreases (resp. increases) the quantum number $n$ by one unit.

Quantization of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x-\omega \sqrt{2} u$

$$
H=\omega\left(a^{\dagger} a+\frac{1}{2}\right)+u\left(a+a^{\dagger}\right)
$$

The associated controlled PDE

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\left(\frac{\omega}{2} x^{2}+\sqrt{2} u x\right) \psi(x, t)
$$

Glauber displacement operator $D_{\alpha}$ (unitary) with $\alpha \in \mathbb{C}$ :

$$
D_{\alpha}=e^{\alpha \mathrm{a}^{\dagger}-\alpha^{*} a}=e^{2 i \Im \alpha X-2 \Re \alpha P}
$$

From Baker-Campbell Hausdorf formula valid for any operators $A$ and $B$,

$$
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots
$$

we get the Glauber formula when $[A,[A, B]]=[B,[A, B]]=0$ :

$$
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]}
$$

(show that $C_{t}=e^{t(A+B)}-e^{t A} e^{t B} e^{-\frac{t^{2}}{2}[A, B]}$ satisfies $\frac{d}{d t} C=(A+B) C$ )

With $A=\alpha \mathbf{a}^{\dagger}$ and $B=-\alpha^{*} a$, Glauber formula gives:

$$
\begin{aligned}
& D_{\alpha}=e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha a^{\dagger}} e^{-\alpha^{*} a}=e^{+\frac{|\alpha|^{2}}{2}} e^{-\alpha^{*} a} e^{\alpha a^{\dagger}} \\
& D_{-\alpha} a D_{\alpha}=a+\alpha \quad \text { and } \quad D_{-\alpha} a^{\dagger} D_{\alpha}=a^{\dagger}+\alpha^{*}
\end{aligned}
$$

With $A=2 i \Im \alpha X \sim i \sqrt{2} \Im \alpha x$ and $B=-2 \Re \beta P \sim-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}$,
Glauber formula gives ${ }^{4}$ :

$$
\begin{aligned}
& D_{\alpha}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} e^{-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}} \\
& \left(D_{\alpha}|\psi\rangle\right)_{x, t}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} \psi(x-\sqrt{2} \Re \alpha, t)
\end{aligned}
$$

## Exercice

For any $\alpha, \beta, \epsilon \in \mathbb{C}$, prove that

$$
\begin{aligned}
& D_{\alpha+\beta}=e^{\frac{\alpha^{*} \beta-\alpha \beta^{*}}{2}} D_{\alpha} D_{\beta} \\
& D_{\alpha+\epsilon} D_{-\alpha}=\left(1+\frac{\alpha \epsilon^{*}-\alpha^{*} \epsilon}{2}\right) \mathbf{1}+\epsilon \boldsymbol{a}^{\dagger}-\epsilon^{*} a+O\left(|\epsilon|^{2}\right) \\
& \left(\frac{d}{d t} D_{\alpha}\right) D_{-\alpha}=\left(\frac{\alpha \frac{d}{d t} \alpha^{*}-\alpha^{*} \frac{d}{d t} \alpha}{2}\right) \mathbf{1}+\left(\frac{d}{d t} \alpha\right) a^{\dagger}-\left(\frac{d}{d t} \alpha^{*}\right) a .
\end{aligned}
$$

Take $|\psi\rangle$ solution of the controlled Schrödinger equation
$i \frac{d}{d t}|\psi\rangle=\left(\omega\left(a^{\dagger} a+\frac{1}{2}\right)+u\left(a+a^{\dagger}\right)\right)|\psi\rangle$. Set $\langle a\rangle=\langle\psi \mid a \psi\rangle$. Then

$$
\frac{d}{d t}\langle a\rangle=-i \omega\langle a\rangle-i u
$$

From $a=X+i P$, we have $\langle a\rangle=\langle X\rangle+i\langle P\rangle$ where
$\langle X\rangle=\langle\psi| X|\psi\rangle \in \mathbb{R}$ and $\langle P\rangle=\langle\psi| P|\psi\rangle \in \mathbb{R}$. Consequently:

$$
\frac{d}{d t}\langle X\rangle=\omega\langle P\rangle, \quad \frac{d}{d t}\langle P\rangle=-\omega\langle X\rangle-u
$$

Consider the change of frame $|\psi\rangle=e^{-i \theta_{t}} D_{\langle a\rangle_{t}}|\chi\rangle$ with

$$
\theta_{t}=\int_{0}^{t}\left(|\langle a\rangle|^{2}+u \Re(\langle a\rangle)\right), \quad D_{\langle a\rangle_{t}}=e^{\langle a\rangle_{t} a^{\dagger}-\langle a\rangle_{t}^{*} a},
$$

Then $|\chi\rangle$ obeys to autonomous Schrödinger equation

$$
i \frac{d}{d t}|\chi\rangle=\omega a^{\dagger} a|\chi\rangle
$$

The dynamics of $|\psi\rangle$ can be decomposed into two parts:

- a controllable part of dimension two for $\langle a\rangle$
$■$ an uncontrollable part of infinite dimension for $\| \chi\rangle$.


## Coherent states

$$
|\alpha\rangle=D_{\alpha}|0\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{+\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \quad \alpha \in \mathbb{C}
$$

are the states reachable from vacuum set. They are also the eigen-state of $\boldsymbol{a}: \mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle$.
A widely known result in quantum optics ${ }^{5}$ : classical currents and sources (generalizing the role played by $u$ ) only generate classical light (quasi-classical states of the quantized field generalizing the coherent state introduced here)
We just propose here a control theoretic interpretation in terms of reachable set from vacuum ${ }^{6}$

[^0]

The composite system lives on the Hilbert space
$\mathbb{C}^{2} \otimes L^{2}(\mathbb{R} ; \mathbb{C}) \sim \mathbb{C}^{2} \otimes I^{2}(\mathbb{C})$ with the Jaynes-Cummings Hamiltonian

$$
H_{J C}=\frac{\omega_{e g}}{2} \sigma_{z}+\omega_{c}\left(a^{\dagger} a+\frac{1}{2}\right)+i \frac{\Omega(t)}{2} \sigma_{x}\left(a^{\dagger}-a\right),
$$

with $\omega_{c} / 2 \pi \approx \omega_{e g} / 2 \pi$ around 50 GHz .
Gaussian radial profile of the cavity quantized mode (for $t=0$ atom at cavity center):

$$
\Omega(t)=\Omega_{0} \exp \left(-\left(\frac{v t}{w}\right)^{2}\right)
$$

where $v$ is the atom velocity ( $250 \mathrm{~m} / \mathrm{s}$ ), $w$ is the width ( 6 mm ), $\Omega_{0} / 2 \pi$ around 50 kHz . Thus we have also $\Omega(t) \ll \omega_{c}, \omega_{e g}$.

We consider the change of frame:
$|\psi\rangle=e^{-i \omega_{c} t\left(a^{\dagger} a+\frac{1}{2}\right)} e^{-i \omega_{c} t \sigma_{z}}|\phi\rangle$.
The system becomes $i \frac{d}{d t}|\phi\rangle=H_{\text {int }}|\phi\rangle$ with
$H_{\text {int }}=\frac{\Delta}{2} \sigma_{z}+i \frac{\Omega(t)}{2}\left(e^{-i \omega_{c} t}|g\rangle\langle e|+e^{i \omega_{c} t}|e\rangle\langle g|\right)\left(e^{i \omega_{c} t} a^{\dagger}-e^{-i \omega_{c} t} a\right)$,
where $\Delta=\omega_{e g}-\omega_{c}$ much smaller than $\omega_{c}(\Delta / 2 \pi$ around 250 kHz , same order as $\Omega(t)$ )
The secular terms of $H_{\text {itt }}$ are given by (RWA, first order approximation):

$$
H_{\text {wa }}=\frac{\Delta}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+i \frac{\Omega(t)}{2}\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right) .
$$

Since $\Omega(t)=\Omega_{0} \exp \left(-\left(\frac{v t}{w}\right)^{2}\right)$ we have, with $\Delta>0$ of the same order of $\Omega_{0}$, for all $t,\left|\frac{d}{d t} \Omega(t)\right| \ll \Delta \Omega(t)$ : adiabatic coupling between atom/cavity, called also dispersive interaction.

The quantum state $|\phi\rangle$ satisfying
$\frac{d}{d t}|\phi\rangle=-i\left(\frac{\Delta}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+i \frac{\Omega(t)}{2}\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)\right)|\phi\rangle$
is described by two elements of $L^{2}(\mathbb{R}, \mathbb{C}), \phi_{g}$ and $\phi_{e}$,

$$
|\phi\rangle=\left(\phi_{g}(x, t), \phi_{e}(x, t)\right) \quad \text { with } \quad\left\|\phi_{g}\right\|_{L^{2}}^{2}+\left\|\phi_{e}\right\|_{L^{2}}^{2}=1
$$

and the time evolution is given by the coupled Partial Differential Equations (PDE's)

$$
\begin{aligned}
\frac{\partial \phi_{g}}{\partial t} & =i \frac{\Delta}{2} \phi_{g}+\frac{\Omega(t)}{2 \sqrt{2}}\left(x-\frac{\partial}{\partial x}\right) \phi_{e} \\
\frac{\partial \phi_{e}}{\partial t} & =-i \frac{\Delta}{2} \phi_{e}-\frac{\Omega(t)}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \phi_{g}
\end{aligned}
$$

since $a=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $a^{\dagger}=\frac{1}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)$.

The unitary operator $U$ solution of

$$
\frac{d}{d t} U_{t}=-i\left(\frac{\Delta}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+i \frac{\Omega(t)}{2}\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)\right) U_{t}
$$

starting from $U_{-T}=/$ with $v T / w \gg 1(\Omega(-T) \approx 0)$, satisfies in a good approximation

$$
U_{T}=|g\rangle\langle g| e^{i \phi(N)}+|e\rangle\langle e| e^{-i \phi(N+1)}
$$

with $\phi(n)$ being the analytic function (light-induced phase):

$$
\phi(n)=\frac{1}{2} \int_{-T}^{+T} \sqrt{\Delta^{2}+n \Omega^{2}(t)} d t
$$

Proof: for each $n$, use invariance of the space ( $|g, n+1\rangle,|e, n\rangle$ ) and the adiabatic propagator for the spin system with an adiabatic Hamiltonian of the form $\frac{\Delta_{r}}{2} \sigma_{z}+\frac{V(\epsilon t)}{2} \sigma_{y}$.

Let us consider the Jaynes-Cumming propagator $U_{C}$

$$
U_{C}=e^{-i \tau\left(\frac{\Delta(|e\rangle\langle e|-|g\rangle\langle g|)}{2}+i \frac{\Omega\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)}{2}\right)}
$$

where $\tau$ is an interaction time, $\Delta$ and $\Omega$ are constant.

- Show by recurrence on integer $k$ that

$$
\begin{aligned}
& \left(\Delta(|e\rangle\langle e|-|g\rangle\langle g|)+i \Omega\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)\right)^{2 k}= \\
& |e\rangle\langle e|\left(\Delta^{2}+(N+1) \Omega^{2}\right)^{k}+|g\rangle\langle g|\left(\Delta^{2}+N \Omega^{2}\right)^{k}
\end{aligned}
$$

and that

$$
\begin{aligned}
&\left(\Delta(|e\rangle\langle e|-|g\rangle\langle g|)+i \Omega\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)\right)^{2 k+1}= \\
&|e\rangle\langle e| \Delta\left(\Delta^{2}+(N+1) \Omega^{2}\right)^{k}-|g\rangle\langle g| \Delta\left(\Delta^{2}+N \Omega^{2}\right)^{k} \\
&+i \Omega\left(|g\rangle\langle e|\left(\Delta^{2}+N \Omega^{2}\right)^{k} a^{\dagger}-|e\rangle\langle g| a\left(\Delta^{2}+N \Omega^{2}\right)^{k}\right)
\end{aligned}
$$

- Deduce that

$$
\begin{aligned}
& U_{C}=|g\rangle\langle g|\left(\cos \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)+i \frac{\Delta \sin \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+N \Omega^{2}}}\right) \\
&+|e\rangle\langle e|\left(\cos \left(\frac{\tau \sqrt{\Delta^{2}+(N+1) \Omega^{2}}}{2}\right)-i \frac{\Delta \sin \left(\frac{\tau \sqrt{\Delta^{2}+(N+1) \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+(N+1) \Omega^{2}}}\right) \\
&+|g\rangle\langle e|\left(\frac{\Omega \sin \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+N \Omega^{2}}}\right) a^{\dagger}-|e\rangle\langle g| a\left(\frac{\Omega \sin \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+N \Omega^{2}}}\right)
\end{aligned}
$$

where $N=a^{\dagger} a$ the photon-number operator ( $a$ is the photon annihilator operator).

- In the resonant case, $\Delta=0$, prove that:

$$
\begin{aligned}
U_{C}=|g\rangle\langle g| \cos & \left(\frac{\Theta}{2} \sqrt{N}\right)+|e\rangle\langle e| \cos \left(\frac{\Theta}{2} \sqrt{N+1}\right) \\
& +|g\rangle\langle e|\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right) a^{\dagger}-|e\rangle\langle g| a\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right)
\end{aligned}
$$

and check that $U_{C}^{\dagger} U_{C}=I$.


[^0]:    ${ }^{5}$ See complement $B_{I I I}$, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics.Wiley, 1989.
    ${ }^{6}$ see also: MM-PR, IEEE Trans. Automatic Control, 2004 and MM-PR, CDC-ECC, 2005.

