Modeling and Control of the LKB Photon-Box: ${ }^{1}$ Spin Systems

Pierre Rouchon

pierre.rouchon@mines-paristech.fr
Würzburg, July 2011
${ }^{1}$ LKB: Laboratoire Kastler Brossel, ENS, Paris.
Several slides have been used during the IHP course (fall 2010) given with Mazyar Mirrahimi (INRIA) see:
http://cas.ensmp.fr/~rouchon/QuantumSyst/findex.html $\bar{\equiv}$

Outline

1 The 2-level system

2 RWA and averaging

3 Adiabatic control

4 Complements

- Multi-frequency averaging: second order
- STIRAP

■ Controllability of finite dimensional Schrödinger systems

2-level system (1/2 spin)

The simplest quantum system: a ground state $|g\rangle$ of energy ω_{g}; an excited state $|e\rangle$ of energy ω_{e}. The quantum state $|\psi\rangle \in \mathbb{C}^{2}$ is a linear superposition $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and obeys to the Schrödinger equation (ψ_{g} and ψ_{e} depend on t).
Schrödinger equation for the uncontrolled 2-level system ($\hbar=1$) :

$$
\imath \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\left(\omega_{e}|e\rangle\langle e|+\omega_{g}|g\rangle\langle g|\right)|\psi\rangle
$$

where H_{0} is the Hamiltonian, a Hermitian operator $H_{0}^{\dagger}=H_{0}$. Energy is defined up to a constant: H_{0} and $H_{0}+\varpi(t) \mathbf{1}(\varpi(t) \in \mathbb{R}$ arbitrary) are attached to the same physical system. If $|\psi\rangle$ satisfies $i \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle$ then $|\chi\rangle=e^{-i \vartheta(t)}|\psi\rangle$ with $\frac{d}{d t} \vartheta=\varpi$ obeys to $i \frac{d}{d t}|\chi\rangle=\left(H_{0}+\varpi I\right)|\chi\rangle$. Thus for any $\vartheta,|\psi\rangle$ and $e^{-i \vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time.

Take origin of energy such that ω_{g} (resp. ω_{e}) becomes $-\frac{\omega_{e}-\omega_{g}}{2}$ (resp. $\frac{\omega_{e}-\omega_{g}}{2}$) and set $\omega_{e g}=\omega_{e}-\omega_{g}$
The solution of $i \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\frac{\omega_{e g}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)|\psi\rangle$ is

$$
|\psi\rangle_{t}=\psi_{g 0} e^{\frac{i \omega_{e g} t}{2}}|g\rangle+\psi_{e 0} e^{\frac{-i \omega_{e g} t}{2}}|e\rangle .
$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the coherent evolution the controlled Hamiltonian
$H(t)=\frac{\omega_{e g}}{2} \sigma_{z}+\frac{u(t)}{2} \sigma_{x}=\frac{\omega_{e g}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+\frac{u(t)}{2}(|e\rangle\langle g|+|g\rangle\langle e|)$
The controlled Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\left(H_{0}+u H_{1}\right)|\psi\rangle$ reads:

$$
i \frac{d}{d t}\binom{\psi_{e}}{\psi_{g}}=\frac{\omega_{e g}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}+\frac{u(t)}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}
$$

The 3 Pauli Matrices ${ }^{2}$

$$
\sigma_{x}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{y}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{z}=|e\rangle\langle e|-|g\rangle\langle g|
$$

${ }^{2}$ They correspond, up to multiplication by i, to the 3 imaginary quaternions.
$\sigma_{x}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{y}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{z}=|e\rangle\langle e|-|g\rangle\langle g|$ $\sigma_{x}^{2}=1, \quad \sigma_{x} \sigma_{y}=i \sigma_{z}, \quad\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, \quad$ circular permutation \ldots

■ Since for any $\theta \in \mathbb{R}$, $e^{i \theta \sigma_{x}}=\cos \theta+i \sin \theta \sigma_{x}$ (idem for σ_{y} and σ_{z}), the solution of $i \frac{d}{d t}|\psi\rangle=\frac{\omega_{e g}}{2} \sigma_{z}|\psi\rangle$ is

$$
|\psi\rangle_{t}=e^{\frac{-i \omega_{e g} t}{2} \sigma_{z}}|\psi\rangle_{0}=\left(\cos \left(\frac{\omega_{e g} t}{2}\right) \mathbf{1}-i \sin \left(\frac{\omega_{e g} t}{2}\right) \sigma_{z}\right)|\psi\rangle_{0}
$$

■ For $\alpha, \beta=x, y, z, \alpha \neq \beta$ we have

$$
\sigma_{\alpha} e^{i \theta \sigma_{\beta}}=e^{-i \theta \sigma_{\beta}} \sigma_{\alpha}, \quad\left(e^{i \theta \sigma_{\alpha}}\right)^{-1}=\left(e^{i \theta \sigma_{\alpha}}\right)^{\dagger}=e^{-i \theta \sigma_{\alpha}}
$$

and also

$$
e^{-\frac{i \theta}{2} \sigma_{\alpha}} \sigma_{\beta} e^{\frac{i \theta}{2} \sigma_{\alpha}}=e^{-i \theta \sigma_{\alpha}} \sigma_{\beta}=\sigma_{\beta} e^{i \theta \sigma_{\alpha}}
$$

if $|\psi\rangle$ obeys $\frac{d}{d t}|\psi\rangle=-i H|\psi\rangle$, then projector $\rho=|\psi\rangle\langle\psi|$ obeys:

$$
\frac{d}{d t} \rho=-i[H, \rho] .
$$

For $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$:
$|\psi\rangle\langle\psi|=\left|\psi_{g}\right|^{2}|g\rangle\langle g|+\psi_{g} \psi_{e}^{*}|g\rangle\langle e|$

$$
+\psi_{g}^{*} \psi_{e}|e\rangle\langle g|+\left|\psi_{e}\right|^{2}|e\rangle\langle e| .
$$

Set $x=2 \Re\left(\psi_{g} \psi_{e}^{*}\right), y=2 \Im\left(\psi_{g} \psi_{e}^{*}\right)$
and $z=\left|\psi_{e}\right|^{2}-\left|\psi_{g}\right|^{2}$ we get

$$
\rho=\frac{1+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}}{2}
$$

The Bloch vector $\vec{M}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ evolves on the unit sphere of \mathbb{R}^{3} :
$i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{x}}{2} \sigma_{x}+\frac{\omega_{y}}{2} \sigma_{y}+\frac{\omega_{z}}{2} \sigma_{z}\right)|\psi\rangle \quad \sim \quad \frac{d}{d t} \vec{M}=\left(\omega_{x} \vec{\imath}+\omega_{y} \vec{\jmath}+\omega_{z} \vec{k}\right) \times \vec{M}$
Bloch vector \vec{M} with Euler angles (θ, ϕ) corresponds to

$$
|\psi\rangle=e^{i \varphi} \sin \left(\frac{\theta}{2}\right)|g\rangle+\cos \left(\frac{\theta}{2}\right)|e\rangle .
$$

Un-measured quantum system \rightarrow Bilinear Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=\left(H_{0}+u(t) H_{1}\right)|\psi\rangle
$$

$\square|\psi\rangle \in \mathcal{H}$ the system's wavefunction with $\||\psi\rangle \|_{\mathcal{H}}=1$;
\square the free Hamiltonian, H_{0}, is a Hermitian operator defined on \mathcal{H};

- the control Hamiltonian, H_{1}, is a Hermitian operator defined on \mathcal{H};
■ the control $u(t): \mathbb{R}^{+} \mapsto \mathbb{R}$ is a scalar control.
Here we consider the case of finite dimensional \mathcal{H} for mathematical proof.

We consider the controls of the form

$$
u(t)=\epsilon\left(\sum_{j=1}^{r} \mathbf{u}_{j} e^{i \omega_{j} t}+\mathbf{u}_{j}^{*} e^{-i \omega_{j} t}\right)
$$

$\square \epsilon>0$ is a small parameter;
$\square \epsilon \mathbf{u}_{j}$ is the constant complex amplitude associated to the pulsation $\omega_{j} \geq 0$;

- r stands for the number of independent pulsations $\left(\omega_{j} \neq \omega_{k}\right.$ for $j \neq k$).

We are interested in approximations, for ϵ tending to 0^{+}, of trajectories $t \mapsto\left|\psi_{\epsilon}\right\rangle_{t}$ on $t \in[0,1 / \epsilon]$ of

$$
\frac{d}{d t}\left|\psi_{\epsilon}\right\rangle=\left(A_{0}+\epsilon\left(\sum_{j=1}^{r} \mathbf{u}_{j} e^{i \omega_{j} t}+\mathbf{u}_{j}^{*} e^{-i \omega_{j} t}\right) A_{1}\right)\left|\psi_{\epsilon}\right\rangle
$$

where $A_{0}=-i H_{0}$ and $A_{1}=-i H_{1}$ are skew-Hermitian.

Rotating frame

Consider the following change of variables

$$
\left|\psi_{\epsilon}\right\rangle_{t}=e^{A_{0} t}\left|\phi_{\epsilon}\right\rangle_{t} .
$$

The resulting system is said to be in the "interaction frame"

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon B(t)\left|\phi_{\epsilon}\right\rangle
$$

where $B(t)$ is a skew-Hermitian operator whose time-dependence is almost periodic:

$$
B(t)=\sum_{j=1}^{r} \mathbf{u}_{j} e^{i \omega_{j} t} e^{-A_{0} t} A_{1} e^{A_{0} t}+\mathbf{u}_{j}^{*} e^{-i \omega_{j} t} e^{-A_{0} t} A_{1} e^{A_{0} t} .
$$

Main idea

We can write

$$
B(t)=\bar{B}+\frac{d}{d t} \widetilde{B}(t),
$$

where \bar{B} is a constant skew-Hermitian matrix and $\widetilde{B}(t)$ is a bounded almost periodic skew-Hermitian matrix.

Multi-frequency averaging: first order

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\bar{B}+\frac{d}{d t} \widetilde{B}(t)\right)\left|\phi_{\epsilon}\right\rangle
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{1 \mathrm{st}}\right\rangle=\epsilon \bar{B}\left|\phi_{\epsilon}^{1 \mathrm{st}}\right\rangle
$$

initialized at the same state $\left|\phi_{\epsilon}^{1 \text { st }}\right\rangle_{0}=\left|\phi_{\epsilon}\right\rangle_{0}$.
Theorem: first order approximation (Rotating Wave Approximation)
Consider the functions $\left|\phi_{\epsilon}\right\rangle$ and $\left|\phi_{\epsilon}^{1 \text { st }}\right\rangle$ initialized at the same state and following the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta$ [we have

$$
\max _{t \in\left[0, \frac{1}{\epsilon}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{1 s t}\right\rangle_{t} \| \leq M \epsilon
$$

Proof's idea

Almost periodic change of variables:

$$
\left|\chi_{\epsilon}\right\rangle=(1-\epsilon \widetilde{B}(t))\left|\phi_{\epsilon}\right\rangle
$$

well-defined for $\epsilon>0$ sufficiently small.
The dynamics can be written as

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \bar{B}+\epsilon^{2} F(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

where $F(\epsilon, t)$ is uniformly bounded in time.

We consider the Hamiltonian

$$
H=H_{0}+\sum_{k=1}^{m} u_{k} H_{k}, \quad u_{k}(t)=\sum_{j=1}^{r} \mathbf{u}_{k, j} e^{\omega_{j} t}+\mathbf{u}_{k, j}^{*} e^{-\omega_{j} t}
$$

The Hamiltonian in interaction frame

$$
H_{i n t}(t)=\sum_{k, j}\left(\mathbf{u}_{k, j} e^{\omega_{j} t}+\mathbf{u}_{k, j}^{*} e^{-\omega_{j} t}\right) e^{i H_{0} t} H_{k} e^{-i H_{0} t}
$$

We define the first order Hamiltonian

$$
H_{\mathrm{iwa}}^{\mathrm{stt}}=\overline{H_{\mathrm{int}}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} H_{\mathrm{int}}(t) d t,
$$

Remark

In the above analysis we have assumed the complex amplitudes $\mathbf{u}_{k, j}$ to be constant. However, the whole analysis holds for the case where each one $\mathbf{u}_{k, j}$'s is of a small magnitude, admits a finite number of discontinuities and, between two successive discontinuities, is a slowly time varying function that is continuously differentiable.

In $i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{e g}}{2} \sigma_{z}+\frac{u}{2} \sigma_{x}\right)|\psi\rangle$, take a resonant control $u=\mathbf{u} e^{i \omega_{e g} t}+\mathbf{u}^{*} e^{-i \omega_{e g} t}$ with \mathbf{u} slowly varying complex amplitude $\left|\frac{d}{d t} \mathbf{u}\right| \ll \omega_{e g}|\mathbf{u}|$. Set $H_{0}=\frac{\omega_{e g}}{2} \sigma_{z}$ and $\epsilon H_{1}=\frac{u}{2} \sigma_{x}$ and consider $|\psi\rangle=e^{-\frac{i \omega_{e g} t}{2} \sigma_{z}}|\phi\rangle$ to eliminate the drift H_{0} and to get the Hamiltonian in the interaction frame:

$$
\begin{gathered}
i \frac{d}{d t}|\phi\rangle=\frac{u}{2} e^{\frac{i \omega_{e g} t}{2} \sigma_{z}} \sigma_{x} e^{-\frac{i \omega_{e g} t}{2} \sigma_{z}}|\phi\rangle=H_{\text {int }}|\phi\rangle \\
\sigma^{+}=|e\rangle\langle g| \quad \sigma^{-}=|g\rangle\langle e|
\end{gathered}
$$

with $H_{\text {int }}=\frac{u}{2} e^{i \omega_{e g} t} \frac{\overbrace{\frac{\sigma_{x}+i \sigma_{y}}{}}^{2}}{2}+\frac{u}{2} e^{-i \omega_{e g} t} \frac{\overbrace{\sigma_{x}-i \sigma_{y}}^{2}}{2}$
The RWA consists in neglecting the oscillating terms at frequency $2 \omega_{e g}$ when $|\mathbf{u}| \ll \Omega$:

$$
H_{\text {int }}=\left(\frac{\mathbf{u} e^{2 i \omega_{e g} t}+\mathbf{u}^{*}}{2}\right) \sigma^{+}+\left(\frac{\mathbf{u}+\mathbf{u}^{*} e^{-2 i \omega_{e g} t}}{2}\right) \sigma^{-} .
$$

Thus

$$
\overline{H_{i n t}}=\frac{\mathbf{u}^{*} \sigma^{+}+\mathbf{u} \sigma^{-}}{2}
$$

$$
i \frac{d}{d t}|\phi\rangle=\frac{\left(\mathbf{u}^{*} \sigma^{+}+\mathbf{u} \sigma^{-}\right)}{2}|\phi\rangle=\frac{\left(\mathbf{u}^{*}|e\rangle\langle g|+\mathbf{u}|g\rangle\langle e|\right)}{2}|\phi\rangle
$$

We set $\mathbf{u}=\Omega_{r} e^{i \theta}$ with $\Omega_{r}>0$ and θ real.

$$
\frac{\mathbf{u}^{*} \sigma^{+}+\mathbf{u} \sigma^{-}}{2}=\frac{\Omega_{r}}{2}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)
$$

The system oscillates between $|e\rangle$ and $|g\rangle$ with the Rabi pulsation $\frac{\Omega_{r}}{2}$. Since $\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)^{2}=1$ and $e^{-\frac{i \Omega_{r} t}{2}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)}=\cos \left(\frac{\Omega_{r} t}{2}\right)-i \sin \left(\frac{\Omega_{r} t}{2}\right)\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)$,
the solution of $\frac{d}{d t}|\phi\rangle=\frac{-i \Omega_{r}}{2}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)|\phi\rangle$ reads
$|\phi\rangle_{t}=\cos \left(\frac{\Omega_{r} t}{2}\right)|g\rangle-i \sin \left(\frac{\Omega_{r} t}{2}\right) e^{-i \theta}|e\rangle, \quad$ when $\quad|\phi\rangle_{0}=|g\rangle$,
$|\phi\rangle_{t}=\cos \left(\frac{\Omega_{r} t}{2}\right)|e\rangle-i \sin \left(\frac{\Omega_{r} t}{2}\right) e^{i \theta}|g\rangle, \quad$ when $\quad|\phi\rangle_{0}=|e\rangle$,

We start always from $|\phi\rangle_{0}=|g\rangle$ we light on the resonant control with the constant amplitude $\mathbf{u}=-i \Omega_{r}$ during $[0, T]$ (pulse length T). Since

$$
|\phi\rangle_{T}=\cos \left(\frac{\Omega_{r} T}{2}\right)|g\rangle+\sin \left(\frac{\Omega_{r} T}{2}\right)|e\rangle,
$$

we see that
■ if $\Omega_{r} T=\pi$ (π-pulse) then $|\phi\rangle_{T}=|e\rangle$: stimulate absorption of one photon. If we measure the system energy (measurement operator $\frac{\omega_{e g}}{2}|e\rangle\langle e|-\frac{\omega_{e g}}{2}|g\rangle\langle g|$), then we will find deterministically $\left.\frac{\omega_{e g}}{2}\right)$.
■ if $\Omega_{r} T=\pi / 2\left(\pi / 2\right.$-pulse) when $|\phi\rangle_{T}=(|g\rangle+|e\rangle) / \sqrt{2}$, a coherent superposition of $|g\rangle$ and $|e\rangle$. If we measure the energy, the result is stochastic and the probability to get $\frac{\omega_{e g}}{2}$ is $\frac{1}{2}$ and to get $-\frac{\omega_{e g}}{2}$ is also $\frac{1}{2}$.

Take the first order approximation
(Σ) $\quad i \frac{d}{d t}|\phi\rangle=\frac{\left(\mathbf{u}^{*} \sigma^{+}+\mathbf{u} \sigma^{-}\right)}{2}|\phi\rangle=\frac{\left(\mathbf{u}^{*}|e\rangle\langle g|+\mathbf{u}|g\rangle\langle e|\right)}{2}|\phi\rangle$
with control $\mathbf{u} \in \mathbb{C}$.
1 Take constant control $\mathbf{u}(t)=\Omega_{r} e^{i \theta}$ for $t \in[0, T], T>0$. Show that $i \frac{d}{d t}|\phi\rangle=\frac{\Omega_{r}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)}{2}|\phi\rangle$.
2 Set $\Theta_{r}=\frac{\Omega_{r}}{2} T$. Show that the solution at T of the propagator $U_{t} \in S U(2), i \frac{d}{d t} U=\frac{\Omega_{r}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)}{2} U, U_{0}=\mathbf{1}$ is given by

$$
U_{T}=\cos \Theta_{r} 1-i \sin \Theta_{r}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right),
$$

3 Take a wave function $|\bar{\phi}\rangle$. Show that exist Ω_{r} and θ such that $U_{T}|g\rangle=e^{i \alpha}|\bar{\phi}\rangle$, where α is some global phase.
4 Prove that for any given two wave functions $\left|\phi_{a}\right\rangle$ and $\left|\phi_{b}\right\rangle$ exists a piece-wise constant control $[0,2 T] \ni t \mapsto \mathbf{u}(t) \in \mathbb{C}$ such that the solution of (Σ) with $|\phi\rangle_{0}=\left|\phi_{a}\right\rangle$ satisfies $|\phi\rangle_{T}=e^{i \beta}\left|\phi_{b}\right\rangle$ for some global phase β.

Time-adiabatic approximation without gap conditions ${ }^{3}$

Take $[0,1] \ni s \mapsto H(s)$ a C^{2} family of Hermitian matrices $n \times n$: set $s=\epsilon t \in[0,1]$ and ϵ a small positive parameter. Consider a solution $\left[0, \frac{1}{\epsilon}\right] \ni t \mapsto|\psi\rangle_{t}^{\epsilon}$ of

$$
i \frac{d}{d t}|\psi\rangle_{t}^{\epsilon}=H(\epsilon t)|\psi\rangle_{t}^{\epsilon} .
$$

Take $[0, s] \ni s \mapsto P(s)$ a family of orthogonal projectors such that for each $s \in[0,1], H(s) P(s)=\omega(s) P(s)$ where $\omega(s)$ is an eigenvalue of $H(s)$. Assume that $[0, s] \ni s \mapsto P(s)$ is C^{2} and that, for almost all $s \in[0,1], P(s)$ is the orthogonal projector on the eigen-space associated to the eigen-value $\omega(s)$. Then

$$
\left.\left.\lim _{\epsilon \rightarrow 0^{+}}\left(\sup _{t \in\left[0, \frac{1}{\epsilon}\right]}|\| P(\epsilon t)| \psi\right\rangle_{t}^{\epsilon}\left\|^{2}-\right\| P(0)|\psi\rangle_{0}^{\epsilon} \|^{2} \right\rvert\,\right)=0 .
$$

${ }^{3}$ Theorem 6.2, page 175 of Adiabatic Perturbation Theory in Quantum Dynamics, by S. Teufel, Lecture notes in Mathematics, Springer, 2003.

Passage to the interaction frame $|\psi\rangle=e^{-i \frac{\omega_{r} t+\theta(t)}{2} \sigma_{z}}|\phi\rangle$:
$i \frac{d}{d t}|\phi\rangle=\left(\frac{\omega_{e g}-\omega_{r}-\frac{d}{d t} \theta}{2} \sigma_{z}+\frac{v e^{2 i\left(\omega_{r} t+\theta\right)}+v}{2} \sigma_{+}+\frac{v e^{-2 i\left(\omega_{r} t+\theta\right)}+v}{2} \sigma_{-}\right)|\phi\rangle$.
Set $\Delta_{r}=\omega_{e g}-\omega_{r}$ and $w(t)=-\frac{d}{d t} \theta$, RWA yields following averaged Hamiltonian

$$
H_{\text {chirp }}=\frac{\Delta_{r}+w(t)}{2} \sigma_{z}+\frac{v(t)}{2} \sigma_{X}
$$

where (v, w) are two real control inputs.

Chirped control of a 2-level system (2)

In $H_{\text {chirp }}=\frac{\Delta_{r}+w}{2} \sigma_{z}+\frac{v}{2} \sigma_{x}$ set, for $s=\epsilon t$ varying in $[0, \pi], w=\operatorname{acos}(\epsilon t)$ and $v=b \sin ^{2}(\epsilon t)$. Spectral decomposition of $H_{\text {chirp }}$ for $\left.s \in\right] 0, \pi[$:

$$
\begin{array}{r}
\Omega_{-}=-\frac{\sqrt{\left(\Delta_{r}+w\right)^{2}+v^{2}}}{2} \text { with }|-\rangle=\frac{\cos \alpha|g\rangle-(1-\sin \alpha)|e\rangle}{\sqrt{2(1-\sin \alpha)}} \\
\Omega_{+}=\frac{\sqrt{\left(\Delta_{r}+w\right)^{2}+v^{2}}}{2} \text { with }|+\rangle=\frac{(1-\sin \alpha)|g\rangle+\cos \alpha|e\rangle}{\sqrt{2(1-\sin \alpha)}}
\end{array}
$$

where $\alpha \in] \frac{-\pi}{2}, \frac{\pi}{2}\left[\right.$ is defined by $\tan \alpha=\frac{\Delta_{r}+w}{v}$. With $a>\left|\Delta_{r}\right|$ and $b>0$

$$
\begin{aligned}
& \lim _{s \mapsto 0^{+}} \alpha=\frac{\pi}{2} \quad \text { implies } \quad \lim _{s \mapsto 0^{+}}|-\rangle_{s}=|g\rangle, \quad \lim _{s \mapsto 0^{+}}|+\rangle_{s}=|e\rangle \\
& \lim _{s \mapsto \pi^{-}} \alpha=-\frac{\pi}{2} \quad \text { implies } \lim _{s \mapsto \pi^{-}}|-\rangle_{s}=-|e\rangle, \quad \lim _{s \mapsto \pi^{-}}|+\rangle_{s}=|g\rangle .
\end{aligned}
$$

Adiabatic approximation: the solution of $i \frac{d}{d t}|\phi\rangle=H_{\text {chirp }}(\epsilon t)|\phi\rangle$ starting from $|\phi\rangle_{0}=|g\rangle$ reads

$$
|\phi\rangle_{t} \approx e^{i \vartheta_{t}}|-\rangle_{s=\epsilon t}, \quad t \in\left[0, \frac{\pi}{\epsilon}\right], \text { with } \vartheta_{t} \text { time-varying global phase. }
$$

At $t=\frac{\pi}{\epsilon},|\psi\rangle$ coincides with $|e\rangle$ up to a global phase: robustness versus Δ_{r}, a and b (ensemble controllability).

■ The chirped dynamics $i \frac{d}{d t} \phi=\left(\frac{\Delta_{r}+w}{2} \sigma_{z}+\frac{v}{2} \sigma_{X}\right)|\phi\rangle$ with $w=a \cos (\epsilon t)$ and $v=b \sin ^{2}(\epsilon t)$ reads

$$
\frac{d}{d t} \vec{M}=\underbrace{\left(b \sin ^{2}(\epsilon t) \vec{\imath}+\left(\Delta_{r}+a \cos (\epsilon t)\right) \vec{k}\right)}_{=\vec{\Omega}_{t}} \times \vec{M}
$$

■ The initial condition $|\phi\rangle_{0}=|g\rangle$ means that $\vec{M}_{0}=-\vec{k}$ and $\vec{\Omega}_{0}=\left(\Delta_{r}+a\right) \vec{k}$ with $\Delta_{r}+a>0$.
■ Since $\vec{\Omega}$ never vanishes for $t \in\left[0, \frac{\pi}{\epsilon}\right]$, adiabatic theorem implies that \vec{M} follows the direction of $-\vec{\Omega}$, i.e. that $\vec{M} \approx-\frac{\vec{\Omega}}{\|\vec{\Omega}\|}$ (see matlab simulations AdiabaticBloch.m).
\square At $t=\frac{\pi}{\epsilon}, \vec{\Omega}=\left(\Delta_{r}-a\right) \vec{k}$ with $\Delta_{r}-a<0: \overrightarrow{M_{\frac{\pi}{\epsilon}}}=\vec{k}$ and thus $|\phi\rangle_{\frac{\pi}{\epsilon}}=e^{\vartheta}|e\rangle$.

Adiabatic propagator $U(t)$ for $H(\epsilon t)=\frac{\Delta_{r}}{2} \sigma_{z}+\frac{V(\epsilon t)}{2} \sigma_{y}(1)$

Consider the propagator $U \in S U(2)$, solution of

$$
\frac{d}{d t} U(t)=-i H(\epsilon t) U(t)=-i\left(\frac{\Delta_{r}}{2} \sigma_{z}+\frac{v(\epsilon t)}{2} \sigma_{y}\right) U(t), \quad U(0)=1
$$

assuming $0<\epsilon \ll 1, \Delta_{r}>0$ and $v=f(s)(s=\epsilon t)$ where $[0,1] \ni s \mapsto f(s)$ is smooth and $f(0)=f(1)=0$.
We have

$$
U(1 / \epsilon)=e^{-i \bar{\eta} \sigma_{z}}+O(\epsilon)
$$

where $\bar{\vartheta}$ is given by the integral:

$$
\bar{\vartheta}=\frac{1}{2} \int_{0}^{1 / \epsilon} \sqrt{\Delta_{r}^{2}+f^{2}(\epsilon t)} d t .
$$

The phase $\bar{\vartheta}$ is only due to the time integral of the $H(\epsilon t)$ eigenvalues (dynamic phase only, no Berry phase for such adiabatic evolution).

Adiabatic propagator $U(t)$ for $H(\epsilon t)=\frac{\Delta_{r}}{2} \sigma_{z}+\frac{V(\epsilon t)}{2} \sigma_{y}(2)$

The frame $\left(|-\rangle_{s},|+\rangle_{s}\right)$ that diagonalize $H(s)(s=\epsilon t)$ $H(s)| \pm\rangle_{s}= \pm \frac{\sqrt{\Delta_{r}^{2}+f^{2}(s)}}{2}| \pm\rangle_{s}$, reads
where $\mu_{s}=\sqrt{1+\left(f(s) / \Delta_{r}\right)^{2}}$ gives

$$
\cos \xi_{s}=\sqrt{\left(\mu_{s}+1\right) /\left(2 \mu_{s}\right)}, \quad \sin \xi_{s}=\sqrt{\left(\mu_{s}-1\right) /\left(2 \mu_{s}\right)}
$$

The passage from the $(|g\rangle,|e\rangle)$ to $\left(|-\rangle_{s},|+\rangle_{s}\right)$ corresponds, in the Bloch sphere representation, to a rotation around the X-axis of angle $-2 \xi_{s}$:

Thus we have

$$
\frac{\Delta_{r}}{2} \sigma_{z}+\frac{f(s)}{2} \sigma_{y}=\frac{\sqrt{\Delta_{r}^{2}+f^{2}(s)}}{2} e^{-i \xi_{s} \sigma_{x}} \sigma_{z} e^{i \xi_{s} \sigma_{x}}
$$

Adiabatic propagator $U(t)$ for $H(\epsilon t)=\frac{\Delta_{r}}{2} \sigma_{z}+\frac{V(\epsilon t)}{2} \sigma_{y}(3)$

Consider $\frac{d}{d t}|\psi\rangle=-i H(\epsilon t)|\psi\rangle$, set

$$
\vartheta(t)=\frac{1}{2} \int_{0}^{t} \sqrt{\Delta_{r}^{2}+f^{2}(\epsilon \tau)} d \tau
$$

set $|\psi\rangle=e^{i \xi_{\epsilon \epsilon} \sigma_{x}} e^{-i \vartheta(t) \sigma_{z}}|\phi\rangle$. Then, with $\xi_{s}^{\prime}=\frac{d}{d s} \xi_{s}$,

$$
\frac{d}{d t}|\phi\rangle=-i \epsilon \xi_{\epsilon t}^{\prime} e^{i \vartheta(t) \sigma_{z}} \sigma_{X} e^{-i \vartheta(t) \sigma_{z}}|\phi\rangle=-i \epsilon \xi_{\epsilon t}^{\prime} \sigma_{X} e^{-2 i \vartheta(t) \sigma_{z}}|\phi\rangle
$$

In average $\xi_{\epsilon t}^{\prime} \sigma_{x} e^{-2 i \vartheta(t) \sigma_{z}}$ gives zero up to first order terms in ϵ (use $\int_{0}^{t} e^{-2 i \vartheta(\tau) \sigma_{z}} d \tau=A(t)$ with $A(t)$ bounded on $[0,1 / \epsilon]$). Then $|\phi\rangle_{t} \approx|\phi\rangle_{0}=e^{-i \xi_{0} \sigma_{x}}|\psi\rangle_{0}$ is almost constant and thus

$$
|\psi\rangle_{t}=e^{i \xi_{\epsilon t} \sigma_{x}} e^{-i \vartheta(t) \sigma_{z}} e^{-i \xi_{0} \sigma_{x}}|\psi\rangle_{0}+O(\epsilon)
$$

The propagator reads then for $t \in[0,1 / \epsilon]$,

$$
U(t)=e^{i \xi_{\epsilon} \sigma_{x}} e^{-i \vartheta(t) \sigma_{z}}+O(\epsilon)
$$

since $\xi_{0}=0$ results from $f(0)=0$.

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\bar{B}+\frac{d}{d t} \widetilde{B}(t)\right)\left|\phi_{\epsilon}\right\rangle,
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle=\left(\epsilon \bar{B}-\epsilon^{2} \bar{D}\right)\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle
$$

initialized at the same state $\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{0}=\left|\phi_{\epsilon}\right\rangle_{0}$.

Theorem: second order approximation

Consider the functions $\left|\phi_{\epsilon}\right\rangle$ and $\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle$ initialized at the same state and following the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta$ [we have

$$
\max _{t \in\left[0, \frac{1}{\epsilon^{2}}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{t} \| \leq M \epsilon
$$

Proof's idea

Another almost periodic change of variables

$$
\left|\xi_{\epsilon}\right\rangle=\left(1-\epsilon^{2}([\bar{B}, \widetilde{C}(t)]-\widetilde{D}(t))\right)\left|\chi_{\epsilon}\right\rangle .
$$

The dynamics can be written as

$$
\frac{d}{d t}\left|\xi_{\epsilon}\right\rangle=\left(\epsilon \bar{B}-\epsilon^{2} \bar{D}+\epsilon^{3} G(\epsilon, t)\right)\left|\xi_{\epsilon}\right\rangle
$$

where G is almost periodic and therefore uniformly bounded in time.

We consider the Hamiltonian

$$
H=H_{0}+\sum_{k=1}^{m} u_{k} H_{k}, \quad u_{k}(t)=\sum_{j=1}^{r} \mathbf{u}_{k, j} e^{\omega_{j} t}+\mathbf{u}_{k, j}^{*} e^{-\omega_{j} t}
$$

The Hamiltonian in interaction frame

$$
H_{\text {int }}(t)=\sum_{k, j}\left(\mathbf{u}_{k, j} e^{\omega_{j} t}+\mathbf{u}_{k, j}^{*} e^{-\omega_{j} t}\right) e^{i H_{0} t} H_{k} e^{-i H_{0} t}
$$

We define the first order Hamiltonian

$$
H_{\mathrm{rwa}}^{1 \mathrm{st}}=\overline{H_{\mathrm{int}}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} H_{\mathrm{int}}(t) d t
$$

and the second order Hamiltonian

$$
H_{\text {rwa }}^{2 \text { nd }}=H_{\text {rwa }}^{1 \text { st }}-i \overline{\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\left(\int_{t}\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\right)}
$$

Application to a 2-level system

In $i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{e g}}{2} \sigma_{z}+\frac{u}{2} \sigma_{x}\right)|\psi\rangle$, take a resonant control $u=\mathbf{u} e^{i \omega_{e g} t}+\mathbf{u}^{*} e^{-i \omega_{e g} t}$ with \mathbf{u} slowly varying complex amplitude $\left|\frac{d}{d t} \mathbf{u}\right| \ll \omega_{e g}|\mathbf{u}|$. Set $H_{0}=\frac{\omega_{e g}}{2} \sigma_{z}$ and $\epsilon H_{1}=\frac{u}{2} \sigma_{x}$ and consider $|\psi\rangle=e^{-\frac{i \omega_{e g} t}{2} \sigma_{z}}|\phi\rangle$ to eliminate the drift H_{0} and to get the Hamiltonian in the interaction frame:

$$
\begin{gathered}
i \frac{d}{d t}|\phi\rangle=\frac{u}{2} e^{\frac{i \omega_{e g} t}{2} \sigma_{z}} \sigma_{x} e^{-\frac{i \omega_{e g} t}{2} \sigma_{z}}|\phi\rangle=H_{\text {int }}|\phi\rangle \\
\sigma^{+}=|e\rangle\langle g| \quad \sigma^{-}=|g\rangle\langle e|
\end{gathered}
$$

with $H_{\text {int }}=\frac{u}{2} e^{i \omega_{\text {eg }} t} \overbrace{\frac{\sigma_{x}+i \sigma_{y}}{2}}^{2}+\frac{u}{2} e^{-i \omega_{e g} t} \frac{\sigma_{x}-i \sigma_{y}}{2}$
The RWA consists in neglecting the oscillating terms at frequency $2 \omega_{e g}$ when $|\mathbf{u}| \ll \Omega$:

$$
H_{\text {int }}=\left(\frac{\mathbf{u} e^{2 i \omega_{e g} t}+\mathbf{u}^{*}}{2}\right) \sigma^{+}+\left(\frac{\mathbf{u}+\mathbf{u}^{*} e^{-2 i \omega_{e g} t}}{2}\right) \sigma^{-}
$$

Thus

$$
\overline{H_{i n t}}=\frac{\mathbf{u}^{*} \sigma^{+}+\mathbf{u} \sigma^{-}}{2}
$$

Second order approximation and Bloch-Siegert shift

The decomposition of $H_{\text {int }}$,

$$
H_{\text {int }}=\underbrace{\frac{\mathbf{u}^{*}}{2} \sigma_{+}+\frac{\mathbf{u}}{2} \sigma_{-}}_{\overline{H_{\text {int }}}}+\underbrace{\frac{\mathbf{u} e^{2 i \omega_{e g} t}}{2} \sigma_{+}+\frac{\mathbf{u}^{*} e^{-2 i \omega_{e g} t}}{2} \sigma_{-}}_{H_{\text {int }}-\overline{H_{\text {int }}}},
$$

provides the first order approximation (RWA)
$H_{\text {rwa }}^{1 \text { st }}=\overline{H_{\text {int }}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} H_{\text {int }}(t) d t$, and also the second order approximation $H_{\text {rwa }}^{2 \text { nd }}=H_{\text {rwa }}^{\text {st }}-i\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\left(\int_{t}\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\right)$. Since
$\int_{t} H_{\text {int }}-\overline{H_{\text {int }}}=\frac{\mathbf{u} e^{2 i \omega_{e g} t}}{4 i \omega_{e g}} \sigma_{+}-\frac{\mathbf{u}^{*} e^{-2 i \omega_{e g} t}}{4 i \omega_{e g}} \sigma_{-}$, we have

$$
\overline{\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\left(\int_{t}\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\right)}=-\frac{|\mathbf{u}|^{2}}{8 i \omega_{e g}} \sigma_{z}
$$

(use $\sigma_{+}^{2}=\sigma_{-}^{2}=0$ and $\sigma_{z}=\sigma_{+} \sigma_{-}-\sigma_{-} \sigma_{+}$).
The second order approximation reads:

$$
H_{\mathrm{rwa}}^{2^{\text {nd }}}=H_{\mathrm{rwa}}^{1 \mathrm{st}}+\left(\frac{|\mathbf{u}|^{2}}{8 \omega_{e g}}\right) \sigma_{z}=\frac{\mathbf{u}^{*}}{2} \sigma_{+}+\frac{\mathbf{u}}{2} \sigma_{-}+\left(\frac{|\mathbf{u}|^{2}}{8 \omega_{e g}}\right) \sigma_{z} .
$$

The 2nd order correction $\frac{|\mathbf{u}|^{2}}{4 \omega_{r}} \sigma_{z}$ is called the Bloch-Siegert shift.

Put $i \frac{d}{d t}|\psi\rangle=H|\psi\rangle$ in the interaction frame:

$$
|\psi\rangle=e^{-i t\left(\omega_{g}|g\rangle\langle g|+\omega_{e}|e\rangle\langle e|+\omega_{f}|f\rangle\langle f|\right)}|\phi\rangle .
$$

Rotation Wave Approximation yields $i \frac{d}{d t}|\phi\rangle=H_{\text {wa }}|\phi\rangle$ with

$$
H_{\text {wwa }}=\frac{\Omega_{g f}}{2}(|g\rangle\langle f|+|f\rangle\langle g|)+\frac{\Omega_{e f}}{2}(|e\rangle\langle f|+|f\rangle\langle e|)
$$

with slowly varying Rabi pulsations $\Omega_{g f}=\mu_{g f} u_{g f}$ and
$\Omega_{e f}=\mu_{e f} u_{e f}$.

Spectral decomposition: as soon as $\Omega_{g f}^{2}+\Omega_{e f}^{2}>0$,
$\frac{\left.\left.\Omega_{g f}| | g\right\rangle\langle f|+|f\rangle\langle g|\right)}{2}+\frac{\Omega_{e f}(|e\rangle\langle f|+|f\rangle\langle e|)}{2}$ admits 3 distinct eigen-values,

$$
\Omega_{-}=-\frac{\sqrt{\Omega_{g t}^{2}+\Omega_{e f}^{2}}}{2}, \quad \Omega_{0}=0, \quad \Omega_{+}=\frac{\sqrt{\Omega_{g t}^{2}+\Omega_{e f}^{2}}}{2} .
$$

They correspond to the following 3 eigen-vectors,

For $\epsilon t=s \in\left[0, \frac{3 \pi}{2}\right]$ and $\bar{\Omega}_{g}, \bar{\Omega}_{e}>0$, the adiabatic control
$\Omega_{g f}(s)=\left\{\begin{array}{ll}\bar{\Omega}_{g} \cos ^{2} s, & \text { for } s \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right] ; \\ 0, & \text { elsewhere. }\end{array}, \quad \Omega_{e f}(s)= \begin{cases}\bar{\Omega}_{e} \sin ^{2} s, & \text { for } s \in[0, \pi] ; \\ 0, & \text { elsewhere. }\end{cases}\right.$
provides the passage from $|g\rangle$ at $t=0$ to $|e\rangle$ at $\epsilon t=\frac{3 \pi}{2}$. (see matlab simulations stirap.m).

Exercice

Design an adiabatic passage $s \mapsto\left(\Omega_{g f}(s), \Omega_{e f}(s)\right)$ from $|g\rangle$ to $\frac{-|g\rangle+|e\rangle}{\sqrt{2}}$, up to a global phase.

Take, e.g., $s=\epsilon t \in[0, \pi]$ and $\bar{\Omega}>0$, and set
$\Omega_{g f}(s)=\frac{\bar{\Omega}}{2} \sin s-\frac{\bar{\Omega}}{4} \sin 2 s$
$\Omega_{e f}(s)=\bar{\Omega} \sin s$

Results from $|0\rangle=\frac{-\Omega_{e f}}{\sqrt{\Omega_{g f}^{2}+\Omega_{e f}^{2}}}|g\rangle+\frac{\Omega_{g f}}{\sqrt{\Omega_{g f}^{2}+\Omega_{e f}^{2}}}|e\rangle$

Controllability of bilinear Schrödinger equations ${ }^{4}$

Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right)|\psi\rangle
$$

State controllability

For any $\left|\psi_{a}\right\rangle$ and $\left|\psi_{b}\right\rangle$ on the unit sphere of \mathcal{H}, there exist a time $T>0$, a global phase $\theta \in[0,2 \pi[$ and a piecewise continuous control $[0, T] \ni t \mapsto u(t)$ such that the solution with initial condition $|\psi\rangle_{0}=\left|\psi_{a}\right\rangle$ satisfies $|\psi\rangle_{T}=e^{i \theta}\left|\psi_{b}\right\rangle$.

[^0]
Propagator equation:

$$
i \frac{d}{d t} U=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right) U, \quad U(0)=\mathbf{1}
$$

We have $|\psi\rangle_{t}=U(t)|\psi\rangle_{0}$.

Operator controllability

For any unitary operator V on \mathcal{H}, there exist a time $T>0$, a global phase θ and a piecewise continuous control $[0, T] \ni t \mapsto u(t)$ such that the solution of propagator equation satisfies $U_{T}=e^{i \theta} V$.

Operator controllability implies state controllability

$$
\frac{d}{d t} U=\left(A_{0}+\sum_{k=1}^{m} u_{k} A_{k}\right) U
$$

with $A_{k}=H_{k} / i$ are skew-Hermitian. We define

$$
\begin{aligned}
\mathcal{L}_{0} & =\operatorname{span}\left\{A_{0}, A_{1}, \ldots, A_{m}\right\} \\
\mathcal{L}_{1} & =\operatorname{span}\left(\mathcal{L}_{0},\left[\mathcal{L}_{0}, \mathcal{L}_{0}\right]\right) \\
\mathcal{L}_{2} & =\operatorname{span}\left(\mathcal{L}_{1},\left[\mathcal{L}_{1}, \mathcal{L}_{1}\right]\right) \\
\vdots & \\
\mathcal{L}=\mathcal{L}_{\nu} & =\operatorname{span}\left(\mathcal{L}_{\nu-1},\left[\mathcal{L}_{\nu-1}, \mathcal{L}_{\nu-1}\right]\right)
\end{aligned}
$$

Lie Algebra Rank Condition

Operator controllable if, and only if, the Lie algebra generated by the $m+1$ skew-Hermitian matrices $\left\{-i H_{0},-i H_{1}, \ldots,-i H_{m}\right\}$ is either $s u(n)$ or $u(n)$.

Exercice

Show that $i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\text {eg }}}{2} \sigma_{z}+\frac{u}{2} \sigma_{x}\right)|\psi\rangle,|\psi\rangle \in \mathbb{C}^{2}$ is controllable.

We consider $H=H_{0}+u H_{1},(|j\rangle)_{j=1, \ldots, n}$ the eigenbasis of H_{0}. We assume $H_{0}|j\rangle=\omega_{j}|j\rangle$ where $\omega_{j} \in \mathbb{R}$, we consider a graph G :

$$
V=\{|1\rangle, \ldots,|n\rangle\}, \quad E=\left\{\left(\left|j_{1}\right\rangle,\left|j_{2}\right\rangle\right) \mid 1 \leq j_{1}<j_{2} \leq n,\left\langle j_{1}\right| H_{1}\left|j_{2}\right\rangle \neq 0\right\} .
$$

G amits a degenerate transition if there exist $\left(\left|j_{1}\right\rangle,\left|j_{2}\right\rangle\right) \in E$ and $\left(\left|/_{1}\right\rangle,\left|I_{2}\right\rangle\right) \in E$, admitting the same transition frequencies,

$$
\left|\omega_{j_{1}}-\omega_{j_{2}}\right|=\left|\omega_{l_{1}}-\omega_{l_{2}}\right|
$$

A sufficient controllability condition

Remove from E, all the edges with identical transition frequencies. Denote by $\bar{E} \subset E$ the reduced set of edges without degenerate transitions and by $\bar{G}=(V, \bar{E})$. If \bar{G} is connected, then the system is operator controllable.

[^0]: ${ }^{4}$ See, e.g., Introduction to Quantum Control and Dynamics by
 D. D'Alessandro. Chapman \& Hall/CRC, 2008.

