Modeling and Control of the LKB Photon-Box: ${ }^{1}$ Quantum Non-Demolition (QND) Measurement

Pierre Rouchon

pierre.rouchon@mines-paristech.fr
Würzburg, July 2011
${ }^{1}$ LKB: Laboratoire Kastler Brossel, ENS, Paris.
Several slides have been used during the IHP course (fall 2010) given with Mazyar Mirrahimi (INRIA) see:
http://cas.ensmp.fr/~rouchon/QuantumSyst \neq index.html \equiv

Outline

1 Quantum measurement
■ Projective measurement
■ Positive Operator Valued Measurement (POVM)
■ Quantum Non-Demolition (QND) measurement
■ Stochastic process attached to a POVM

2 A discrete-time open system: the LKB photon box

- General case
- Dispersive case

■ The open-loop Markov chain

For the system defined on Hilbert space \mathcal{H}, take
■ an observable \mathcal{O} (Hermitian operator) defined on \mathcal{H} :

$$
\mathcal{O}=\sum_{\nu} \lambda_{\nu} P_{\nu}
$$

where λ_{ν} 's are the eigenvalues of \mathcal{O} and P_{ν} is the projection operator over the associated eigenspace; \mathcal{O} can be degenerate and therefore the projection operator P_{ν} is not necessarily a rank-1 operator.

- a quantum state (a priori mixed) given by the density operator ρ on \mathcal{H}, Hermitian, positive and of trace 1; $\operatorname{Tr}\left(\rho^{2}\right) \leq 1$ with equality only when ρ is an orthogonal projector on some pure quantum state $|\psi\rangle$, i.e., $\rho=|\psi\rangle\langle\psi|$.

Projective measurement of the physical observable
$\mathcal{O}=\sum_{\nu} \lambda_{\nu} P_{\nu}$ for the quantum state ρ :
1 The probability of obtaining the value λ_{ν} is given by $p_{\nu}=\operatorname{Tr}\left(\rho P_{\nu}\right)$; note that $\sum_{\nu} p_{\nu}=1$ as $\sum_{\nu} P_{\nu}=\mathbf{1}_{\mathcal{H}}\left(\mathbf{1}_{\mathcal{H}}\right.$ represents the identity operator of \mathcal{H}).
2 After the measurement, the conditional (a posteriori) state ρ_{+}of the system, given the outcome λ_{ν}, is

$$
\rho_{+}=\frac{P_{\nu} \rho P_{\nu}}{p_{\nu}} \quad \text { (collapse of the wave packet) }
$$

3 When $\rho=|\psi\rangle\langle\psi|, p_{\nu}=\langle\psi| P_{\nu}|\psi\rangle, \rho_{+}=\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|$with $\left|\psi_{+}\right\rangle=\frac{P_{\nu} \psi}{\sqrt{p_{\nu}}}$.
\mathcal{O} non degenerate: von Neumann measurement.
Example: $\mathcal{H}=\mathbb{C}^{2},|\psi\rangle=(|g\rangle+|e\rangle) / \sqrt{2}, \mathcal{O}=\sigma_{z}$; measuring consists in turning on, for a small time, a laser resonant between $|g\rangle$ and a highly unstable third state $|f\rangle$; fluorescence means $\left|\psi_{+}\right\rangle=|g\rangle$, no fluorescence means $\left|\psi_{+}\right\rangle_{\text {渞 }}|e\rangle_{\text {. }}$

System S of interest (a quantized electromagnetic field) interacts with the meter M (a probe atom), and the experimenter measures projectively the meter M (the probe atom). Need for a Composite system: $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$ where \mathcal{H}_{S} and \mathcal{H}_{M} are the Hilbert space of S and M. Measurement process in three successive steps:
1 Initially the quantum state is separable

$$
\mathcal{H}_{S} \otimes \mathcal{H}_{M} \ni|\Psi\rangle=\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle
$$

with a well defined and known state $\left|\theta_{M}\right\rangle$ for M.
2 Then a Schrödinger evolution during a small time (unitary operator $U_{S, M}$) of the composite system from $\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle$ and producing $U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)$, entangled in general.
3 Finally a projective measurement of the meter M :
$\mathcal{O}_{M}=1_{S} \otimes\left(\sum_{\nu} \lambda_{\nu} P_{\nu}\right)$ the measured observable for the meter. Projection operator P_{ν} is a rank-1 projection in \mathcal{H}_{M} over the eigenstate $\left|\lambda_{\nu}\right\rangle \in \mathcal{H}_{M}: P_{\nu}=\left|\lambda_{\nu}\right\rangle\left\langle\lambda_{\nu}\right|$.

Define the measurement operators \mathcal{M}_{ν} via

$$
\forall\left|\psi_{S}\right\rangle \in \mathcal{H}_{S}, \quad U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)=\sum_{\nu}\left(\mathcal{M}_{\nu}\left|\psi_{S}\right\rangle\right) \otimes\left|\lambda_{\nu}\right\rangle
$$

Then $\sum_{\nu} \mathcal{M}_{\nu}^{\dagger} \mathcal{M}_{\nu}=\mathbf{1}_{S}$. The set $\left\{\mathcal{M}_{\nu}\right\}$ defines a Positive Operator Valued Measurement (POVM). In $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$, projective measurement of $\mathcal{O}_{M}=\mathbf{1}_{S} \otimes\left(\sum_{\nu} \lambda_{\nu} P_{\nu}\right)$ with quantum state $U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)$:
1 The probability of obtaining the value λ_{ν} is given by

$$
p_{\nu}=\left\langle\psi_{S}\right| \mathcal{M}_{\nu}^{\dagger} \mathcal{M}_{\nu}\left|\psi_{S}\right\rangle
$$

2 After the measurement, the conditional (a posteriori) state of the system, given the outcome λ_{ν}, is

$$
\left|\psi_{S}\right\rangle_{+}=\frac{\mathcal{M}_{\nu}\left|\psi_{S}\right\rangle}{\sqrt{p_{\nu}}}
$$

For mixed state ρ (instead of pure state $\left|\psi_{s}\right\rangle$):
$p_{\nu}=\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)$ and $\rho_{+}=\frac{\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)}$,
$U_{S, M}$ is the propagator generated by $H=H_{S}+H_{M}+H_{S M}$ where H_{S} (resp. $H_{M}, H_{S M}$) describes the system (resp. the meter, system-meter interaction). For time-invariant $H: U_{S, M}=e^{-i \tau H}$ where τ is the interaction time.
A necessary condition for meter measurement to encode some information on the system S itself: $\left[H, \mathcal{O}_{M}\right] \neq 0$. When $H_{M}=0$, this necessary condition reads $\left[H_{S M}, \mathcal{O}_{M}\right] \neq 0$.
Proof: otherwise $\mathcal{O}_{M} U_{S, M}=U_{S, M} \mathcal{O}_{M}$. With $\mathcal{O}_{M}=\sum_{\nu} \lambda_{\nu} \mathbf{1}_{S} \otimes\left|\lambda_{\nu}\right\rangle\left\langle\lambda_{\nu}\right|$ we have
$\forall \nu, \quad \mathcal{O}_{M} U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)=U_{S, M} \mathcal{O}_{M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)=\lambda_{\nu} U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)$.
Thus, necessarily $U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)=\left(U_{\nu}\left|\psi_{S}\right\rangle\right) \otimes\left|\lambda_{\nu}\right\rangle$ where U_{ν} is a unitary transformation on \mathcal{H}_{S} only. With $\left|\theta_{M}\right\rangle=\sum_{\nu} \theta_{\nu}\left|\lambda_{\nu}\right\rangle$, we get:

$$
\forall\left|\psi_{S}\right\rangle \in \mathcal{H}_{S} U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)=\sum_{\nu} \theta_{\nu}\left(U_{\nu}\left|\psi_{S}\right\rangle\right) \otimes\left|\lambda_{\nu}\right\rangle
$$

Then measurement operators \mathcal{M}_{ν} are equal to $\theta_{\nu} U_{\nu}$. The probability to get measurement outcome $\nu,\left\langle\psi_{S}\right| \mathcal{M}_{\nu}^{\dagger} \mathcal{M}_{\nu}\left|\psi_{S}\right\rangle=\left|\theta_{\nu}\right|^{2}$, is completely independent of systems state $\left|\psi_{s}\right\rangle$.

The POVM $\left(\mathcal{M}_{\nu}\right)$ (system S, interaction with the meter M via $H=H_{S}+H_{M}+H_{S M}$, von Neumann measurements on the meter via \mathcal{O}_{M}) is a QND measurement of the system observable \mathcal{O}_{S} if the eigenspaces of \mathcal{O}_{S} are invariant with respect to the measurement operators \mathcal{M}_{ν}. A sufficient but not necessary condition for this is $\left[H, \mathcal{O}_{S}\right]=0$.
Under this condition \mathcal{O}_{S} and $U_{S, M}$ commute. Assume \mathcal{O}_{S} non degenerate and take the eigenstate $|\mu\rangle$ to the eigenvalue $\mu \in \mathbb{R}$:

$$
\mathcal{O}_{S} U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=U_{S, M} \mathcal{O}_{S}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=\mu U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)
$$

Thus $U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=|\mu\rangle \otimes\left(U_{\mu}\left|\theta_{M}\right\rangle\right)$ with U_{μ} unitary on \mathcal{H}_{M}. We also have

$$
U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=\sum_{\nu} \mathcal{M}_{\nu}|\mu\rangle \otimes\left|\lambda_{\nu}\right\rangle .
$$

Thus necessarily,each $\mathcal{M}_{\nu}|\mu\rangle$ is colinear to $|\mu\rangle$.
When $\rho=|\mu\rangle\langle\mu|$, the conditional state remains unchanged $\rho_{+}=\mathbb{M}_{\nu}(\rho)$ whatever the meter measure outcome ν is. When the spectrum of \mathcal{O}_{S} is degenerate: for all $\nu, \mathcal{M}_{\nu} P_{\mu}=P_{\mu} \mathcal{M}_{\nu}$ where P_{μ} is the projector on the eigenspace associated to μ :

- To the POVM $\left(\mathcal{M}_{\nu}\right)$ on \mathcal{H}_{S} is attached a stochastic process of quantum state ρ

$$
\rho_{+}=\frac{\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)} \text { with probability } p_{\nu}=\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)
$$

■ For any observable A on \mathcal{H}_{S}, its conditional expectation value after the transition knowing the state ρ

$$
\mathbb{E}\left(\operatorname{Tr}\left(A \rho_{+}\right) \mid \rho\right)=\operatorname{Tr}(A \mathbb{K} \rho)
$$

where the linear map $\rho \mapsto \mathbb{K} \rho=\sum_{\nu} \mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}$ is a Kraus map.
■ If \bar{A} is a stationary point of the adjoint Kraus map \mathbb{K}^{*}, $\mathbb{K}^{*} \bar{A}=\sum_{\nu} \mathcal{M}_{\nu}^{\dagger} \bar{A} \mathcal{M}_{\nu}$, then $\operatorname{Tr}(\bar{A} \rho)$ is a martingale:

$$
\mathbb{E}\left(\operatorname{Tr}\left(\bar{A} \rho_{+}\right) \mid \rho\right)=\operatorname{Tr}(\bar{A} \mathbb{K} \rho)=\operatorname{Tr}\left(\rho \mathbb{K}^{*} \bar{A}\right)=\operatorname{Tr}(\rho \bar{A})
$$

■ QND measurement of $\mathcal{O}_{S}=\sum_{\mu} \sigma_{\mu} P_{\mu}: \mathbb{K}^{*} P_{\mu}=P_{\mu}$ and each $\bar{\rho}=P_{\mu} / \operatorname{Tr}\left(P_{\mu}\right)$ is a fixed point of the above stochastic $\operatorname{process}\left(\rho_{+} \equiv \bar{\rho}\right.$ if $\left.\rho=\bar{\rho}\right)$

The LKB Photon-Box: measuring photons with atoms

Atoms get out of box B one by one, undergo then a first Rabi pulse in Ramsey zone R_{1}, become entangled with electromagnetic field trapped in C, undergo a second Rabi pulse in Ramsey zone R_{2} and finally are measured in the detector D.

■ System S corresponds to a quantized mode in C :

$$
\mathcal{H}_{S}=\left\{\sum_{n=0}^{\infty} \psi_{n}|n\rangle \mid\left(\psi_{n}\right)_{n=0}^{\infty} \in I^{2}(\mathbb{C})\right\}
$$

where $|n\rangle$ represents the Fock state associated to exactly n photons inside the cavity
■ Meter M is associated to atoms: $\mathcal{H}_{M}=\mathbb{C}^{2}$, each atom admits two-level and is described by a wave function $c_{g}|g\rangle+c_{e}|e\rangle$ with $\left|c_{g}\right|^{2}+\left|c_{e}\right|^{2}=1$; atoms leaving B are all in state $|g\rangle$
$■$ When atom comes out B, the state $|\Psi\rangle_{B} \in \mathcal{H}_{M} \otimes \mathcal{H}_{S}$ of the composite system atom/field is separable

$$
|\Psi\rangle_{B}=|g\rangle \otimes|\psi\rangle
$$

■ When atom comes out B : $|\Psi\rangle_{B}=|g\rangle \otimes|\psi\rangle$.
■ When atom comes out the first Ramsey zone R_{1} the state remains separable but has changed to

$$
|\Psi\rangle_{R_{1}}=\left(U_{R_{1}} \otimes \mathbf{1}\right)|\Psi\rangle_{B}=\left(U_{R_{1}}|g\rangle\right) \otimes|\psi\rangle
$$

where the unitary transformation performed in R_{1} only affects the atom:

$$
U_{R_{1}}=e^{-i \frac{\theta_{1}}{2}\left(x_{1} \sigma_{x}+y_{1} \sigma_{y}+z_{1} \sigma_{z}\right)}=\cos \left(\frac{\theta_{1}}{2}\right)-i \sin \left(\frac{\theta_{1}}{2}\right)\left(x_{1} \sigma_{x}+y_{1} \sigma_{y}+z_{1} \sigma_{z}\right)
$$

corresponds, in the Bloch sphere representation, to a rotation of angle θ_{1} around $x_{1} \vec{\imath}+y_{1} \vec{\jmath}+z_{1} \vec{k}\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=1\right)$

■ When atom comes out the first Ramsey zone R_{1} :
$|\Psi\rangle_{R_{1}}=\left(U_{R_{1}}|g\rangle\right) \otimes|\psi\rangle$.
■ When atom comes out cavity C, the state does not remain separable: atom and field becomes entangled and the state is described by

$$
|\Psi\rangle_{C}=U_{C}|\Psi\rangle_{R_{1}}
$$

where the unitary transformation U_{C} on $\mathcal{H}_{M} \otimes \mathcal{H}_{S}$ is associated to a Jaynes-Cumming Hamiltonian:

$$
H_{C}=\frac{\Delta(t)}{2} \sigma_{z}+i \frac{\Omega(t)}{2}\left(\sigma_{-} a^{\dagger}-\sigma_{+} a\right)
$$

Parameters: $\Delta(t)=\omega_{e g}-\omega_{c}, \Omega(t)$ depend on time t.

■ When atom comes out cavity $C:|\Psi\rangle_{C}=U_{C}\left(\left(U_{R_{1}}|g\rangle\right) \otimes|\psi\rangle\right)$.
■ When atom comes out second Ramsey zone R_{2}, the state becomes

$$
|\Psi\rangle_{R_{2}}=\left(U_{R_{2}} \otimes \mathbf{1}\right)|\Psi\rangle_{C} \text { with } U_{R_{2}}=e^{-i \frac{\theta_{2}}{2}\left(x_{2} \sigma_{x}+y_{2} \sigma_{y}+z_{2} \sigma_{z}\right)}
$$

■ Just before the measurement in D, the state is given by

$$
|\Psi\rangle_{R_{2}}=U_{S M}(|g\rangle \otimes|\psi\rangle)=|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle
$$

where $U_{S M}=U_{R_{2}} U_{C} U_{R_{1}}$ is the total unitary transformation defining the linear measurement operators \mathcal{M}_{g} and \mathcal{M}_{e} on \mathcal{H}_{s}.

The Markov chain model (5)

Just before the measurement in D, the atom/field state is:

$$
|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle
$$

Denote by $s \in\{g, e\}$ the measurement outcome in detector D : with probability $p_{s}=\langle\psi| \mathcal{M}_{s}^{\dagger} \mathcal{M}_{s}|\psi\rangle$ we get s. Just after the measurement outcome s, the state becomes separable:

$$
|\Psi\rangle_{D}=\frac{1}{\sqrt{p_{s}}}|s\rangle \otimes\left(\mathcal{M}_{s}|\psi\rangle\right)=\frac{|s\rangle \otimes\left(\mathcal{M}_{s}|\psi\rangle\right)}{\sqrt{\langle\psi| \mathcal{M}_{s}^{\dagger} \mathcal{M}_{s}|\psi\rangle}} .
$$

Markov process (density matrix formulation)

$$
\rho_{+}= \begin{cases}\mathbb{M}_{g}(\rho)=\frac{\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{g} \rho \mathcal{M}_{q}^{\dagger}\right)}, & \text { with probability } p_{g}=\operatorname{Tr}\left(\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}\right) \\ \mathbb{M}_{e}(\rho)=\frac{\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}\right)}, & \text { with probability } p_{e}=\operatorname{Tr}\left(\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}\right) .\end{cases}
$$

Exercice

Show that, for any density matrix $\rho, \mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}+\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}$ does not depend on $\left(\theta_{2}, x_{2}, y_{2}, z_{2}\right)$, the parameters of the second Ramsey pulse in R_{2}.

We start from $|\Psi\rangle_{B}=|g\rangle|\psi\rangle$ and apply the transformations:
$U_{R_{1}}=e^{-i \frac{\pi}{4} \sigma_{y}}, U_{C}=|g\rangle\langle g| e^{i \phi(N)}+|e\rangle\langle e| e^{-i \phi(N+l)}, U_{R_{2}}=e^{-i \frac{\pi}{4}\left(-\sin \eta \sigma_{x}+\cos \eta \sigma_{y}\right)}$.
Therefore

$$
|\Psi\rangle_{R_{1}}=\frac{|g\rangle-|e\rangle}{\sqrt{2}} \otimes|\psi\rangle
$$

Then

$$
|\Psi\rangle_{C}=\frac{1}{\sqrt{2}}|g\rangle \otimes e^{i \phi(N)}|\psi\rangle-\frac{1}{\sqrt{2}}|e\rangle \otimes e^{-i \phi(N+1)}|\psi\rangle
$$

Finally

$$
\begin{aligned}
& 2|\Psi\rangle_{R_{2}}=\left(|g\rangle-e^{-i \eta}|e\rangle\right) \otimes e^{i \phi(N)}|\psi\rangle-\left(e^{i \eta}|g\rangle+|e\rangle\right) \otimes e^{-i \phi(N+1)}|\psi\rangle \\
& =|g\rangle \otimes\left(e^{i \phi(N)}-e^{i(\eta-\phi(N+1))}\right)|\psi\rangle-|e\rangle \otimes\left(e^{-i(\eta-\phi(N))}+e^{-i \phi(N+1)}\right)|\psi\rangle
\end{aligned}
$$

With linear approximation of ϕ (valid when $\left.\Delta \gg \Omega_{0}\right), \phi(N)=\vartheta_{0}+N \vartheta$, we get

Kraus operators

Taking φ_{0} an arbitrary phase and $\eta=2\left(\vartheta_{0}-\varphi_{0}\right)+\vartheta-\pi$, we find

$$
|\Psi\rangle_{R_{2}}=e^{i \theta_{g}}|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+e^{i \theta_{e}}|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle
$$

where θ_{g} and θ_{e} are constant phases and

$$
\mathcal{M}_{g}=\cos \left(\varphi_{0}+N \vartheta\right), \quad \mathcal{M}_{e}=\sin \left(\varphi_{0}+N \vartheta\right)
$$

Therefore the Markov chain model is given by

$$
\rho_{k+1}=\mathbb{M}_{s_{k}}\left(\rho_{k}\right)=\frac{\mathcal{M}_{s_{k}} \rho_{k} \mathcal{M}_{s_{k}}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{s_{k}} \rho_{k} \mathcal{M}_{s_{k}}^{\dagger}\right)},
$$

where $s_{k}=g$ or e with associated probabilities $p_{g, k}$ and $p_{e, k}$ given by

$$
p_{g, k}=\operatorname{Tr}\left(\mathcal{M}_{g} \rho_{k} \mathcal{M}_{g}^{\dagger}\right) \quad \text { and } \quad p_{e, k}=\operatorname{Tr}\left(\mathcal{M}_{e} \rho_{k} \mathcal{M}_{e}^{\dagger}\right)
$$

Here \mathcal{M}_{g} and \mathcal{M}_{e} are given by

$$
\mathcal{M}_{g}=\cos \left(\varphi_{0}+N \vartheta\right), \quad \mathcal{M}_{e}=\sin \left(\varphi_{0}+N \vartheta\right)
$$

This is a QND measurement for the observable N of photon number. Indeed, as the Kraus operators \mathcal{M}_{g} and \mathcal{M}_{e} commute with N, the mean value of N does not change through the measurement procedure:

$$
\mathbb{E}\left(\operatorname{Tr}\left(N \rho_{k+1}\right) \mid \rho_{k}\right)=\operatorname{Tr}\left(N \rho_{k}\right) .
$$

Also, the eigenstates of the observable N (the Fock states) are invariant with respect to the measurement procedure:

$$
\mathbb{M}_{g}(|n\rangle\langle n|)=|n\rangle\langle n| \quad \text { and } \quad \mathbb{M}_{e}(|n\rangle\langle n|)=|n\rangle\langle n| \quad \text { for all } n .
$$

