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The controlled non-linear Markov chain

Attached to My = cos(¢g + ¥N) and M, = sin(yg + ¥N) we
have the controlled Markov chain:

Pt = Dalppi1)s ey = Ms(ok) =

where
input: ak € R drives a unitary operation on the
cavity-field: Dy (p) := DapDl, Dy = exp(a(al — a)).
state: pg the density matrix of the cavity-field; it resumes
all the past.

output: s, € {g, e} is a stochastic variable, associated to
probabilities py x and pe x depending on py,

Pgk = Tr (MgpkM;) and pex =Tr (MePkML)a

and given by the detector outcome at time k.
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Truncation to n™@ photons

Restriction to finite dimensional subspace spanned by the
n™& 4 1 first modes {|0), [1),...,|n™&)}.

N = diag(0,1,..., n™&), alo)=0, aln)=+vnln—1).

The truncated creation operator a' is the Hermitian conjugate

of a. We still have N = a'a, but truncation does not preserve

the usual commutation [a, af] = 1 (this is only valid when

nmAX = o).

The Markov chain of state p (o' = p, p > 0 and Tr(p) = 1):

MgpM§ .

M = 9 9 rob. =Tr ( )

g(pk) Tr(Mgﬁ,«ML) , P pg,k Mgpk./\/lg

Me(pk) = m, prob. pex = Tr (MePkML>-

Pk+1 =

with Mgy and M. diagonal operators (dispersive atom/cavity
interaction)

Mg = cos(pg + NI), Mg = sin(pg + NI)
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Open-loop convergence of the truncated model 3

Consider the Markov process defined above with an initial density matrix po.
Assume that the parameters o, ¢ are chosen in order to have

Mg = cos(po + NJ), Me = sin(po + NV) invertible and such that the
spectrum of MjMg = MZ and M{Me = M? are not degenerate. Then

forany n € {0,...,n"*}, Tr(pk |n) (n|) = (n| pk |N) is @ martingale

pk converges with probability 1 to one of the "™ + 1 Fock state |n) (n|
with n € {0,..., n™}.

the probability to converge towards the Fock state |n) (n| is given by
Tr(po |n) (nl) = (Nl po |n).

Proof? : for stat.2 use VOP*™°P(p) = S X(Tr (|n) (n| p))? and ¥x,,, 6, € [0,1]

2
Do0u=1 = D 0ulx) = (Zm> +3 000,
p H ® v

2See H.Amini, M. Mirrahimi, PR: http://arxiv.org/abs/1103.1365.
3For the infinite dimensional Markov chain see R. Somaraju, M.
Mirrahimi, PR: http://arxiv.org/abs/1103.1724



Lyapunov control for stabilizing p = |n) (N

Choosing ax such that E (Tr (pxp)) is increasing.

We have
Mgpi M} . . t
o )’ with probability Tr (MgpkMg),
k+3 Mepi M} . - T
T with probability Tr (MepkMe),
So

E (T (5,17 1 o) =T (17) (7l Mot + T (17) (7l e
— T ([7) (Al o),

as
M 17) (3| My + ML |7) (B| Me = (cos® +sin®) [F) (| = |F) (A



Lyapunov control: continued

Furthermore
Pt = Dlak)p, 1 D(—a),

and BCH formula
DQPD(]; _ eaaT_a*ape—(aaT_a*a) =p+ [aa‘[ —a*a, p] + O(|a\2)
So
Tt (pesr) =T (5, 17) +axTe (1) 01, @'l 1 ) aiTe (1) A1l ) +O(fo

2

Therefore, taking
ax = €Tt (17) (7l oy @) = € (T (17) (7. &l y))
for sufficiently small e > 0, we have

Tr(pr1p) = Tr(pkp) = E(Tr (pk410) | pi) = Tr (pkp)

Tr (pkp) is a sub-martingale



Bad attractors

We do not have semi-global stabilization ...
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Tr (pkp) converges almost surely towards a random variable with
values 0 or 1



Modified feedback law 4

eTr (ﬁ[pk+%,a]) i1 (7o 1) =
= argmax Tr (,(_)]Da(pk+1)) it Tr { ppgy1 ) <m
lal<a 2 2

Fidelity between [] and the goal Fock state
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“See I. Dotsenko et al., Phys. Rev. A, 2009. See also, M. Mirrahimi, R.
Van Handel, SIAM JCO 2007, for a similar feedback in-continuous time-:



Closed-loop convergence

Closed-loop Markov chain:

Pk+1 = Dak(pk+%):« /k+2 Msk(Pk)

with
eTr (ﬁ[pk+1 al) if Tr (ﬁkar%) >0
Qg = aTg\TSX Tr (p]D) (Pyyt )) if Tr (ﬁpk+1§> <

Theorem

Consider the above closed-loop quantum system. For small enough
parameters €, > 0 in the feedback scheme, the trajectories
converge almost surely toward the target Fock state p.



Proof’s scheme

Four steps:

First, we show that for small enough 7, the trajectories
starting within the set S, = {p | Tr(pp) < n} always reach
in one step the set S>o, = {p | Tr(pp) > 2n};

next, we show that the trajectories starting within the set
S>o,, Will never hit the set S, with a uniformly non-zero
probability p, > 0 (Doob’s inequality);

we prove an inequality showing that, for small enough e,
V(pk) = (Tt (ppx)) with f(x) = X3 is a sub-martingale
within S>, = {p [ Tr (pp) = n};

finally, we combine the previous step and the Kushner’s
invariance principle, to prove that almost all trajectories
remaining inside S>,, converge towards p.



Step 2: Doob’s inequality

Doob’s Inequality

Let { X} be a Markov chain on state space X'. Suppose that there is a
non-negative function V/(x) satisfying I£ (V(X1) | Xo = x) — V(x) = —k(x),
where k(x) > 0 on the set {x : V(x) < A} = Qx. Then

]P’( sup V(X,,)Z)\‘XO=X> SM.
0o>n>0 A

Here we take V(px) = 1 — Tr(ppx) which is a super-martingale. We have:

1-Tr(p 1-2
P sup(1 —Tr(ppk,)m—n'pkeszzn < 1=Te) 1 =20
k' >k 1—7n 1—n

and thus

(ot T (o) > 0| (00 > 21)

=1-P (SUP(1 = Tr(ppx)) 21 -1 ‘ Tr (Ppx) 2277)
K >k

1-2p n

> — = — = P,.

>1 11 - Pr




Strict control-Lyapunov function® (1)

For any function A, consider the open-loop martingale

d

d
Va(o) = T (AN)p) = S ATr (1) (nl o) = 3 An (] ).

n=1 n=1
(A(N) is a fixed point of the adjoint Kraus map).
For each Fock state p |n) (n|, « = 0 is a critical point of

a s Va(Da(p), M — 0, and
a=0

PV (Da(1n)(n)))
da?

=Tt (lla' - ala' — a,\(N)]]In) (nl) = Tr (RA(N) |n) {n)

a=0

where R = is a tridiagonal Laplacian matrix with dim(ker R) = 1 with
entries

Rn71,n = 2”7 ’ Rn,n =—4n— 27 Rn+1,n =2n+2.

5See H.Amini, M. Mirrahimi, PR: CDC/ECC 2011
http://arxiv.org/abs/1103.1365.



Strict control-Lyapunov function (2)

Take a goal Fock state |n) and, for each n# n, o, > 0. By
inverting The Laplacian R, we define A, such that, for any
n=#0,

Vs (Da(In)(n))

da2 — On > 0.
a=0
5 o
Then % = —>_nzn0n < 0. Moreover n — A(n)
a=0
is strictly increasing from 0 to n and strictly decreasing from n
to nMax,

Then, for ¢ > 0 small enough
We(p) = eV (p) + Va(p)

becomes a strict Lyapunov function with the feedback

ak = K(pgy1) = argmax(We (Da (Pk+;)))7

a€[—a,a)

forany a > 0.



Strict control-Lyapunov function (3)

In closed-loop W. is a strict sub-martingale since, for px # |n) (A,

E (We(pks+1)1px) > We(px)

because we have

]E(We(pk+1)|pk) - We(pk) =
> P max (Wo(Da(M,(p0))) = Welpn)) =

elgel a€[—a,l]

> P (WM, () = Welon)) +

re{g,.e}

Z pu,pk( max (Wf, (DU(MH(pK)))) - W, (M;L(Pk)))

ac|—a,x
nélg.el ol

The blue sum is strictly positive, excepted when pi is a Fock state
(see open-loop convergence). The red sum is always non-negative.
When py is a Fock state, the red sum vanishes only for px = |n) (7).



Quantum filter for feedback control

et =Ms(py 1) Py = Danlpr)-

We wish to find the control o as a function of the k first measured
jumps. In this aim we need to estimate the state of the system.

We consider here the ideal case (no measurement uncertainties nor
decoherence): Best estimate is given by the system dynamics itself.

Quantum filter

est __ est est est
Pk+1 —Msk(PkJr%)a Prt} = Day (k)

where the values for sk € {g, e} are given by the measurement
results and ay is a function of p§': i = a(p§).



A quantum separation principle®

System+Filter dynamics:
Prsy =Mspr),  prrt = Dalpy 1),

est __ est est __ est
Pk+% = M, (k™) Pk+1 = Dak(PH%)

where sy takes the values g or e with probabilities pg x and pe x given
by

Pok = Tr (MgpM§),  pese = Tr (MopiMb)

and where ay = a(p®,).
k+§

Theorem: a quantum separation principle

Consider a closed-loop system of the above form. Assume moreover
that, whenever pgt = pq (so that the quantum filter coincides with the
closed-loop dynamics, p°t = p), the closed-loop system converges
almost surely towards a fixed pure state p. Then, for any choice of the
initial state p§*, such that kerp§® C kerpo, the trajectories of the
system-filter converge almost surely towards the same pure state:
Pk PiSt — p.

8See R. Van Handel: Filtering, Stability, and Robustness: PhD-thesis,




Proof (1)

IE (Tr (oxp) | po, p§') depends linearly on po even though we are applying a
feedback control.

Indeed, we can write
t
Qk = a(pgs » 805+ - Sk,1)7

and simple computations imply

E (TI’ (Ppi) | POvp(e)St) = Z Tr (ﬁ Msk—1 0Dgy_;0... OI’@ISO oDao(pO))

505+ Sk—1

where _
Msp = MSPM;

So, we easily have the linearity of [£ (Tr (k) | po, p5>) with respect to po.

The rest of the proof follows from the assumption kerp$® C kerpy which
implies the existence of a constant v > 0 and a density matrix pg, such that

est

po" =vpo + (1 —7)ps.



Proof (2)

We know that if both the system and filter start at o', we have the almost
sure convergence. This, together with dominated convergence theorem
implies

lim E (Tr (pxp) | pgst,pSSt) =1.
k— oo

By the linearity of £ (Tr (pxp) | po. p§™) with respect to po, we have

E (Tr (k) | P3, pSS‘) =+E (Tr (kD) | o, pSS’)+(1 -nE (Tr(pkf)) | o5, pSS‘) :

and as both IE (Tr (pxp) | po, p5™) and IE (Tr (pkp) | 0§, p) are less than or
equal to one, we necessarily have that both of them converge to 1:

Jim E (T (o) | po,p8™) = 1.

This implies the almost sure convergence of the physical system towards the
pure state p.



Lyapunov stability for ODE

x € R"is an equilibrium of th = v(x), when v(x) = 0.

Stability

Equilibrium x € R” is stable iff Ve > 0, 3n > 0 such that vx9,
|x° — X|| < n, the solution of the Cauchy problem FX = v(xt)
starting from x° at t = 0 satisfies

Asymptotic stability

The equilibrium x € R” is said locally asymptotically stable iff it
is stable and moreover, 3 > 0 such that

|x° — || <, implies x(f) — X

whent — +o0



First Lyapunov method ’

Spectrum and local stability

The equilibrium x of d%x = v(x) is locally asymptotically stable
if the eigenvalues of the Jacobian matrix at x,

8V,'
%)z
are all with strictly negative real parts.

The equilibrium X is unstable if at least one of the eigenvalues
of the Jacobian matrix admits a strictly positive real part

’See H.K. Khalil, Nonlinear Systems (Prentice Hall, 2001).



Second Lyapunov method®

Lyapunov functions and Lasalle’s invariance principle

R” 5 x — v(x) € R" C' versus x. Take R" > x — V(x) € R* a C!
function of x. Assume that

Iim”X”Hm V(X) = +00

V decreases along all solutions of < X = v(x):
dV(x)=VV(x)-v(x) = Z 3 x) vi(x) <0, forall x.

Then, for all initial condition x°, the solution d%x = v(x) is defined for
any t > 0 (no finite-time explosion) and converges towards the largest
invariant set contained in {x € R" | ZV(x) = 0}.

8See H.K. Khalil, Nonlinear Systems (Prentice Hall, 2001).




Stability and convergence of stochastic processes (1)

Convergence of a random process

Consider (Xk)ken, a discrete-time sequence of random variables defined on
the probability space (2, F,P) and taking values in a Banach space X. The
random process Xk is said to,

converge in probability towards the constant X € X’ if for all e > 0,

lim P(|| Xk — X|| > €)= lim P(w € Q| || Xk(w) — X|| > €) =0;
k— o0 k— o0
converge almost surely towards the constant x if

IFD(”m Xk=)_(>=]P’(w€Q| klim Xk(w)z)_(>:1;

k— oo

converge in mean towards the constant X if

Jim B (1 — %I)) = 0.

Mean convergence implies convergence in probability.
Almost sure convergence implies convergence in probability.



Stability and convergence of stochastic processes (2)

Markov process

The sequence (Xk)z2; is called a Markov process, if for k' > k and any
measurable real function f(x) with sup, |f(x)| < oo,

E(f(Xe) | X1,..., X) = E (F(Xer) | Xe) -

Martingales

Consider a measurable real function V(x) and (Xk)«xen @ Markov chain on X'.
V(Xi)r2q is a super-martingale, a sub-martingale or a martingale, if
E (J|V(Xk)||) < oo for k > 0, and if, respectively,

E(V(Xci1) | Xk) < V(Xk) (P almost surely), Vk > 0,

or
E(V(Xki1) | Xe) > V(Xk) (P almost surely)

or finally,

Vk > 0,

E(V(Xci1) | Xk) = V(Xk) (P almostsurely), vk >0,



Stability and convergence of stochastic processes (3)

Doob’s Inequality

Let { Xk} be a Markov chain on state space X'. Suppose that there is a
non-negative function V/(x) satisfying € (V(Xi) | Xo = x) — V(x) = —k(x),
where k(x) > 0 on the set {x : V(x) < A} = Qx. Then, for all x € Q,

IF’( sup V(Xk)zx\’Xo:x>§V(X).

co>k>0 A

Corollary: stability in probability

Consider the same assumptions as in the above theorem. Assume moreover
that there exists x € X such that V(x) = 0 and that V(X) # 0 for all x
different from x. Then the Doob’s inequality implies that the Markov process
Xk is stable in probability around X, i.e.

IimﬁP(supHka)"(H > e Xo:x> =0, Ve > 0.
X—X k



Stability and convergence of stochastic processes (4)

Kushner’s invariance Theorem

Consider the same assumptions as that of the Doob’s inequality. Let po = o
be concentrated on a state xo € Q,, i.e. o(x) = 1. Assume that

0 < f(Xk) — 0in Q, implies that Xx — {x | f(x) = 0} N Qx = F,. For the
trajectories never leaving Q,, Xx converges to F, almost surely. Also, the
associated conditioned probability measures jix tend to the largest invariant
set of measures M. C M whose support set is in Fy. Finally, for the
trajectories never leaving Qx, Xix converges, in probability, to the support set
of Mss.

Corollary: global stability

Consider the same assumptions as in the above theorem and assume
moreover that X € X’ is the only point in Q, such that V(x) = 0 and
furthermore that the set F, is reduced to {x} (strict Lyapunov function). Then
the equilibrium X is globally stable in probability in the set Q,, i.e. X

is stable in probability and moreover

P (klim Xk = X | Xk never leaves Q)\) =1.
— 00
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