Modeling and Control of Quantum Systems

Mazyar Mirrahimi Pierre Rouchon

mazyar.mirrahimi@inria.fr pierre.rouchon@ensmp.fr
http://cas.ensmp.fr/~rouchon/QuantumSyst/index.html

Lecture 7: December 13th, 2010

Continuous-time measurement

A single atom within a Paul trap is addressed by an external optical field and the spontaneously emitted photons are detected by surrounding photodetectors.

Outline

1 Spontaneous emission, quantum Monte-Carlo trajectories and Lindblad equation

2 ^-system

3 Slow/fast dynamics and model reduction

4 Physical interpretation and reduced Monte-Carlo trajectories

State space: $\left\{\rho \in \mathbb{C}^{2 \times 2} \mid \rho^{\dagger}=\rho, \rho \geq 0, \operatorname{Tr}(\rho)=1\right\}$
Probability of having a jump in $[t, t+d t[$:

$$
p_{\text {jump }}=\Gamma\langle e| \rho(t)|e\rangle d t .
$$

Γ : decay rate of the system which is equivalent to the inverse of the atomic lifetime of the excited state $|e\rangle$.

Associated measurement operator:

$$
\mathcal{M}_{\text {jump }}=\sqrt{\Gamma d t} \sigma_{-}, \quad \sigma_{-}=|g\rangle\langle e| .
$$

As soon as we detect a photon, the density matrix collapses into the ground state:

$$
\rho_{t+d t}=\frac{\mathcal{M}_{\mathrm{jump}} \rho(t) \mathcal{M}_{\mathrm{jump}}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{\mathrm{jump}} \rho(t) \mathcal{M}_{\mathrm{jump}}^{\dagger}\right)}=|g\rangle\langle g| .
$$

Question

What happens to the density matrix when we do not detect any photon?

Answer: some information is gained on the state; with a larger probability we have been in $|g\rangle$; We call the associated measurement operator $\mathcal{M}_{\text {no-jump }} ;$ We have $\mathcal{M}_{\text {no-jump }} \neq 1$.

POVM requirement:

$$
\mathcal{M}_{\text {jump }}^{\dagger} \mathcal{M}_{\text {jump }}+\mathcal{M}_{\text {no-jump }}^{\dagger} \mathcal{M}_{\text {no-jump }}=\mathbf{1}
$$

How to compute $\mathcal{M}_{\text {no-jump }}$?

Spontaneous emission and its modeling (3)

Generic form of $\mathcal{M}_{\text {no-jump }}$: it must be of the form $1+O(d t)$,

$$
\mathcal{M}_{\mathrm{no}-\text { jump }}=\mathbf{1}-\Gamma d t \mathcal{A}-i d t H
$$

where \mathcal{A} and H are Hermitian matrices in $\mathbb{C}^{2 \times 2}$.
POVM requirement+ 1st order development:

$$
\mathcal{A}=\frac{1}{2} \sigma_{+} \sigma_{-}, \quad \sigma_{+}=\sigma_{-}^{\dagger}=|e\rangle\langle g| .
$$

No-jump dynamics:

$$
\begin{aligned}
\rho(t+d t)= & \frac{\mathcal{M}_{\text {no-jump }} \rho \mathcal{M}_{\mathrm{no}-\text {-jump }}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{\mathrm{no}-\text {-ump }} \rho(t) \mathcal{M}_{\mathrm{no}-\text {-jump }}^{\dagger}\right)} \\
= & \rho(t)-d t \frac{\Gamma}{2}\left(\sigma_{+} \sigma_{-} \rho(t)+\rho(t) \sigma_{+} \sigma_{-}\right)+d t \Gamma \operatorname{Tr}\left(\sigma_{-} \rho(t) \sigma_{+}\right) \rho(t) \\
& -i d t[\mathcal{B}, \rho(t)]
\end{aligned}
$$

H implies a unitary evolution and can be added to the usual Hamiltonian of the system: a corrective Hamiltonian due to the coupling to the vacuum modes of the free radiation field. This implies a relaxation-induced shift in the energy levels of the atom (Lamb shift).

Quantum Monte-Carlo trajectories

$$
\rho(t+d t)=\left\{\begin{array}{lc}
\frac{\sigma_{-} \rho(t) \sigma_{+}}{\operatorname{Tr}\left(\sigma_{-} \rho(t) \sigma_{+}\right)}=|g\rangle\langle g| & \text { with probability } d t \Gamma \operatorname{Tr}\left(\sigma_{-} \rho(t) \sigma_{+}\right) \\
\rho(t)-i d t[H(t), \rho(t)]-d t \frac{\Gamma}{2}\left(\sigma_{+} \sigma_{-} \rho(t)+\rho(t) \sigma_{+} \sigma_{-}\right) \\
+d t\left\ulcorner\operatorname{Tr}\left(\sigma_{-} \rho(t) \sigma_{+}\right) \rho(t)\right. & \text { with probability } 1-d t \Gamma \operatorname{Tr}\left(\sigma_{-} \rho(t) \sigma_{+}\right)
\end{array}\right.
$$

Poisson process: in any given time interval [$t, t+d t\left[\right.$, we define $d N_{t}$ such that it is unity with probability $\Gamma \operatorname{Tr}\left(\sigma_{-} \rho(t) \sigma_{+}\right) d t$ and zero otherwise. We have

$$
\mathbb{E}\left(d N_{t} \mid \rho(t)\right)=\Gamma \operatorname{Tr}\left(\sigma_{-} \rho(t) \sigma_{+}\right) d t
$$

Stochastic master equation:

$$
\begin{aligned}
\rho(t+d t)-\rho(t)=d \rho=\left(-i[H(t), \rho]-\frac{\Gamma}{2}\left(\sigma_{+} \sigma_{-} \rho\right.\right. & \left.\left.+\rho \sigma_{+} \sigma_{-}\right)+\Gamma \operatorname{Tr}\left(\sigma_{-} \rho \sigma_{+}\right) \rho\right) d t \\
& +\left(\frac{\sigma_{-} \rho \sigma_{+}}{\operatorname{Tr}\left(\sigma_{-} \rho \sigma_{+}\right)}-\rho\right) d N_{t}
\end{aligned}
$$

We consider a statistical ensemble of identical two-level atoms with no mutual interactions. Applying the statistical independence of $d N_{t}$ and ρ_{t}, we get the following average dynamics

$$
\frac{d \rho}{d t}=-i[H(t), \rho]+\Gamma\left(\sigma_{-} \rho \sigma_{+}-\frac{1}{2} \sigma_{+} \sigma_{-} \rho-\frac{1}{2} \rho \sigma_{+} \sigma_{-}\right)
$$

where (by an abuse of notations) ρ actually stands for the expectation value of ρ in the above jump dynamics.

Exercice

When $H=0$, show that $\lim _{t \rightarrow+\infty} \rho(t)=|g\rangle\langle g|$.

State space: $\left\{\rho \in \mathbb{C}^{3 \times 3} \mid \rho^{\dagger}=\rho, \rho \geq 0, \operatorname{Tr}(\rho)=1\right\}$.

Relevant energy levels, transitions and decoherence rates for the Λ-system.

$$
\begin{aligned}
d \rho= & -i\left[H_{0}+u(t) H_{1}, \rho\right] d t \\
& -\frac{1}{2}\left(Q_{1}^{\dagger} Q_{1} \rho+\rho Q_{1}^{\dagger} Q_{1}\right) d t+\operatorname{Tr}\left(Q_{1} \rho Q_{1}^{\dagger}\right) \rho d t+\left(\frac{Q_{1} \rho Q_{1}^{\dagger}}{\operatorname{Tr}\left(Q_{1} \rho Q_{1}^{\dagger}\right)}-\rho\right) d N_{t}^{1} \\
& -\frac{1}{2}\left(Q_{2}^{\dagger} Q_{2} \rho+\rho Q_{2}^{\dagger} Q_{2}\right) d t+\operatorname{Tr}\left(Q_{2} \rho Q_{2}^{\dagger}\right) \rho d t+\left(\frac{Q_{2} \rho Q_{2}^{\dagger}}{\operatorname{Tr}\left(Q_{2} \rho Q_{2}^{\dagger}\right)}-\rho\right) d N_{t}^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{0}=\omega_{e}|e\rangle\langle e|+\omega_{g_{1}}\left|g_{1}\right\rangle\left\langle g_{1}\right|+\omega_{g_{2}}\left|g_{2}\right\rangle\left\langle g_{2}\right|, \\
& H_{1}=\mu_{1}\left(\left|g_{1}\right\rangle\langle e|+|e\rangle\left\langle g_{1}\right|\right)+\mu_{2}\left(\left|g_{2}\right\rangle\langle e|+|e\rangle\left\langle g_{2}\right|\right), \\
& Q_{1}=\sqrt{\Gamma_{1}}\left|g_{1}\right\rangle\langle e|, \quad Q_{2}=\sqrt{\Gamma_{2}}\left|g_{2}\right\rangle\langle e|,
\end{aligned}
$$

and where $d N_{t}^{1}$ and $d N_{t}^{2}$ are independent Poisson increments with averages

$$
\mathbb{E}\left(d N_{t}^{1}\right)=\operatorname{Tr}\left(Q_{1} \rho Q_{1}^{\dagger}\right) d t, \quad \mathbb{E}\left(d N_{t}^{2}\right)=\operatorname{Tr}\left(Q_{2} \rho Q_{2}^{\dagger}\right) d t
$$

Quasi-resonant field:

$u(t)=u_{1} e^{i\left(\omega_{1}+\Delta_{e}\right) t}+u_{1}^{*} e^{-i\left(\omega_{1}+\Delta_{e}\right) t}+u_{2} e^{i\left(\omega_{2}+\Delta_{e}+\Delta\right) t}+u_{2}^{*} e^{-i\left(\omega_{2}+\Delta_{e}+\Delta\right) t}$, where $\omega_{1}=\omega_{e}-\omega_{g 1}$ and $\omega_{2}=\omega_{e}-\omega_{g 2}, u_{1}$ and u_{2} are slowly varying complex amplitudes and Δ_{e} and Δ are small detuning terms. We have three time scales here:

■ the very fast time-scale associated to the optical frequencies ω_{1} and ω_{2};

- the fast time-scale associated to the lifetimes of the excited state's transitions, Γ_{1} and Γ_{2};

■ the slow time-scale associated to the laser amplitudes $\left|\mu_{1} u_{1}\right|$ and $\left|\mu_{2} u_{2}\right|$.

We have
$\left|\mu_{k} u_{k}\right| \ll \Gamma_{k^{\prime}} \ll \omega_{k^{\prime \prime}} \quad$ and $\quad\left|\frac{d}{d t} u_{k}\right| /\left|u_{k}\right| \ll \Gamma_{k^{\prime}}, \quad k, k^{\prime}, k^{\prime \prime} \in\{1,2\}$.

Lindblad equation:

$$
\frac{d \rho}{d t}=-i\left[H_{0}+u(t) H_{1}, \rho\right]+\frac{1}{2} \sum_{k=1}^{2}\left(2 Q_{k} \rho Q_{k}^{\dagger}-Q_{k}^{\dagger} Q_{k} \rho-\rho Q_{k}^{\dagger} Q_{k}\right) .
$$

Rotating frame: $\rho(t) \rightarrow U_{t}^{\dagger} \rho(t) U_{t}$ with

$$
U_{t}=e^{-i\left(\omega_{e}|e\rangle\langle e|+\left(\omega_{g 1}-\Delta_{e}\right)\left|g_{1}\right\rangle\left\langle g_{1}\right|+\left(\omega_{g 2}-\Delta_{e}-\Delta\right)\left|g_{2}\right\rangle\left\langle g_{2}\right|\right) t}
$$

Removing the highly oscillating terms of frequencies $2 \omega_{1}$ and $2 \omega_{2}$:

$$
\frac{d}{d t} \rho=-i[\tilde{H}, \rho]+\frac{1}{2} \sum_{k=1}^{2}\left(2 Q_{k} \rho Q_{k}^{\dagger}-Q_{k}^{\dagger} Q_{k} \rho-\rho Q_{k}^{\dagger} Q_{k}\right)
$$

where

$$
\begin{aligned}
& \tilde{H}=\frac{\Delta}{2}\left(\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|\right)+\left(\Delta_{e}+\frac{\Delta}{2}\right)\left(\left|g_{1}\right\rangle\left\langle g_{1}\right|+\left|g_{2}\right\rangle\left\langle g_{2}\right|\right) \\
&+\Omega_{1}\left|g_{1}\right\rangle\langle e|+\Omega_{1}^{*}|e\rangle\left\langle g_{1}\right|+\Omega_{2}\left|g_{2}\right\rangle\langle e|+\Omega_{2}^{*}|e\rangle\left\langle g_{2}\right| .
\end{aligned}
$$

where $\Omega_{k}=\mu_{k} u_{k}$ are the slowly varying complex Rabi amplitudes.

$$
\frac{d}{d t} \rho=-i[\tilde{H}, \rho]+\frac{1}{2} \sum_{k=1}^{2}\left(2 Q_{\kappa} \rho Q_{k}^{\dagger}-Q_{k}^{\dagger} Q_{k} \rho-\rho Q_{k}^{\dagger} Q_{k}\right) .
$$

Time-scale separation:

$\left|\Delta_{e}\right|,|\Delta|,\left|\Omega_{k}\right| \ll \Gamma_{k^{\prime}} \quad$ and $\left|\frac{d}{d t} \Omega_{k}\right| /\left|\Omega_{k}\right| \ll \Gamma_{k^{\prime}}, \quad k, k^{\prime} \in\{1,2\}$.
We take $\Gamma_{k}=\bar{\Gamma}_{k} / \epsilon$ where ϵ is a small positive parameter and $\bar{\Gamma}_{k}$'s are of the same order as \tilde{H} :

$$
\frac{d}{d t} \rho=-i[\tilde{H}, \rho]+\sum_{k=1}^{2} \frac{\bar{r}_{k}}{2 \epsilon}\left(2 \sigma_{k} \rho \sigma_{k}^{\dagger}-\sigma_{k}^{\dagger} \sigma_{k} \rho-\rho \sigma_{k}^{\dagger} \sigma_{k}\right),
$$

where $\sigma_{k}=\left|g_{k}\right\rangle\langle e|$.

$$
\left(\Sigma_{\varepsilon}\right): \quad \frac{d}{d t} x=f(x, z, \varepsilon), \quad \varepsilon \frac{d}{d t} z=g(x, z, \varepsilon)
$$

Slow/fast system in Tikhonov normal; under some assumptions, the slow approximation (also called quasi-static or adiabatic elimination), consists in setting directly ε to 0 in the equation defining (Σ_{ε}); this yields to a differential-algebraic system $\frac{d}{d t} x=f(x, z, 0)$ where z is an implicit function of x defined by $0=g(x, z, 0)$.

Singular perturbation techniques (2)

Tikhonov Theorem

Consider the singularly perturbed system :

$$
\left(\Sigma_{\varepsilon}\right): \quad \frac{d}{d t} x=f(x, z, \varepsilon), \quad \varepsilon \frac{d}{d t} z=g(x, z, \varepsilon)
$$

where (x, z) belongs to an open subset of $\mathbb{R}^{n} \times \mathbb{R}^{p}, f$ and g are smooth functions, ε is a small positive parameter. Assume that

■ $g(x, z, 0)=0$ admits a solution $z=\Phi(x)$, with Φ smooth function of x and such that $\frac{\partial g}{\partial z}(x, \Phi(x), 0)$ is a stable matrix (eigenvalues with strictly negative real parts).
■ the reduced slow sub-system $\frac{d}{d t} x=f(x, \Phi(x), 0), x(0)=x_{0}$ admits a unique solution $x^{0}(t)$ defined for $t \in[0, T], 0<T<+\infty$ for some $T>0$.
Then, for $\varepsilon>0$ small enough, $\left(\Sigma_{\varepsilon}\right)$ admits a unique solution $\left(x^{\varepsilon}(t), z^{\varepsilon}(t)\right)$ defined on $[0, T]$ with initial condition $\left(x^{\varepsilon}(0), z^{\varepsilon}(0)\right)=\left(x_{0}, z_{0}\right)$ as soon as z_{0} belongs to the attraction domain of the equilibrium $\Phi\left(x_{0}\right)$ for the fast sub-system, $\varepsilon \frac{d}{d t} \zeta=g\left(x_{0}, \zeta, 0\right)$. Moreover we have, for any $\eta>0$,

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left(\max _{t \in[\eta, T]}\left(\left\|x^{\varepsilon}(t)-x^{0}(t)\right\|+\left\|z^{\varepsilon}(t)-z^{0}(t)\right\|\right)\right)=0
$$

Singular perturbation techniques (3)

Higher-order approximations and center manifold techniques

We consider a slow/fast system of the form

$$
\left(\Sigma_{\varepsilon}\right): \quad \frac{d}{d t} x=f(x, z, \varepsilon), \quad \varepsilon \frac{d}{d t} z=-A z+\varepsilon h(x, z)
$$

where all the eigenvalues of the matrix A have strictly positive real parts.
The invariant attractive manifold admits for equation

$$
z=\varepsilon A^{-1} h(x, 0)+O\left(\varepsilon^{2}\right)
$$

and the restriction of the dynamics on this slow invariant manifold reads

$$
\frac{d}{d t} x=f\left(x, \varepsilon A^{-1} h(x, 0)\right)+O\left(\varepsilon^{2}\right)=f(x, 0)+\left.\varepsilon \frac{\partial f}{\partial z}\right|_{(x, 0)} A^{-1} h(x, 0)+O\left(\varepsilon^{2}\right)
$$

The second order term is then given by:
$z=\varepsilon A^{-1} h(x, 0)+\varepsilon^{2} A^{-1}\left(\left.\frac{\partial h}{\partial z}\right|_{(x, 0)} A^{-1} h(x, 0)-\left.A^{-1} \frac{\partial h}{\partial x}\right|_{(x, 0)} f(x, 0)\right)+O\left(\varepsilon^{3}\right)$,
and so on.

Roughly speaking, an approximation of order ν in ε of the slow invariant manifold provides an approximation on time intervals of length of order $\frac{1}{\varepsilon^{\nu}}$ as sketched below:

■ $z=0$ is an approximation of order 0 ; the slow reduced model $\frac{d}{d t} x=f(x, 0)$ is valid on time intervals of length 1.
■ $z=\varepsilon A^{-1} h(x, 0)$ is an approximation of order 1 : the slow reduced model $\frac{d}{d t} x=f\left(x, \varepsilon A^{-1} h(x, 0)\right)$ is valid on time intervals of length $\frac{1}{\varepsilon}$.
■ $z=\varepsilon A^{-1} h(x, 0)+\varepsilon^{2} A^{-1}\left(\left.\frac{\partial h}{\partial z}\right|_{(x, 0)} A^{-1} h(x, 0)-\left.A^{-1} \frac{\partial h}{\partial x}\right|_{(x, 0)} f(x, 0)\right)$ is an approximation of order 2 : the slow reduced model

$$
\frac{d}{d t} x=f\left(x, \varepsilon A^{-1} h(x, 0)+\varepsilon^{2} A^{-1}\left(\left.\frac{\partial h}{\partial z}\right|_{(x, 0)} A^{-1} h(x, 0)-\left.A^{-1} \frac{\partial h}{\partial x}\right|_{(x, 0)} f(x, 0)\right)\right)
$$

is valid on time intervals of length $\frac{1}{\varepsilon^{2}}$.

Singular perturbation for slow/fast Λ-system

Slow/fast system in non-standard form:

$$
\frac{d}{d t} \rho=-i[\tilde{H}, \rho]+\sum_{k=1}^{2} \frac{\bar{\Gamma}_{k}}{2 \epsilon}\left(2 \sigma_{k} \rho \sigma_{k}^{\dagger}-\sigma_{k}^{\dagger} \sigma_{k} \rho-\rho \sigma_{k}^{\dagger} \sigma_{k}\right), \quad \sigma_{k}=\left|g_{k}\right\rangle\langle e|
$$

Define, with $P=|e\rangle\langle e|$,

$$
\rho_{f}=P \rho+\rho P-P \rho P \quad, \quad \rho_{s}=(1-P) \rho(1-P)+\frac{1}{\bar{\Gamma}_{1}+\bar{\Gamma}_{2}} \sum_{k=1}^{2} \bar{\Gamma}_{k} \sigma_{k} \rho \sigma_{k}^{\dagger} .
$$

ρ_{s} remains a density matrix but not ρ_{f}. We have

$$
\rho=\rho_{s}+\rho_{f}-\frac{1}{\bar{\Gamma}_{1}+\bar{\Gamma}_{2}} \sum_{k=1}^{2} \bar{\Gamma}_{k} \sigma_{k} \rho_{f} \sigma_{k}^{\dagger}
$$

and therefore $\rho \mapsto\left(\rho_{f}, \rho_{s}\right)$ is a bijective map (change of variables).
Slow/fast system in standard form:

$$
\begin{aligned}
& \frac{d}{d t} \rho_{f}=-\frac{\left(\bar{\Gamma}_{1}+\bar{\Gamma}_{2}\right)}{2 \epsilon}\left(\rho_{f}+P \rho_{f} P\right)-i(P[\tilde{H}, \rho]+[\tilde{H}, \rho] P-P[\tilde{H}, \rho] P) \\
& i \frac{d}{d t} \rho_{s}=(1-P)[\tilde{H}, \rho](1-P)+\frac{1}{\bar{\Gamma}_{1}+\bar{\Gamma}_{2}} \sum_{k=1}^{2} \bar{\Gamma}_{k} \sigma_{k}[\tilde{H}, \rho] \sigma_{k}^{\dagger}
\end{aligned}
$$

The system is of the form $\left(x \sim \rho_{s}, z \sim \rho_{f}\right)$

$$
\left(\Sigma_{\varepsilon}\right): \quad \frac{d}{d t} x=f(x, z, \varepsilon), \quad \varepsilon \frac{d}{d t} z=-A z+\varepsilon h(x, z)
$$

where \boldsymbol{A} is a positive definite super-operator sending ρ_{f} to $\rho_{f}+P \rho_{f} P$. Its inverse A^{-1} is given by

$$
\rho_{f} \mapsto \rho_{f}-\frac{1}{2} P \rho_{f} P
$$

First order approximation for ρ_{f} :

$$
\rho_{f}=\frac{-2 \dot{i} \epsilon}{\bar{\Gamma}_{1}+\bar{\Gamma}_{2}}\left(P \tilde{H} \rho_{s}-\rho_{s} \tilde{H} P\right)+O\left(\epsilon^{2}\right)
$$

First order dynamics for ρ_{s} :

$$
\frac{d}{d t} \rho_{s}=-i\left[\bar{H}, \rho_{s}\right]+\frac{\epsilon}{2} \sum_{k=1}^{2}\left(2 \bar{Q}_{k} \rho_{s} \bar{Q}_{k}^{\dagger}-\bar{Q}_{k}^{\dagger} \bar{Q}_{k} \rho_{s}-\rho_{s} \bar{Q}_{k}^{\dagger} \bar{Q}_{k}\right)
$$

where we have defined

$$
\bar{H}=(1-P) \tilde{H}(1-P) \quad \text { and } \quad \bar{Q}_{k}=\frac{2 \sqrt{\bar{\Gamma}_{k}}}{\bar{\Gamma}_{1}+\bar{\Gamma}_{2}}(1-P) \sigma_{k} \tilde{H}(1-P)
$$

Slow/fast approximation for Λ-system

Theorem

Consider ρ the solution of the Lindblad master equation

$$
\frac{d}{d t} \rho=-i[\tilde{H}, \rho]+\sum_{k=1}^{2} \frac{\bar{\Gamma}_{k}}{2 \epsilon}\left(2 \sigma_{k} \rho \sigma_{k}^{\dagger}-\sigma_{k}^{\dagger} \sigma_{k} \rho-\rho \sigma_{k}^{\dagger} \sigma_{k}\right)
$$

with $0<\epsilon \ll 1$ and ρ_{s} the solution of the slow master equation

$$
\frac{d}{d t} \rho_{s}=-i\left[\bar{H}, \rho_{s}\right]+\frac{\epsilon}{2} \sum_{k=1}^{2}\left(2 \bar{Q}_{k} \rho_{s} \bar{Q}_{k}^{\dagger}-\bar{Q}_{k}^{\dagger} \bar{Q}_{k} \rho_{s}-\rho_{s} \bar{Q}_{k}^{\dagger} \bar{Q}_{k}\right)
$$

with

$$
\bar{H}=(1-P) \tilde{H}(1-P) \quad \text { and } \quad \bar{Q}_{k}=\frac{2 \sqrt{\Gamma_{k}}}{\bar{\Gamma}_{1}+\bar{\Gamma}_{2}}(1-P) \sigma_{k} \tilde{H}(1-P)
$$

Assume for the initial states
$\left\|\rho(0)-\rho_{s}(0)\right\|=\sqrt{\operatorname{Tr}\left(\left(\rho(0)-\rho_{s}(0)\right)\left(\rho(0)-\rho_{s}(0)\right)\right)}=O(\epsilon)$. Then

$$
\left\|\rho(t)-\rho_{s}(t)\right\|=\sqrt{\operatorname{Tr}\left(\left(\rho(t)-\rho_{s}(t)\right)\left(\rho(t)-\rho_{s}(t)\right)\right)}=O(\epsilon)
$$

on a time scale $t \sim 1 / \epsilon$.

The slow approximation (also called by physicists adiabatic approximation) of the system described by

$$
\frac{d}{d t} \rho=-i[\tilde{H}, \rho]+\frac{1}{2} \sum_{k=1}^{2}\left(2 Q_{k} \rho Q_{k}^{\dagger}-Q_{k}^{\dagger} Q_{k} \rho-\rho Q_{k}^{\dagger} Q_{k}\right)
$$

with $Q_{k}=\sqrt{\Gamma_{k}}\left|g_{k}\right\rangle\langle e|$ and where the Γ_{k} 's are much larger than \tilde{H}, is given by

$$
\frac{d}{d t} \rho_{s}=-i\left[H_{s}, \rho_{s}\right]+\frac{1}{2} \sum_{k=1}^{2}\left(2 Q_{s, k} \rho_{s} Q_{s, k}^{\dagger}-Q_{s, k}^{\dagger} Q_{s, k} \rho_{s}-\rho_{s} Q_{s, k}^{\dagger} Q_{s, k}\right)
$$

where ρ_{s} is the density operator associated with the space spanned by the $\left|g_{1}\right\rangle$ and $\left|g_{2}\right\rangle$, and where the slow Hamiltonian and the slow jump operators are $(P=|e\rangle\langle e|)$

$$
H_{s}=(1-P) \tilde{H}(1-P) \quad \text { and } \quad Q_{s, k}=\frac{2}{\Gamma_{1}+\Gamma_{2}} Q_{k} \tilde{H}(1-P), \quad k \in\{1,2\} .
$$

We have

$$
H_{s}=\frac{\Delta}{2}\left(\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|\right)+\left(\Delta_{e}+\frac{\Delta}{2}\right)\left(\left|g_{1}\right\rangle\left\langle g_{1}\right|+\left|g_{2}\right\rangle\left\langle g_{2}\right|\right) .
$$

and

$$
Q_{s, k}=2 \sqrt{\Gamma_{k}} \frac{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}}{\Gamma_{1}+\Gamma_{2}}\left|g_{k}\right\rangle\left\langle b_{\Omega}\right| \quad \text { with } \quad\left|b_{\Omega}\right\rangle=\frac{\Omega_{1}\left|g_{1}\right\rangle+\Omega_{2}\left|g_{2}\right\rangle}{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}} \text {. }
$$

The slow master equation lives on the Hilbert space spanned by $\left|g_{1}\right\rangle$ and $\left|g_{2}\right\rangle$.
Reduced stochastic master equation:

$$
\begin{aligned}
& d \rho_{s}=-i \frac{\Delta}{2}\left[\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|, \rho_{s}\right] d t \\
- & \frac{1}{2}\left(Q_{s, 1}^{\dagger} Q_{s, 1} \rho_{s}+\rho_{s} Q_{s, 1}^{\dagger} Q_{s, 1}\right) d t+\operatorname{Tr}\left(Q_{s, 1} \rho_{s} Q_{s, 1}^{\dagger}\right) \rho_{s} d t+\left(\frac{Q_{s, 1} \rho_{s} Q_{s, 1}^{\dagger}}{\operatorname{Tr}\left(Q_{s, 1} \rho_{s} Q_{s, 1}^{\dagger}\right)}-\rho_{s}\right) d N_{t}^{s, 1} \\
- & \frac{1}{2}\left(Q_{s, 2}^{\dagger} Q_{s, 2} \rho_{s}+\rho_{s} Q_{s, 2}^{\dagger} Q_{s, 2}\right) d t+\operatorname{Tr}\left(Q_{s, 2} \rho_{s} Q_{s, 2}^{\dagger}\right) \rho_{s} d t+\left(\frac{Q_{s, 2} \rho_{s} Q_{s, 2}^{\dagger}}{\operatorname{Tr}\left(Q_{s, 2} \rho_{s} Q_{s, 2}^{\dagger}\right)}-\rho_{s}\right) d N_{t}^{s, 2} .
\end{aligned}
$$

Here $d N_{t}^{s, 1}$ and $d N_{t}^{s, 2}$ are independent Poisson increments with averages

$$
\begin{aligned}
& \mathbb{E}\left(d N_{t}^{s, 1}\right)=\operatorname{Tr}\left(Q_{s, 1} \rho_{s} Q_{s, 1}^{\dagger}\right) d t=4 \Gamma_{1} \frac{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}{\left(\Gamma_{1}+\Gamma_{2}\right)^{2}} \operatorname{Tr}\left(\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}\right) d t \\
& \mathbb{E}\left(d N_{t}^{s, 2}\right)=\operatorname{Tr}\left(Q_{s, 2} \rho_{s} Q_{s, 2}^{\dagger}\right) d t=4 \Gamma_{2} \frac{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}{\left(\Gamma_{1}+\Gamma_{2}\right)^{2}} \operatorname{Tr}\left(\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}\right) d t .
\end{aligned}
$$

We define

$$
\gamma_{k}=4 \Gamma_{k} \frac{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}{\left(\Gamma_{1}+\Gamma_{2}\right)^{2}}, \quad k \in\{1,2\},
$$

the evolution through the time interval $(t, t+d t)$ can be interpreted as below:

- ρ_{s} jumps into the ground state $\left|g_{1}\right\rangle\left\langle g_{1}\right|$ with probability $d t \gamma_{1} \operatorname{Tr}\left(\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}(t)\right)$;
■ or it jumps into the ground state $\left|g_{2}\right\rangle\left\langle g_{2}\right|$ with probability $d t \gamma_{2} \operatorname{Tr}\left(\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}(t)\right)$;
- or finally, it evolves through the dynamics

$$
\begin{aligned}
& \frac{d}{d t} \rho_{s}=-i \frac{\Delta}{2}\left[\left|g_{2}\right\rangle\left\langle g_{2}\right|-\left|g_{1}\right\rangle\left\langle g_{1}\right|, \rho_{s}\right] \\
& -\frac{\left(\gamma_{1}+\gamma_{2}\right)}{2}\left(\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}+\rho_{s}\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right|-2 \operatorname{Tr}\left(\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}\right) \rho_{s}\right),
\end{aligned}
$$

with probability $1-d t\left(\gamma_{1}+\gamma_{2}\right) \operatorname{Tr}\left(\left|b_{\Omega}\right\rangle\left\langle b_{\Omega}\right| \rho_{s}(t)\right)$.

Physical interpretation

the state $\left|b_{\Omega}\right\rangle$ is often called the bright state and the orthogonal state

$$
\left|d_{\Omega}\right\rangle=\frac{\Omega_{2}^{*}}{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}}\left|g_{1}\right\rangle-\frac{\Omega_{1}^{*}}{\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}}\left|g_{2}\right\rangle
$$

is called the dark state. Indeed, the probability of jumping towards one of the ground states by emitting a photon is proportional to the population of the bright state $\left|b_{\Omega}\right\rangle$. Therefore, whenever the system is in the state $\left|d_{\Omega}\right\rangle$, no photon will be emitted: hence the name of the dark state.

Theorem

Whenever $\Delta=0$, the density matrix ρ_{s}, solution of the reduced slow stochastic master equation converges almost surely towards the dark state $\left|d_{\Omega}\right\rangle\left\langle d_{\Omega}\right|$.

Remark

The phenomenon of converging towards the dark state is often referred as the coherent population trapping in the physics literature. The target state can be controlled via the ratio Ω_{1} / Ω_{2}. The case $\Omega_{2}=0\left(\left|d_{\Omega}\right\rangle=\left|g_{2}\right\rangle\right)$ corresponds to the optical pumping phenomena.

We consider the Markov process:

$$
f_{t}=\operatorname{Tr}\left(\left|d_{\Omega}\right\rangle\left\langle d_{\Omega}\right| \rho(t)\right)
$$

We can easily compute the evolution of the expectation value of f_{t} :

$$
\frac{d}{d t} \mathbb{E}\left(f_{t}\right)=\frac{\gamma_{1}\left|\Omega_{2}\right|^{2}+\gamma_{2}\left|\Omega_{1}\right|^{2}}{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}\left(1-\mathbb{E}\left(f_{t}\right)\right)
$$

This, together with the fact that $f_{t} \in[0,1]$, implies that

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left(f_{t}\right)=1
$$

Finally, this together with the dominated convergence theorem implies the almost sure convergence.

