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Continuous-time measurement

A single atom within a Paul trap is addressed by an external
optical field and the spontaneously emitted photons are

detected by surrounding photodetectors.
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Spontaneous emission and its modeling (1)

State space: {ρ ∈ C2×2 | ρ† = ρ, ρ ≥ 0, Tr (ρ) = 1}

Probability of having a jump in [t , t + dt [:

pjump = Γ〈e | ρ(t) | e〉dt .

Γ: decay rate of the system which is equivalent to the inverse of
the atomic lifetime of the excited state |e〉.

Associated measurement operator:

Mjump =
√

Γdt σ−, σ− = |g〉 〈e| .

As soon as we detect a photon, the density matrix collapses
into the ground state:

ρt+dt =
Mjumpρ(t)M†jump

Tr
(
Mjumpρ(t)M†jump

) = |g〉 〈g| .



Spontaneous emission and its modeling (2)

Question

What happens to the density matrix when we do not detect any
photon?

Answer: some information is gained on the state; with a larger
probability we have been in |g〉; We call the associated
measurement operatorMno-jump; We haveMno-jump 6= 1.

POVM requirement:

M†jumpMjump +M†no-jumpMno-jump = 1.

How to computeMno-jump?



Spontaneous emission and its modeling (3)
Generic form ofMno-jump: it must be of the form 1 + O(dt),

Mno-jump = 1− ΓdtA− idtH,

where A and H are Hermitian matrices in C2×2.

POVM requirement+ 1st order development:

A =
1
2
σ+σ−, σ+ = σ†− = |e〉 〈g| .

No-jump dynamics:

ρ(t + dt) =
Mno-jumpρM†no-jump

Tr
(
Mno-jumpρ(t)M†no-jump

)
=ρ(t)−dt

Γ

2
(σ+σ−ρ(t) + ρ(t)σ+σ−) + dtΓTr (σ−ρ(t)σ+)ρ(t)

−i dt [B, ρ(t)],

H implies a unitary evolution and can be added to the usual Hamiltonian of
the system: a corrective Hamiltonian due to the coupling to the vacuum

modes of the free radiation field. This implies a relaxation-induced shift in the
energy levels of the atom (Lamb shift).



Quantum Monte-Carlo trajectories

ρ(t+dt) =


σ−ρ(t)σ+

Tr (σ−ρ(t)σ+)
= |g〉 〈g| with probability dtΓTr (σ−ρ(t)σ+),

ρ(t)− i dt [H(t), ρ(t)]− dt
Γ

2
(σ+σ−ρ(t) + ρ(t)σ+σ−)

+dtΓTr (σ−ρ(t)σ+)ρ(t) with probability 1− dtΓTr (σ−ρ(t)σ+),

Poisson process: in any given time interval [t , t + dt [, we define dNt such
that it is unity with probability ΓTr (σ−ρ(t)σ+)dt and zero otherwise. We have

E (dNt | ρ(t)) = ΓTr (σ−ρ(t)σ+)dt .

Stochastic master equation:

ρ(t+dt)−ρ(t) = dρ =

(
−i[H(t), ρ]− Γ

2
(σ+σ−ρ+ ρσ+σ−) + ΓTr (σ−ρσ+)ρ

)
dt

+

(
σ−ρσ+

Tr (σ−ρσ+)
− ρ
)

dNt .



Lindblad master equation

We consider a statistical ensemble of identical two-level atoms
with no mutual interactions. Applying the statistical
independence of dNt and ρt , we get the following average
dynamics

dρ
dt

= −i[H(t), ρ] + Γ

(
σ−ρσ+ −

1
2
σ+σ−ρ−

1
2
ρσ+σ−

)
,

where (by an abuse of notations) ρ actually stands for the
expectation value of ρ in the above jump dynamics.

Exercice

When H = 0, show that limt 7→+∞ ρ(t) = |g〉 〈g|.



Λ-system

State space: {ρ ∈ C3×3 | ρ† = ρ, ρ ≥ 0, Tr (ρ) = 1}.

Relevant energy levels, transitions and decoherence rates for
the Λ-system.



Λ-system: stochastic master equation

dρ =− i[H0 + u(t)H1, ρ]dt

− 1
2

(Q†1 Q1ρ+ ρQ†1 Q1)dt + Tr
(

Q1ρQ†1
)
ρdt +

 Q1ρQ†1
Tr
(

Q1ρQ†1
) − ρ

 dN1
t

− 1
2

(Q†2 Q2ρ+ ρQ†2 Q2)dt + Tr
(

Q2ρQ†2
)
ρdt +

 Q2ρQ†2
Tr
(

Q2ρQ†2
) − ρ

 dN2
t ,

where

H0 = ωe |e〉 〈e|+ ωg1 |g1〉 〈g1|+ ωg2 |g2〉 〈g2| ,
H1 = µ1(|g1〉 〈e|+ |e〉 〈g1|) + µ2(|g2〉 〈e|+ |e〉 〈g2|),

Q1 =
√

Γ1 |g1〉 〈e| , Q2 =
√

Γ2 |g2〉 〈e| ,

and where dN1
t and dN2

t are independent Poisson increments with averages

E
(

dN1
t

)
= Tr

(
Q1ρQ†1

)
dt , E

(
dN2

t

)
= Tr

(
Q2ρQ†2

)
dt .



Λ-system: time scales

Quasi-resonant field:

u(t) = u1ei(ω1+∆e)t + u∗1e−i(ω1+∆e)t +u2ei(ω2+∆e+∆)t + u∗2e−i(ω2+∆e+∆)t ,

where ω1 = ωe − ωg1 and ω2 = ωe − ωg2, u1 and u2 are slowly varying
complex amplitudes and ∆e and ∆ are small detuning terms. We
have three time scales here:

the very fast time-scale associated to the optical frequencies ω1
and ω2;

the fast time-scale associated to the lifetimes of the excited
state’s transitions, Γ1 and Γ2;

the slow time-scale associated to the laser amplitudes |µ1u1|
and |µ2u2|.

We have

|µk uk | � Γk ′ � ωk ′′ and
∣∣∣∣ d
dt

uk

∣∣∣∣/|uk | � Γk ′ , k , k ′, k ′′ ∈ {1,2}.



Λ-system: RWA

Lindblad equation:

dρ
dt

= −i[H0 + u(t)H1, ρ] +
1
2

2∑
k=1

(
2QkρQ†k −Q†k Qkρ− ρQ†k Qk

)
.

Rotating frame: ρ(t)→ U†t ρ(t)Ut with

Ut = e−i(ωe|e〉〈e|+(ωg1−∆e)|g1〉〈g1|+(ωg2−∆e−∆)|g2〉〈g2|)t

Removing the highly oscillating terms of frequencies 2ω1 and 2ω2:

d
dt
ρ = −i[H̃, ρ] +

1
2

2∑
k=1

(2QkρQ†k −Q†k Qkρ− ρQ†k Qk ).

where

H̃ =
∆

2
(|g2〉 〈g2| − |g1〉 〈g1|) +

(
∆e +

∆

2

)
(|g1〉 〈g1|+ |g2〉 〈g2|)

+ Ω1 |g1〉 〈e|+ Ω∗1 |e〉 〈g1|+ Ω2 |g2〉 〈e|+ Ω∗2 |e〉 〈g2| .

where Ωk = µk uk are the slowly varying complex Rabi amplitudes.



Slow/fast dynamics

d
dt
ρ = −i[H̃, ρ] +

1
2

2∑
k=1

(2QkρQ†k −Q†kQkρ− ρQ†kQk ).

Time-scale separation:

|∆e|, |∆|, |Ωk | � Γk ′ and
∣∣∣∣ d
dt

Ωk

∣∣∣∣/|Ωk | � Γk ′ , k , k ′ ∈ {1,2}.

We take Γk = Γk/ε where ε is a small positive parameter and
Γk ’s are of the same order as H̃ :

d
dt
ρ = −i[H̃, ρ] +

2∑
k=1

Γk

2ε
(2σkρσ

†
k − σ

†
kσkρ− ρσ†kσk ),

where σk = |gk 〉 〈e|.



Singular perturbation techniques (1)

(Σε) : d
dt x = f (x , z, ε), ε d

dt z = g(x , z, ε)

Slow/fast system in Tikhonov normal; under some assumptions, the
slow approximation (also called quasi-static or adiabatic elimination),

consists in setting directly ε to 0 in the equation defining (Σε); this
yields to a differential-algebraic system d

dt x = f (x , z,0) where z is an
implicit function of x defined by 0 = g(x , z,0).



Singular perturbation techniques (2)

Tikhonov Theorem

Consider the singularly perturbed system :

(Σε) : d
dt x = f (x , z, ε), ε d

dt z = g(x , z, ε)

where (x , z) belongs to an open subset of Rn × Rp, f and g are smooth
functions, ε is a small positive parameter. Assume that

g(x , z, 0) = 0 admits a solution z = Φ(x), with Φ smooth function of x
and such that ∂g

∂z (x ,Φ(x), 0) is a stable matrix (eigenvalues with strictly
negative real parts).

the reduced slow sub-system d
dt x = f (x ,Φ(x), 0), x(0) = x0 admits a

unique solution x0(t) defined for t ∈ [0,T ], 0 < T < +∞ for some
T > 0.

Then, for ε > 0 small enough, (Σε) admits a unique solution (xε(t), zε(t))
defined on [0,T ] with initial condition (xε(0), zε(0)) = (x0, z0) as soon as z0

belongs to the attraction domain of the equilibrium Φ(x0) for the fast
sub-system, ε d

dt ζ = g(x0, ζ, 0). Moreover we have, for any η > 0,

lim
ε→0+

(
max

t∈[η,T ]

(
‖xε(t)− x0(t)‖+ ‖zε(t)− z0(t)‖

))
= 0.



Singular perturbation techniques (3)

Higher-order approximations and center manifold techniques

We consider a slow/fast system of the form

(Σε) : d
dt x = f (x , z, ε), ε d

dt z = −Az + εh(x , z)

where all the eigenvalues of the matrix A have strictly positive real parts.
The invariant attractive manifold admits for equation

z = εA−1h(x , 0) + O(ε2)

and the restriction of the dynamics on this slow invariant manifold reads

d
dt x = f (x , εA−1h(x , 0)) + O(ε2) = f (x , 0) + ε

∂f
∂z

∣∣∣∣
(x,0)

A−1h(x , 0) + O(ε2).

The second order term is then given by:

z = εA−1h(x , 0)+ε2A−1

(
∂h
∂z

∣∣∣∣
(x,0)

A−1h(x , 0)− A−1 ∂h
∂x

∣∣∣∣
(x,0)

f (x , 0)

)
+O(ε3),

and so on.



Singular perturbation techniques (4)

Roughly speaking, an approximation of order ν in ε of the slow invariant
manifold provides an approximation on time intervals of length of order 1

εν
as

sketched below:

z = 0 is an approximation of order 0; the slow reduced model
d
dt x = f (x , 0) is valid on time intervals of length 1.

z = εA−1h(x , 0) is an approximation of order 1: the slow reduced model
d
dt x = f (x , εA−1h(x , 0)) is valid on time intervals of length 1

ε
.

z = εA−1h(x , 0) + ε2A−1 ( ∂h
∂z |(x,0)A−1h(x , 0)− A−1 ∂h

∂x |(x,0)f (x , 0)
)

is an
approximation of order 2: the slow reduced model

d
dt x = f

(
x , εA−1h(x , 0) + ε2A−1

(
∂h
∂z
|(x,0)A

−1h(x , 0)− A−1 ∂h
∂x
|(x,0)f (x , 0)

))
is valid on time intervals of length 1

ε2 .



Singular perturbation for slow/fast Λ-system
Slow/fast system in non-standard form:

d
dt
ρ = −i[H̃, ρ] +

2∑
k=1

Γk

2ε
(2σkρσ

†
k − σ

†
kσkρ− ρσ†kσk ), σk = |gk 〉 〈e| .

Define, with P = |e〉 〈e|,

ρf = Pρ+ ρP − PρP , ρs = (1− P)ρ(1− P) +
1

Γ1 + Γ2

2∑
k=1

Γk σkρσ
†
k .

ρs remains a density matrix but not ρf . We have

ρ = ρs + ρf −
1

Γ1 + Γ2

2∑
k=1

Γk σkρfσ
†
k

and therefore ρ 7→ (ρf , ρs) is a bijective map (change of variables).
Slow/fast system in standard form:

d
dt
ρf = −

(
Γ1 + Γ2

)
2ε

(ρf + Pρf P)− i(P[H̃, ρ] + [H̃, ρ]P − P[H̃, ρ]P),

i
d
dt
ρs = (1− P)[H̃, ρ](1− P) +

1
Γ1 + Γ2

2∑
k=1

Γkσk [H̃, ρ]σ†k .



1st order slow/fast approximation for Λ-system

The system is of the form (x ∼ ρs, z ∼ ρf )

(Σε) : d
dt x = f (x , z, ε), ε d

dt z = −Az + εh(x , z)

where A is a positive definite super-operator sending ρf to ρf + Pρf P. Its
inverse A−1 is given by

ρf 7→ ρf −
1
2

Pρf P.

First order approximation for ρf :

ρf =
−2iε

Γ1 + Γ2
(PH̃ρs − ρsH̃P) + O(ε2).

First order dynamics for ρs:

d
dt
ρs = −i[H, ρs] +

ε

2

2∑
k=1

(
2QkρsQ

†
k −Q

†
k Qkρs − ρsQ

†
k Qk

)
where we have defined

H = (1− P)H̃(1− P) and Qk =
2
√

Γk

Γ1 + Γ2
(1− P)σk H̃(1− P).



Slow/fast approximation for Λ-system

Theorem

Consider ρ the solution of the Lindblad master equation

d
dt
ρ = −i[H̃, ρ] +

2∑
k=1

Γk

2ε
(2σkρσ

†
k − σ

†
kσkρ− ρσ†kσk ),

with 0 < ε� 1 and ρs the solution of the slow master equation

d
dt
ρs = −i[H, ρs] +

ε

2

2∑
k=1

(
2QkρsQ

†
k −Q

†
k Qkρs − ρsQ

†
k Qk

)
with

H = (1− P)H̃(1− P) and Qk =
2
√

Γk

Γ1 + Γ2
(1− P)σk H̃(1− P).

Assume for the initial states
‖ρ(0)− ρs(0)‖ =

√
Tr ((ρ(0)− ρs(0))(ρ(0)− ρs(0))) = O(ε). Then

‖ρ(t)− ρs(t)‖ =
√

Tr ((ρ(t)− ρs(t))(ρ(t)− ρs(t))) = O(ε)

on a time scale t ∼ 1/ε.



Slow/fast approximation: summary

The slow approximation (also called by physicists adiabatic approximation) of
the system described by

d
dt
ρ = −i[H̃, ρ] +

1
2

2∑
k=1

(
2QkρQ†k −Q†k Qkρ− ρQ†k Qk

)
with Qk =

√
Γk |gk 〉 〈e| and where the Γk ’s are much larger than H̃, is given by

d
dt
ρs = −i[Hs, ρs] +

1
2

2∑
k=1

(
2Qs,kρsQ†s,k −Q†s,k Qs,kρs − ρsQ†s,k Qs,k

)
where ρs is the density operator associated with the space spanned by the
|g1〉 and |g2〉, and where the slow Hamiltonian and the slow jump operators
are (P = |e〉 〈e|)

Hs = (1− P)H̃(1− P) and Qs,k =
2

Γ1 + Γ2
Qk H̃(1− P), k ∈ {1, 2}.



Reduced Monte-Carlo trajectories (1)

We have

Hs =
∆

2
(|g2〉 〈g2| − |g1〉 〈g1|) + (∆e +

∆

2
)(|g1〉 〈g1|+ |g2〉 〈g2|).

and

Qs,k = 2
√

Γk

√
|Ω1|2 + |Ω2|2

Γ1 + Γ2
|gk 〉 〈bΩ| with |bΩ〉 =

Ω1 |g1〉+ Ω2 |g2〉√
|Ω1|2 + |Ω2|2

.

The slow master equation lives on the Hilbert space spanned by |g1〉 and |g2〉.

Reduced stochastic master equation:

dρs = −i
∆

2
[|g2〉 〈g2| − |g1〉 〈g1| , ρs] dt

−
1
2

(
Q†s,1Qs,1ρs + ρsQ†s,1Qs,1

)
dt+Tr

(
Qs,1ρsQ†s,1

)
ρsdt+

 Qs,1ρsQ†s,1

Tr
(

Qs,1ρsQ†s,1
) − ρs

 dNs,1
t

−
1
2

(
Q†s,2Qs,2ρs + ρsQ†s,2Qs,2

)
dt+Tr

(
Qs,2ρsQ†s,2

)
ρsdt+

 Qs,2ρsQ†s,2

Tr
(

Qs,2ρsQ†s,2
) − ρs

 dNs,2
t .



Reduced Monte-Carlo trajectories (2)

Here dNs,1
t and dNs,2

t are independent Poisson increments with averages

E
(

dNs,1
t

)
= Tr

(
Qs,1ρsQ†s,1

)
dt = 4Γ1

|Ω1|2 + |Ω2|2

(Γ1 + Γ2)2 Tr (|bΩ〉 〈bΩ| ρs)dt

E
(

dNs,2
t

)
= Tr

(
Qs,2ρsQ†s,2

)
dt = 4Γ2

|Ω1|2 + |Ω2|2

(Γ1 + Γ2)2 Tr (|bΩ〉 〈bΩ| ρs)dt .



Reduced Monte-Carlo trajectories (3)

We define

γk = 4Γk
|Ω1|2 + |Ω2|2

(Γ1 + Γ2)2 , k ∈ {1, 2},

the evolution through the time interval (t , t + dt) can be interpreted as below:

ρs jumps into the ground state |g1〉 〈g1| with probability
dtγ1Tr (|bΩ〉 〈bΩ| ρs(t));

or it jumps into the ground state |g2〉 〈g2| with probability
dtγ2Tr (|bΩ〉 〈bΩ| ρs(t));

or finally, it evolves through the dynamics

d
dt
ρs = −i

∆

2
[|g2〉 〈g2| − |g1〉 〈g1| , ρs]

− (γ1 + γ2)

2

(
|bΩ〉 〈bΩ| ρs + ρs |bΩ〉 〈bΩ| − 2Tr (|bΩ〉 〈bΩ| ρs)ρs

)
,

with probability 1− dt(γ1 + γ2)Tr (|bΩ〉 〈bΩ| ρs(t)).



Physical interpretation

the state |bΩ〉 is often called the bright state and the orthogonal state

|dΩ〉 =
Ω∗2√

|Ω1|2 + |Ω2|2
|g1〉 −

Ω∗1√
|Ω1|2 + |Ω2|2

|g2〉

is called the dark state. Indeed, the probability of jumping towards one of the
ground states by emitting a photon is proportional to the population of the
bright state |bΩ〉. Therefore, whenever the system is in the state |dΩ〉, no
photon will be emitted: hence the name of the dark state.

Theorem

Whenever ∆ = 0, the density matrix ρs, solution of the reduced slow
stochastic master equation converges almost surely towards the dark state
|dΩ〉 〈dΩ|.

Remark

The phenomenon of converging towards the dark state is often referred as
the coherent population trapping in the physics literature. The target state
can be controlled via the ratio Ω1/Ω2. The case Ω2 = 0 (|dΩ〉 = |g2〉)
corresponds to the optical pumping phenomena.



Proof of coherent population trapping

We consider the Markov process:

ft = Tr (|dΩ〉 〈dΩ| ρ(t)).

We can easily compute the evolution of the expectation value of ft :

d
dt
E (ft ) =

γ1|Ω2|2 + γ2|Ω1|2

|Ω1|2 + |Ω2|2
(

1−E (ft )
)
.

This, together with the fact that ft ∈ [0, 1], implies that

lim
t→∞

E (ft ) = 1.

Finally, this together with the dominated convergence theorem implies the
almost sure convergence.
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