Modeling and Control of Quantum Systems

Mazyar Mirrahimi Pierre Rouchon

mazyar.mirrahimi@inria.fr pierre.rouchon@ensmp.fr

http://cas.ensmp.fr/~rouchon/QuantumSyst/index.html

Lecture 6: December 6th, 2010

(日) (日) (日) (日) (日) (日) (日)

1 Measurement uncertainties, Bayesian filter and decoherence

- 2 Markov chains, martingales and convergence theorems
- 3 Asymptotic behavior of LKB-Photon box (dispersive case)

(日) (日) (日) (日) (日) (日) (日)

- 4 Quantum separation principle
- 5 Lyapunov feedback for LKB-photon box
- 6 Realistic closed-loop simulations

Measurement in |g angle

$$|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle + |e\rangle \otimes \mathcal{M}_{e}|\psi\rangle \longrightarrow \frac{|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle}{\left\|\mathcal{M}_{g}|\psi\rangle\right\|_{\mathcal{H}}},$$

Measurement in $|e\rangle$

$$|\boldsymbol{g}
angle \otimes \mathcal{M}_{\boldsymbol{g}}|\psi
angle + |\boldsymbol{e}
angle \otimes \mathcal{M}_{\boldsymbol{e}}|\psi
angle \longrightarrow rac{|\boldsymbol{e}
angle \otimes \mathcal{M}_{\boldsymbol{e}}|\psi
angle}{\left\|\mathcal{M}_{\boldsymbol{e}}|\psi
angle\right\|_{\mathcal{H}}},$$

The atom-detector does not always detect the atoms. Therefore 3 outcomes: Atom in $|g\rangle$, Atom in $|e\rangle$, No detection

Best estimate for the no-detection case

$$\mathbb{E}\left(\left|\psi\right\rangle_{+} \mid \left|\psi\right\rangle\right) = \left\|\mathcal{M}_{g}\left|\psi\right\rangle\right\|_{\mathcal{H}} \mathcal{M}_{g}\left|\psi\right\rangle + \left\|\mathcal{M}_{e}\left|\psi\right\rangle\right\|_{\mathcal{H}} \mathcal{M}_{e}\left|\psi\right\rangle$$

This is not a well-defined wavefunction

Barycenter in the sense of geodesics of $\mathbb{S}(\mathcal{H})$ not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space $\mathbb{CP}(\mathcal{H})\equiv\mathbb{S}(\mathcal{H})/\mathbb{S}^1$

Why density matrices (3)

Projector over the state $|\psi\rangle$: $P_{|\psi\rangle} = |\psi\rangle \langle \psi|$

Detection in $|g\rangle$: the projector is given by

$$\boldsymbol{P}_{|\psi_{+}\rangle} = \frac{\mathcal{M}_{g} |\psi\rangle \langle\psi| \mathcal{M}_{g}^{\dagger}}{\left\|\mathcal{M}_{g} |\psi\rangle\right\|_{\mathcal{H}}^{2}} = \frac{\mathcal{M}_{g} |\psi\rangle \langle\psi| \mathcal{M}_{g}^{\dagger}}{\left|\left\langle\psi | \mathcal{M}_{g}^{\dagger}\mathcal{M}_{g} |\psi\rangle\right|^{2}} = \frac{\mathcal{M}_{g} |\psi\rangle \langle\psi| \mathcal{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{g} |\psi\rangle \langle\psi| \mathcal{M}_{g}^{\dagger}\right)}$$

Detection in $|e\rangle$: the projector is given by

$$\boldsymbol{P}_{|\psi_{+}\rangle} = \frac{\mathcal{M}_{\boldsymbol{e}} |\psi\rangle \langle \psi| \mathcal{M}_{\boldsymbol{e}}^{\dagger}}{\mathsf{Tr} \left(\mathcal{M}_{\boldsymbol{e}} |\psi\rangle \langle \psi| \mathcal{M}_{\boldsymbol{e}}^{\dagger} \right)}$$

Probabilities:

$$p_{g} = \operatorname{Tr}\left(\mathcal{M}_{g}\ket{\psi}ra{\psi}\mathcal{M}_{g}^{\dagger}
ight)$$
 and $p_{e} = \operatorname{Tr}\left(\mathcal{M}_{e}\ket{\psi}ra{\psi}\mathcal{M}_{e}^{\dagger}
ight)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why density matrices (4)

Imperfect detection: barycenter

$$\begin{split} |\psi\rangle \langle \psi| &\longrightarrow p_g \frac{\mathcal{M}_g |\psi\rangle \langle \psi| \mathcal{M}_g^{\dagger}}{\operatorname{Tr} \left(\mathcal{M}_g |\psi\rangle \langle \psi| \mathcal{M}_g^{\dagger} \right)} + p_e \frac{\mathcal{M}_e |\psi\rangle \langle \psi| \mathcal{M}_e^{\dagger}}{\operatorname{Tr} \left(\mathcal{M}_e |\psi\rangle \langle \psi| \mathcal{M}_e^{\dagger} \right)} \\ &= \mathcal{M}_g |\psi\rangle \langle \psi| \mathcal{M}_g^{\dagger} + \mathcal{M}_e |\psi\rangle \langle \psi| \mathcal{M}_e^{\dagger}. \end{split}$$

This is not anymore a projector: no well-defined wave function

New state space of quantum states ρ :

$$\mathcal{X} = \{ \rho \in \mathcal{L}(\mathcal{H}) \mid \rho^{\dagger} = \rho, \rho \ge 0, \text{Tr}(\rho) = 1 \}$$

Pure quantum states ρ correspond to rank 1 projectors and thus to wave functions $|\psi\rangle$ with $\rho = |\psi\rangle \langle \psi|$.

What if we do not detect the atoms after they exit R_2 ?

The "best estimate" of the cavity state is given by its expectation value

$$\rho_{+} = \boldsymbol{p}_{g,k} \mathbb{M}_{g}(\rho) + \boldsymbol{p}_{e,k} \mathbb{M}_{e}(\rho) = \mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger} + \mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger} =: \mathbb{K}(\rho).$$

This linear map is called the Kraus map associated to the Kraus operators \mathcal{M}_g and \mathcal{M}_e .

In the same way and through a Bayesian filter we can take into account various uncertainties.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Some uncertainties

Pulse occupation The probability that a pulse is occupied by an atom is given by η_a ($\eta_a \in (0, 1]$ is called the pulse occupancy rate);

Detector efficiency The detector can miss an atom with a probability of $1 - \eta_d$ ($\eta_d \in (0, 1]$ is called the detector's efficiency rate);

Detector faults The detector can make a mistake by detecting an atom in $|g\rangle$ while it is in the state $|e\rangle$ or vice-versa; this happens with a probability of η_f ($\eta_f \in [0, 1/2]$ is called the detector's fault rate);

We basically have three possibilities for the detection output:

Atom detected in $|g\rangle$ either the atom is really in the state $|g\rangle$ or the detector has made a mistake and it is actually in the state $|e\rangle$;

Atom detected in $|e\rangle$ either the atom is really in the state $|e\rangle$ or the detector has made a mistake and it is actually in the state $|g\rangle$;

No atom detected either the pulse has been empty or the detector has missed the atom.

Atom detected in |g angle

Either the atom is actually in the state $|e\rangle$ and the detector has made a mistake by detecting it in $|g\rangle$ (this happens with a probability p_g^f) or the atom is really in the state $|g\rangle$ (this happens with probability $1 - p_g^f$).

Conditional probablity p_q^f : We apply the Bayesian formula

$$p_g^f = rac{\eta_f p_e}{\eta_f p_e + (1 - \eta_f) p_g},$$

where $p_g = \text{Tr} \left(\mathcal{M}_g
ho \mathcal{M}_g^\dagger
ight)$ and $p_e = \text{Tr} \left(\mathcal{M}_e
ho \mathcal{M}_e^\dagger
ight)$

Conditional evolution of density matrix:

$$\rho_{+} = p_{g}^{f} \mathbb{M}_{e}(\rho) + (1 - p_{g}^{f}) \mathbb{M}_{g}(\rho)$$

$$= \frac{\eta_{f}}{\eta_{f} p_{e} + (1 - \eta_{f}) p_{g}} \mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger} + \frac{1 - \eta_{f}}{\eta_{f} p_{e} + (1 - \eta_{f}) p_{g}} \mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}.$$

In the same way

$$\rho_{+} = \frac{\eta_{f}}{\eta_{f} \rho_{g} + (1 - \eta_{f}) \rho_{e}} \mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger} + \frac{1 - \eta_{f}}{\eta_{f} \rho_{g} + (1 - \eta_{f}) \rho_{e}} \mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Either the pulse has been empty (this happens with a probability p_{na}) or there has been an atom which has not been detected by the detector (this happens with the probability $1 - p_{na}$).

Conditional probability p_{na}:

$$p_{na} = \frac{1 - \eta_a}{\eta_a (1 - \eta_d) + (1 - \eta_a)} = \frac{1 - \eta_a}{1 - \eta_a \eta_d}$$

In such case the density matrix remains untouched. The undetected atom case leads to an evolution of the density matrix through the Kraus representation.

Conditional evolution:

$$\begin{split} \rho_{+} &= p_{\mathrm{na}} \ \rho + (1 - p_{\mathrm{na}}) (\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger} + \mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}) \\ &= \frac{1 - \eta_{a}}{1 - \eta_{a} \eta_{d}} \rho + \frac{\eta_{a} (1 - \eta_{d})}{1 - \eta_{a} \eta_{d}} (\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger} + \mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}). \end{split}$$

Absorption of photon by cavity mirrors characterized by photon life-time inside the cavity $T_{cav} = 1/\kappa_{loss}$. When $T_{cav} \gg \tau_a (\tau_a \text{ sampling time, time interval between two atoms})^1$:

$$\rho_{+} = \begin{cases} \frac{\mathcal{M}_{\text{loss}} \rho \mathcal{M}_{\text{loss}}^{\dagger}}{\text{Tr}(\mathcal{M}_{\text{loss}} \rho \mathcal{M}_{\text{loss}}^{\dagger})} = \frac{a\rho a^{\dagger}}{\text{Tr}(\mathbf{N}\rho)} & \text{prob. } \kappa_{\text{loss}} \tau_{a} \text{Tr}(\mathbf{N}\rho); \\ \frac{\mathcal{M}_{\text{no-loss}} \rho \mathcal{M}_{\text{no-loss}}^{\dagger}}{\text{Tr}(\mathcal{M}_{\text{no-loss}} \rho \mathcal{M}_{\text{no-loss}}^{\dagger})} & \text{prob. } 1 - \kappa_{\text{loss}} \tau_{a} \text{Tr}(\mathbf{N}\rho); \end{cases}$$

where, up to second order terms in $\kappa_{loss} \tau_a$,

 $\mathcal{M}_{\mathsf{loss}} = \sqrt{\kappa_{\mathsf{loss}} au_a} a, \qquad \mathcal{M}_{\mathsf{no-loss}} = \mathbf{1} - rac{\kappa_{\mathsf{loss}} au_a}{2} a^{\dagger} a.$

Associated Kraus map:

$$egin{aligned} &
ho \mapsto \mathcal{M}_{ ext{loss}}
ho \mathcal{M}_{ ext{loss}}^{\dagger} + \mathcal{M}_{ ext{no-loss}}
ho \mathcal{M}_{ ext{no-loss}}^{\dagger} \ &=
ho + \kappa_{ ext{loss}} au_{a} \left(oldsymbol{a}
ho oldsymbol{a}^{\dagger} - rac{1}{2} oldsymbol{a}^{\dagger} oldsymbol{a}
ho - rac{1}{2}
ho oldsymbol{a}^{\dagger} oldsymbol{a}
ight), \end{aligned}$$

¹LKB Experimental setup: $\tau_a \sim 10^{-4}$ s and $T_{cav} \sim 10^{-1}$ s. (I) (I) $\tau_a \sim 10^{-4}$ s and $T_{cav} \sim 10^{-1}$ s.

Cavity decay and thermal photons (1)

The thermal photon gain can be treated through the measurement operator $\mathcal{M}_{gain} = \sqrt{\kappa_{gain} \tau_a} a^{\dagger}$ instead of $\mathcal{M}_{loss} = \sqrt{\kappa_{loss} \tau_a} a$ where κ_{loss} and κ_{gain} are expressed in term of cavity decay time T_{cav} and n_{th} thermal photon number²

$$\kappa_{ ext{loss}} = rac{1+n_{ ext{th}}}{T_{ ext{cav}}}, \qquad \kappa_{ ext{gain}} = rac{n_{ ext{th}}}{T_{ ext{cav}}}.$$

Up to second order term in $\frac{\tau_a}{T_{cav}}$ we have

$$\rho_{+} = \begin{cases} \frac{\mathcal{M}_{\text{loss}}\rho\mathcal{M}_{\text{loss}}^{\dagger}}{\text{Tr}(\mathcal{M}_{\text{loss}}\rho\mathcal{M}_{\text{loss}}^{\dagger})} = \frac{a\rho a^{\dagger}}{\text{Tr}(\mathbf{N}\rho)} & \text{prob. } \rho_{\text{loss}} = \kappa_{\text{loss}}\tau_{a}\text{Tr}(\mathbf{N}\rho); \\ \frac{\mathcal{M}_{\text{gain}}\rho\mathcal{M}_{\text{gain}}^{\dagger}}{\text{Tr}(\mathcal{M}_{\text{gain}}\rho\mathcal{M}_{\text{gain}}^{\dagger})} = \frac{a^{\dagger}\rho a}{\text{Tr}((\mathbf{N}+1)\rho)} & \text{prob. } \rho_{\text{gain}} = \kappa_{\text{gain}}\tau_{a}\text{Tr}((\mathbf{N}+1)\rho); \\ \frac{\mathcal{M}_{\text{loo}}\rho\mathcal{M}_{\text{loo}}^{\dagger}}{\text{Tr}(\mathcal{M}_{\text{loo}}\rho\mathcal{M}_{\text{loo}}^{\dagger})} & \text{prob. } 1 - \rho_{\text{loss}} - \rho_{\text{gain}}; \end{cases}$$

with

$$\mathcal{M}_{no} = \mathbf{1} - \frac{\kappa_{\text{loss}}\tau_a}{2} a^{\dagger} a - \frac{\kappa_{\text{gain}}\tau_a}{2} a a^{\dagger} = (1 - \frac{\kappa_{\text{gain}}\tau_a}{2}) \mathbf{1} - \frac{(\kappa_{\text{loss}} + \kappa_{\text{gain}})\tau_a}{2} \mathbf{N}.$$
²LKB Experimental setup: $n_{\text{th}} \sim \frac{1}{20}$.

The Kraus map reads:

$$\begin{split} \rho &\mapsto \mathcal{M}_{\text{loss}} \rho \mathcal{M}_{\text{loss}}^{\dagger} + \mathcal{M}_{\text{gain}} \rho \mathcal{M}_{\text{gain}}^{\dagger} + \mathcal{M}_{\text{no}} \rho \mathcal{M}_{\text{no}}^{\dagger} \\ &= \rho + \frac{(1 + n_{\text{th}})\tau_a}{T_{\text{cav}}} \left(a\rho a^{\dagger} - \frac{1}{2}a^{\dagger}a\rho - \frac{1}{2}\rho a^{\dagger}a \right) \\ &+ \frac{n_{\text{th}}\tau_a}{T_{\text{cav}}} \left(a^{\dagger}\rho a - \frac{1}{2}aa^{\dagger}\rho - \frac{1}{2}\rho aa^{\dagger} \right) \end{split}$$

Convergence of a random process

Consider (X_n) a sequence of random variables defined on the probability space ($\Omega, \mathcal{F}, \mathbb{P}$) and taking values in a Banach space \mathcal{X} . The random process X_n is said to,

1 converge in probability towards the random variable X if for all $\epsilon > 0$,

 $\lim_{n\to\infty}\mathbb{P}\left(|X_n-X|>\epsilon\right)=\lim_{n\to\infty}\mathbb{P}\left(\omega\in\Omega\mid \|X_n(\omega)-X(\omega)\|>\epsilon\right)=0;$

2 converge almost surely towards the random variable X if

$$\mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = \mathbb{P}\left(\omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) = X(\omega)\right) = 1;$$

3 converge in mean towards the random variable X if

 $\lim_{n\to\infty}\mathbb{E}\left(\|X_n-X\|\right)=0.$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Mean convergence implies convergence in probability. Almost sure convergence implies convergence in probability.

Markov process

The sequence $(X_n)_{n=1}^{\infty}$ is called a Markov process, if for n' > n and any measurable real function f(x) with $\sup_x |f(x)| < \infty$,

$$\mathbb{E}\left(f(X_{n'})\mid X_1,\ldots,X_n\right)=\mathbb{E}\left(f(X_{n'})\mid X_n\right).$$

Martingales

The sequence $(X_n)_{n=1}^{\infty}$ is called respectively a *supermartingale*, a *submartingale* or a martingale, if $\mathbb{E}(||X_n||) < \infty$ for $n = 1, 2, \cdots$, and

 $\mathbb{E}\left(X_n \mid X_1, \dots, X_m\right) \leq X_m \qquad (\mathbb{P} \text{ almost surely}), \qquad n \geq m,$

or

$$\mathbb{E}\left(X_n \mid X_1, \dots, X_m
ight) \geq X_m \qquad (\mathbb{P} ext{ almost surely}), \qquad n \geq m,$$

or finally,

 $\mathbb{E}(X_n \mid X_1, \dots, X_m) = X_m \qquad (\mathbb{P} \text{ almost surely}), \qquad n \geq m.$

(日) (日) (日) (日) (日) (日) (日)

Doob's Inequality

Let $\{X_n\}$ be a Markov chain on state space \mathcal{X} . Suppose that there is a non-negative function V(x) satisfying $\mathbb{E}(V(X_1) | X_0 = x) - V(x) = -k(x)$, where $k(x) \ge 0$ on the set $\{x : V(x) < \lambda\} \equiv Q_{\lambda}$. Then

$$\mathbb{P}\left(\sup_{\infty>n\geq 0}V(X_n)\geq \lambda\mid X_0=x\right)\leq \frac{V(x)}{\lambda}.$$

Corollary: stability in probability

Consider the same assumptions as in the above theorem. Assume moreover that there exists $\bar{x} \in \mathcal{X}$ such that $V(\bar{x}) = 0$ and that $V(x) \neq 0$ for all x different from \bar{x} . Then the Doob's inequality implies that the Markov process X_n is **stable in probability** around \bar{x} , i.e.

$$\lim_{x\to\bar{x}}\mathbb{P}\left(\sup_{n}\|X_{n}-\bar{x}\|\geq\epsilon\mid X_{0}=x\right)=0,\qquad\forall\epsilon>0.$$

(日) (日) (日) (日) (日) (日) (日)

Kushner's invariance Theorem

Consider the same assumptions as that of the Doob's inequality. Let $\mu_0 = \sigma$ be concentrated on a state $x_0 \in Q_\lambda$, i.e. $\sigma(x_0) = 1$. Assume that $0 \le k(X_n) \to 0$ in Q_λ implies that $X_n \to \{x \mid k(x) = 0\} \cap Q_\lambda \equiv K_\lambda$. For the trajectories never leaving Q_λ , X_n converges to K_λ almost surely. Also, the associated conditioned probability measures $\tilde{\mu}_n$ tend to the largest invariant set of measures $M_\infty \subset M$ whose support set is in K_λ . Finally, for the trajectories never leaving Q_λ , X_n converges, in probability, to the support set of M_∞ .

Corollary: global stability

Consider the same assumptions as in the above theorem and assume moreover that $\bar{x} \in \mathcal{X}$ is the only point in Q_{λ} such that $V(\bar{x}) = 0$ and furthermore that the set K_{λ} is reduced to $\{\bar{x}\}$ (strict Lyapunov function). Then the equilibrium \bar{x} is **globally stable in probability** in the set Q_{λ} , i.e. \bar{x} is stable in probability and moreover

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=\bar{x}\mid X_n \text{ never leaves } Q_\lambda\right)=1.$$

Open-loop convergence of LKB-photon box (1)

Restriction to finite dimensional subspace spanned by the $n^{max} + 1$ first modes $\{|0\rangle, |1\rangle, \dots, |n^{max}\rangle\}$.

 $\mathbf{N} = \operatorname{diag}(0, 1, \dots, n^{\max}), \qquad a |0\rangle = 0, \quad a |n\rangle = \sqrt{n} |n-1\rangle.$

The truncated creation operator a^{\dagger} is the Hermitian conjugate of *a*. We still have $\mathbf{N} = a^{\dagger}a$, but truncation does not preserve the usual commutation $[a, a^{\dagger}] = 1$ (this is only valid when $n^{\max} = \infty$).

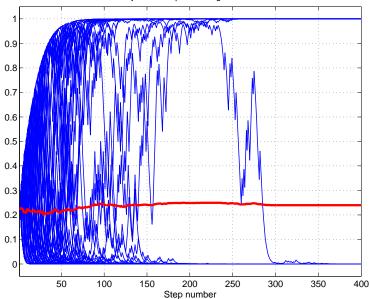
The Markov chain of state ρ ($\rho^{\dagger} = \rho$, $\rho \ge 0$ and Tr (ρ) = 1):

$$\rho_{k+1} = \begin{cases} \mathbb{M}_{g}(\rho_{k}) = \frac{\mathcal{M}_{g}\rho_{k}\mathcal{M}_{g}^{\dagger}}{\operatorname{Tr}(\mathcal{M}_{g}\rho_{k}\mathcal{M}_{g}^{\dagger})}, & \text{prob. } p_{g,k} = \operatorname{Tr}\left(\mathcal{M}_{g}\rho_{k}\mathcal{M}_{g}^{\dagger}\right); \\ \mathbb{M}_{e}(\rho_{k}) = \frac{\mathcal{M}_{e}\rho_{k}\mathcal{M}_{e}^{\dagger}}{\operatorname{Tr}(\mathcal{M}_{e}\rho_{k}\mathcal{M}_{e}^{\dagger})}, & \text{prob. } p_{e,k} = \operatorname{Tr}\left(\mathcal{M}_{e}\rho_{k}\mathcal{M}_{e}^{\dagger}\right). \end{cases}$$

with \mathcal{M}_g and \mathcal{M}_e diagonal operators (dispersive atom/cavity interaction)

$$\mathcal{M}_g = \cos(\varphi_0 + N\vartheta), \quad \mathcal{M}_e = \sin(\varphi_0 + N\vartheta)$$

100 Monte-Carlo simulations ($\langle 3 | \rho_k | 3 \rangle$ versus *k*)



Fidelity between ρ and the goal Fock state

Theorem

Consider the Markov process defined above with an initial density matrix ρ_0 . Assume that the parameters φ_0 , ϑ are chosen in order to have $\mathcal{M}_g = \cos(\varphi_0 + N\vartheta)$, $\mathcal{M}_e = \sin(\varphi_0 + N\vartheta)$ invertible and such that the spectrum of $\mathcal{M}_g^{\dagger}\mathcal{M}_g = \mathcal{M}_g^2$ and $\mathcal{M}_e^{\dagger}\mathcal{M}_e = \mathcal{M}_e^2$ are not degenerate. Then

- 1 for any $n \in \{0, ..., n^{\max}\}$, $Tr(\rho_k | n \rangle \langle n |) = \langle n | \rho_k | n \rangle$ is a martingale
- 2 ρ_k converges with probability 1 to one of the $n^{\max} + 1$ Fock state $|n\rangle \langle n|$ with $n \in \{0, ..., n^{\max}\}$.
- 3 the probability to converge towards the Fock state $|n\rangle \langle n|$ is given by $Tr(\rho_0 |n\rangle \langle n|) = \langle n| \rho_0 |n\rangle$.

The proof of point 2 is based on the Lyapunov functions

$$V_n(\rho) = f(\langle n|\rho|n\rangle) = \frac{\langle n|\rho|n\rangle + (\langle n|\rho|n\rangle)^2}{2}$$

where $f(x) = \frac{x+x^2}{2}$.

Since
$$f(x) = \frac{x+x^2}{2}$$
 obeys to the following convexity identity
 $\forall (x, y, \theta) \in [0, 1], \quad \theta f(x) + (1-\theta)f(y) = \frac{\theta(1-\theta)}{2}(x-y)^2 + f(\theta x + (1-\theta)y)$
we have for any $n, (\varphi_n = \varphi_0 + n\vartheta)$

$$\mathbb{E}\left(V_n(\theta_{n-1}x) \mid \theta_n\right) = V_n(\theta_n) = 0$$

$$\frac{\operatorname{Tr}\left(\mathcal{M}_{g}\rho_{k}\mathcal{M}_{g}^{\dagger}\right)\operatorname{Tr}\left(\mathcal{M}_{e}\rho_{k}\mathcal{M}_{e}^{\dagger}\right)(\langle n|\rho_{k}|n\rangle)^{2}}{2}\left(\frac{\cos^{2}\varphi_{n}}{\operatorname{Tr}\left(\mathcal{M}_{g}\rho_{k}\mathcal{M}_{g}^{\dagger}\right)}-\frac{\sin^{2}\varphi_{n}}{\operatorname{Tr}\left(\mathcal{M}_{e}\rho_{k}\mathcal{M}_{e}^{\dagger}\right)}\right)^{2}.$$

Thus $V_n(\rho_k) = f(\langle n | \rho_k | n \rangle)$ is also a sub-martingale, $\mathbb{E}(V_n(\rho_{k+1}) | \rho_k) \ge V_n(\rho_k)$. Moreover, $\mathbb{E}(V_n(\rho_{k+1}) | \rho_k) = V_n(\rho_k)$ implies that either $\langle n | \rho_k | n \rangle = 0$ or Tr $(\mathcal{M}_g \rho_k \mathcal{M}_g^{\dagger}) = \cos^2 \varphi_n$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

For each *n*, we apply now the Kushner's invariance theorem to the Markov process ρ_k and the sub-martingale $V_n(\rho_k)$. This theorem implies that the Markov process ρ_k converges in probability to the largest invariant subset of

$$\left\{\rho \mid \mathrm{Tr}\left(\mathcal{M}_{g}\rho\mathcal{M}_{g}^{\dagger}\right) = \cos^{2}\varphi_{n} \text{ or } \langle n|\rho|n\rangle = 0\right\}.$$

We have

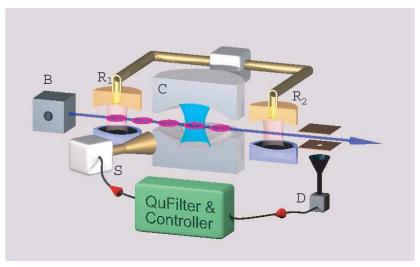
• the set $\{\rho \mid \langle n | \rho | n \rangle = 0\}$ is invariant.

The largest invariant subset included in $\left\{ \rho \mid \operatorname{Tr} \left(\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger} \right) = \cos^{2} \varphi_{n} \right\}$ is reduced to $\{ |n\rangle \langle n| \}$

This yields convergence in probability.

Additional technical arguments (dominate convergence and Doob's first martingale convergence theorem, see the notes) ensure almost-sure convergence.

LKB-photon box: feedback control



Controlled coherent field injection inside the cavity between two atom passages.

LKB-photon box: model with control

Coherent field injection:

$$\rho_+ = \mathbb{D}_{\alpha}(\rho) := D_{\alpha}\rho D_{\alpha}^{\dagger},$$

where $D_{\alpha} = \exp(\alpha a^{\dagger} - \alpha^* a)$ is a unitary operator called the displacement operator. Remember that $D_{\alpha}^{\dagger} = D_{-\alpha}$ and $D_0 = \mathbf{1}$ and

$$|\alpha\rangle = D_{\alpha} |0\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$

Controlled Markov chain:

$$\rho_{k+1} = \mathbb{M}_{s_k}(\rho_{k+\frac{1}{2}}), \qquad \rho_{k+\frac{1}{2}} = \mathbb{D}_{\alpha_k}(\rho_k).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Quantum filter for feedback control

$$\rho_{k+1} = \mathbb{M}_{s_k}(\rho_{k+\frac{1}{2}}), \qquad \rho_{k+\frac{1}{2}} = \mathbb{D}_{\alpha_k}(\rho_k).$$

We wish to find the control α_k as a function of the *k* first measured jumps. In this aim we need to estimate the state of the system.

We start with the ideal case (no measurement uncertainties nor decoherence): Best estimate is given by the system dynamics itself.

Quantum filter

$$\rho_{k+1}^{\mathsf{est}} = \mathbb{M}_{s_k}(\rho_{k+\frac{1}{2}}^{\mathsf{est}}), \qquad \rho_{k+\frac{1}{2}}^{\mathsf{est}} = \mathbb{D}_{\alpha_k}(\rho_k^{\mathsf{est}}),$$

(日) (日) (日) (日) (日) (日) (日)

where the values for $s_k \in \{g, e\}$ are given by the measurement results and α_k is a function of ρ_k^{est} : $\alpha_k = \alpha(\rho_k^{\text{est}})$.

A quantum separation principle

System+Filter dynamics:

$$\begin{split} \rho_{k+1} &= \mathbb{M}_{s_k}(\rho_{k+\frac{1}{2}}), \qquad \rho_{k+\frac{1}{2}} = \mathbb{D}_{\alpha_k}(\rho_k), \\ \rho_{k+1}^{\text{est}} &= \mathbb{M}_{s_k}(\rho_{k+\frac{1}{2}}^{\text{est}}), \qquad \rho_{k+\frac{1}{2}}^{\text{est}} = \mathbb{D}_{\alpha_k}(\rho_k^{\text{est}}), \end{split}$$

where s_k takes the values g or e with probabilities $p_{g,k}$ and $p_{e,k}$ given by

$$\boldsymbol{p}_{g,k} = \operatorname{Tr}\left(\mathcal{M}_{g}\boldsymbol{\rho}_{k+\frac{1}{2}}\mathcal{M}_{g}^{\dagger}\right), \qquad \boldsymbol{p}_{e,k} = \operatorname{Tr}\left(\mathcal{M}_{e}\boldsymbol{\rho}_{k+\frac{1}{2}}\mathcal{M}_{e}^{\dagger}\right)$$

and where $\alpha_k = \alpha(\rho_k^{\text{est}})$.

Theorem: a quantum separation principle

Consider a closed-loop system of the above form. Assume moreover that, whenever $\rho_0^{\text{est}} = \rho_0$ (so that the quantum filter coincides with the closed-loop dynamics, $\rho^{\text{est}} \equiv \rho$), the closed-loop system converges almost surely towards a fixed pure state $\bar{\rho}$. Then, for any choice of the initial state ρ_0^{est} , such that $\ker \rho_0^{\text{est}} \subset \ker \rho_0$, the trajectories of the system-filter converge almost surely towards the same pure state: $\rho_k, \rho_k^{\text{est}} \rightarrow \bar{\rho}$.

Proof (1)

$\mathbb{E}\left(\operatorname{Tr}\left(\rho_{k}\bar{\rho}\right) \mid \rho_{0}, \rho_{0}^{\text{est}}\right)$ depends linearly on ρ_{0} even though we are applying a feedback control.

Indeed, we can write

$$\alpha_k = \alpha(\rho_0^{\text{est}}, s_0, \ldots, s_{k-1}),$$

and simple computations imply

$$\mathbb{E}\left(\mathsf{Tr}\left(\bar{\rho}\rho_{k}\right)\mid\rho_{0},\rho_{0}^{\mathsf{est}}\right)=\sum_{s_{0},\ldots,s_{k-1}}\mathsf{Tr}\left(\bar{\rho}\;\widetilde{\mathbb{M}}_{s_{k-1}}\circ\mathbb{D}_{\alpha_{k-1}}\circ\ldots\circ\widetilde{\mathbb{M}}_{s_{0}}\circ\mathbb{D}_{\alpha_{0}}(\rho_{0})\right)$$

where

$$\widetilde{\mathbb{M}}_{s}\rho = \mathcal{M}_{s}\rho \mathcal{M}_{s}^{\dagger}.$$

So, we easily have the linearity of $\mathbb{E} \left(\text{Tr} \left(\rho_k \bar{\rho} \right) \mid \rho_0, \rho_0^{\text{est}} \right)$ with respect to ρ_0 .

The rest of the proof follows from the assumption $\ker \rho_0^{\text{est}} \subset \ker \rho_0$ which implies the existence of a constant $\gamma > 0$ and a density matrix ρ_0^c , such that

$$\rho_0^{\rm est} = \gamma \rho_0 + (1 - \gamma) \rho_0^c$$

・ロト・四ト・ヨト・ヨー うへぐ

We know that if both the system and filter start at ρ_0^{est} , we have the almost sure convergence. This, together with dominated convergence theorem implies

$$\lim_{k\to\infty} \mathbb{E}\left(\mathsf{Tr}\left(\rho_k \bar{\rho}\right) \mid \rho_0^{\mathsf{est}}, \rho_0^{\mathsf{est}} \right) = 1.$$

By the linearity of $\mathbb{E} \left(\text{Tr} \left(\rho_k \bar{\rho} \right) \mid \rho_0, \rho_0^{\text{est}} \right)$ with respect to ρ_0 , we have

$$\mathbb{E}\left(\operatorname{Tr}\left(\rho_{k}\bar{\rho}\right)\mid\rho_{0}^{\mathrm{est}},\rho_{0}^{\mathrm{est}}\right)=\gamma\mathbb{E}\left(\operatorname{Tr}\left(\rho_{k}\bar{\rho}\right)\mid\rho_{0},\rho_{0}^{\mathrm{est}}\right)+(1-\gamma)\mathbb{E}\left(\operatorname{Tr}\left(\rho_{k}\bar{\rho}\right)\mid\rho_{0}^{c},\rho_{0}^{\mathrm{est}}\right),$$

and as both $\mathbb{E}(\operatorname{Tr}(\rho_k \bar{\rho}) | \rho_0, \rho_0^{\text{est}})$ and $\mathbb{E}(\operatorname{Tr}(\rho_k \bar{\rho}) | \rho_0^c, \rho_0^{\text{est}})$ are less than or equal to one, we necessarily have that both of them converge to 1:

$$\lim_{k\to\infty}\mathbb{E}\left(\mathrm{Tr}\left(\rho_k\bar{\rho}\right)\mid\rho_0,\rho_0^{\mathrm{est}}\right)=1.$$

This implies the almost sure convergence of the physical system towards the pure state $\bar{\rho}$.

Controlled Markov chain

Hilbert space after a Galerkin approximation:

$$\mathcal{H} = \left\{ \sum_{n=0}^{n^{\max}} c_n \ket{n} \mid (c_n)_{n=0}^{n^{\max}} \in \mathbb{C}
ight\}$$

Dynamics:

$$egin{aligned} &
ho_{k+1/2} = \mathbb{D}_{lpha_k}(
ho_k) &:= D(lpha_k)
ho_k D(lpha_k)^\dagger \ &
ho_{k+1} = \mathbb{M}_{s_k}(
ho_{k+1/2}) = rac{M_{s_k}
ho_{k+1/2} M_{s_k}^\dagger}{\operatorname{Tr}\left(M_{s_k}
ho_{k+1/2} M_{s_k}^\dagger
ight)}, \qquad s_k = g, e. \end{aligned}$$

where

α_k is the feedback control (function of *ρ_k*) and *D*(*α*) is a unitary operator (coherent evolution semi-group),

$$D(\alpha) := \exp(\alpha a^{\dagger} - \alpha^* a), \quad \text{for } \alpha \in \mathbb{C}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lyapunov control for stabilizing $\bar{ ho} = \ket{\bar{n}} \langle \bar{n} \ket{\bar{n}}$

Choosing α_k such that $\mathbb{E}(\text{Tr}(\rho_k \bar{\rho}))$ is increasing.

We have

$$\rho_{k+1} = \begin{cases} \frac{M_g \rho_{k+1/2} M_g^{\dagger}}{\operatorname{Tr} \left(M_g \rho_{k+1/2} M_g^{\dagger} \right)}, & \text{with probability} \quad \operatorname{Tr} \left(M_g \rho_{k+1/2} M_g^{\dagger} \right), \\ \frac{M_e \rho_{k+1/2} M_e^{\dagger}}{\operatorname{Tr} \left(M_e \rho_{k+1/2} M_e^{\dagger} \right)}, & \text{with probability} \quad \operatorname{Tr} \left(M_e \rho_{k+1/2} M_e^{\dagger} \right), \end{cases}$$

So

$$\begin{split} \mathbb{E}\left(\operatorname{Tr}\left(\rho_{k+1}\bar{\rho}\right) \mid \rho_{k+1/2}\right) &= \operatorname{Tr}\left(\left|\bar{n}\right\rangle \left\langle \bar{n}\right| M_{g}\rho_{k+1/2}M_{g}^{\dagger}\right) + \operatorname{Tr}\left(\left|\bar{n}\right\rangle \left\langle \bar{n}\right| M_{e}\rho_{k+1/2}M_{e}^{\dagger}\right) \\ &= \operatorname{Tr}\left(\left|\bar{n}\right\rangle \left\langle \bar{n}\right|\rho_{k+1/2}\right), \end{split}$$

as

$$M_{g}^{\dagger}\left|ar{n}
ight
angle\left\langlear{n}
ight|M_{g}+M_{e}^{\dagger}\left|ar{n}
ight
angle\left\langlear{n}
ight|M_{e}=\left(\cos^{2}+\sin^{2}
ight)\left|ar{n}
ight
angle\left\langlear{n}
ight|=\left|ar{n}
ight
angle\left\langlear{n}
ight|.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lyapunov control: continued

Furthermore

$$\rho_{k+1/2} = D(\alpha_k)\rho_k D(-\alpha_k),$$

and we can show in \mathcal{H} , that

$$D_{\alpha}\rho D_{\alpha}^{\dagger} = e^{\alpha a^{\dagger} - \alpha^{*}a}\rho e^{-(\alpha a^{\dagger} - \alpha^{*}a)} = \rho + [\alpha a^{\dagger} - \alpha^{*}a, \rho] + O(|\alpha|^{2}).$$

So

$$\operatorname{Tr}\left(\rho_{k+1/2}\bar{\rho}\right) = \operatorname{Tr}\left(\rho_{k}\bar{\rho}\right) + \alpha_{k}\operatorname{Tr}\left(\left[\left|\bar{n}\right\rangle\left\langle\bar{n}\right|,a^{\dagger}\right]\rho_{k}\right) - \alpha_{k}^{*}\operatorname{Tr}\left(\left[\left|\bar{n}\right\rangle\left\langle\bar{n}\right|,a\right]\rho_{k}\right) + O(\left|\alpha_{k}\right|^{2}).$$

Therefore, taking

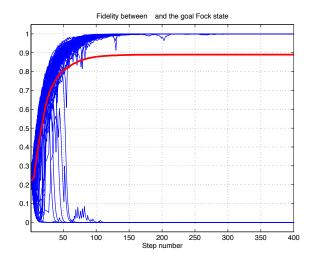
$$\alpha_{k} = \epsilon \operatorname{Tr}\left(\left|\bar{n}\right\rangle \left\langle \bar{n}\right|\left[\rho_{k}, a\right]\right) = \epsilon \left(\operatorname{Tr}\left(\left[\left|\bar{n}\right\rangle \left\langle \bar{n}\right|, a^{\dagger}\right]\rho_{k}\right)\right)^{*},$$

for sufficiently small $\epsilon > 0$, we have

$$\begin{aligned} & \operatorname{Tr}\left(\rho_{k+1/2}\bar{\rho}\right) \geq \operatorname{Tr}\left(\rho_{k}\bar{\rho}\right) \implies & \mathbb{E}\left(\operatorname{Tr}\left(\rho_{k+1}\bar{\rho}\right) \mid \rho_{k}\right) \geq \operatorname{Tr}\left(\rho_{k}\bar{\rho}\right) \\ & & \operatorname{Tr}\left(\rho_{k}\bar{\rho}\right) \text{ is a sub-martingale} \end{aligned}$$

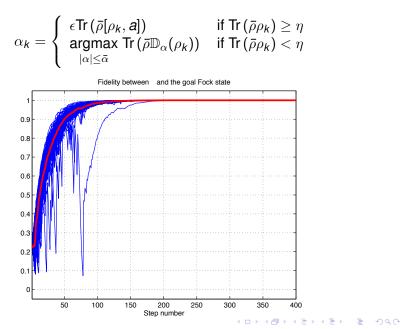
Bad attractors

We do not have semi-global stabilization ...



Tr $(\rho_k \bar{\rho})$ converges almost surely towards a random variable with values 0 or 1

Modified feedback law



Closed-loop Markov chain:

$$\rho_{k+1} = \mathbb{M}_{s_k}(\rho_{k+\frac{1}{2}}), \qquad \rho_{k+\frac{1}{2}} = \mathbb{D}_{\alpha_k}(\rho_k),$$

with

$$\alpha_{k} = \begin{cases} \epsilon \operatorname{Tr}\left(\bar{\rho}[\rho_{k}, \boldsymbol{a}]\right) & \text{if } \operatorname{Tr}\left(\bar{\rho}\rho_{k}\right) \geq \eta \\ \underset{|\alpha| \leq \bar{\alpha}}{\operatorname{argmax}} \operatorname{Tr}\left(\bar{\rho}\mathbb{D}_{\alpha}(\rho_{k})\right) & \text{if } \operatorname{Tr}\left(\bar{\rho}\rho_{k}\right) < \eta \end{cases}$$

Theorem

Consider the above closed-loop quantum system. For small enough parameters ϵ , $\eta > 0$ in the feedback scheme, the trajectories converge almost surely toward the target Fock state $\bar{\rho}$.

Four steps:

- **1** First, we show that for small enough η , the trajectories starting within the set $S_{<\eta} = \{\rho \mid \text{Tr}(\bar{\rho}\rho) < \eta\}$ always reach in one step the set $S_{\geq 2\eta} = \{\rho \mid \text{Tr}(\bar{\rho}\rho) \geq 2\eta\}$;
- 2 next, we show that the trajectories starting within the set $S_{\geq 2\eta}$, will never hit the set $S_{<\eta}$ with a uniformly non-zero probability $p_{\eta} > 0$ (Doob's inequality);
- 3 we prove an inequality showing that, for small enough ϵ , $\mathcal{V}(\rho_k) = f(\operatorname{Tr}(\bar{\rho}\rho_k))$ with $f(x) = \frac{x^2 + x}{2}$ is a sub-martingale within $S_{\geq \eta} = \{\rho \mid \operatorname{Tr}(\bar{\rho}\rho) \geq \eta\}$;
- 4 finally, we combine the previous step and the Kushner's invariance principle, to prove that almost all trajectories remaining inside S_{≥η} converge towards ρ̄.

Step 2: Doob's inequality

Doob's Inequality

Let {*X_n*} be a Markov chain on state space \mathcal{X} . Suppose that there is a non-negative function *V*(*x*) satisfying $\mathbb{E}(V(X_1) | X_0 = x) - V(x) = -k(x)$, where $k(x) \ge 0$ on the set { $x : V(x) < \lambda$ } $\equiv Q_{\lambda}$. Then

$$\mathbb{P}\left(\sup_{\infty>n\geq 0}V(X_n)\geq\lambda\mid X_0=x\right)\leq\frac{V(x)}{\lambda}.$$

Here we take $V(\rho_k) = 1 - \text{Tr}(\bar{\rho}\rho_k)$ which is a super-martingale. We have:

$$\mathbb{P}(\sup_{k' \geq k} (1 - \operatorname{Tr}\left(\bar{\rho}\rho_{k'}\right))) \geq 1 - \eta \mid \rho_k \in \mathcal{S}_{\geq 2\eta}) \leq \frac{1 - \operatorname{Tr}\left(\bar{\rho}\rho_k\right)}{1 - \eta} \leq \frac{1 - 2\eta}{1 - \eta},$$

and thus

$$\mathbb{P}\left(\inf_{k' \ge k} \operatorname{Tr}\left(\bar{\rho}\rho_{k'}\right) > \eta \mid \operatorname{Tr}\left(\bar{\rho}\rho_{k}\right) \ge 2\eta\right) = 1 - \mathbb{P}(\sup_{k' \ge k} (1 - \operatorname{Tr}\left(\bar{\rho}\rho_{k'}\right)))$$
$$\geq 1 - \eta \mid \operatorname{Tr}\left(\bar{\rho}\rho_{k}\right) \ge 2\eta)$$
$$\geq 1 - \frac{1 - 2\eta}{1 - \eta} = \frac{\eta}{1 - \eta} = p_{\eta}.$$

We take into account the detector's efficiency (η_d) , detection faults (η_f) , pulse occupation (η_a) , decoherence $(\frac{(1+\eta_{th})\tau_a}{T_{cav}})$, thermal photons $(\frac{\eta_{th}\tau_a}{T_{cav}})$.

System simulation:

$$\rho_{k+1} = \mathbb{M}_{r_k} \circ \mathbb{M}_{s_k} \circ \mathbb{D}_{\alpha_k}(\rho_k),$$

where $s_k \in \{g, e, u\}$, $r_k \in \{loss, gain, no\}$ are random variables admitting probability distributions depending of ρ_k and α_k :

$$\mathbb{P}(s_{k} = g) = \eta_{a} \operatorname{Tr} \left(\mathcal{M}_{g}^{\dagger} \mathcal{M}_{g} \mathbb{D}_{\alpha_{k}}(\rho_{k}) \right),$$

$$\mathbb{P}(s_{k} = e) = \eta_{a} \operatorname{Tr} \left(\mathcal{M}_{e}^{\dagger} \mathcal{M}_{e} \mathbb{D}_{\alpha_{k}}(\rho_{k}) \right),$$

$$\mathbb{P}(s_{k} = u) = 1 - \eta_{a},$$

$$\mathbb{P}(r_{k} = \operatorname{loss}) = \frac{(1 + n_{\operatorname{th}})\tau_{a}}{T_{\operatorname{cav}}} \operatorname{Tr} \left(a^{\dagger} a \, \mathbb{M}_{s_{k}} \circ \mathbb{D}_{\alpha_{k}}(\rho_{k}) \right),$$

$$\mathbb{P}(r_{k} = \operatorname{gain}) = \frac{n_{\operatorname{th}} \tau_{a}}{T_{\operatorname{cav}}} \operatorname{Tr} \left(aa^{\dagger} \, \mathbb{M}_{s_{k}} \circ \mathbb{D}_{\alpha_{k}}(\rho_{k}) \right),$$

$$\mathbb{P}(r_{k} = \operatorname{no}) = 1 - \mathbb{P}(r_{k} = \operatorname{loss}) - \mathbb{P}(r_{k} = \operatorname{gain}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Filter simulation:

$$\rho_{k+1}^{\mathsf{est}} = \mathbb{T} \circ \mathbb{B}_{s_k} \circ \mathbb{D}_{\alpha_k}(\rho_k^{\mathsf{est}}),$$

where the $s_k \in \{g, e, u\}$ is the detection result (atom in $|g\rangle$, in $|e\rangle$ or undetected).

Furthermore \mathbb{B}_s is the Bayesian filter given by:

$$\begin{split} \mathbb{B}_{g}(\rho) &= \frac{1 - \eta_{f}}{(1 - \eta_{f})p_{g} + \eta_{f}p_{e}} \mathcal{M}_{g}\rho\mathcal{M}_{g}^{\dagger} + \frac{\eta_{f}}{(1 - \eta_{f})p_{g} + \eta_{f}p_{e}} \mathcal{M}_{e}\rho\mathcal{M}_{e}^{\dagger}, \\ \mathbb{B}_{e}(\rho) &= \frac{1 - \eta_{f}}{(1 - \eta_{f})p_{e} + \eta_{f}p_{g}} \mathcal{M}_{e}\rho\mathcal{M}_{e}^{\dagger} + \frac{\eta_{f}}{(1 - \eta_{f})p_{e} + \eta_{f}p_{g}} \mathcal{M}_{g}\rho\mathcal{M}_{g}^{\dagger}, \\ \mathbb{B}_{u}(\rho) &= \frac{1 - \eta_{a}}{1 - \eta_{a}\eta_{d}}\rho + \frac{\eta_{a}(1 - \eta_{d})}{1 - \eta_{a}\eta_{d}} \left(\mathcal{M}_{g}\rho\mathcal{M}_{g}^{\dagger} + \mathcal{M}_{e}\rho\mathcal{M}_{e}^{\dagger}\right), \end{split}$$

where $p_g = \text{Tr}\left(\mathcal{M}_g^{\dagger}\mathcal{M}_g\rho\right)$, $p_e = \text{Tr}\left(\mathcal{M}_e^{\dagger}\mathcal{M}_e\rho\right)$, η_f is the detection fault rate, η_a is the pulse occupation rate and η_d is the detection's efficiency rate. The super-operator \mathbb{T} , modeling the decoherence, is given by:

$$\mathbb{T}(\rho) = \rho + \frac{(1+n_{\text{th}})\tau_a}{T_{\text{cav}}} \left(a\rho a^{\dagger} - \frac{1}{2}a^{\dagger}a\rho - \frac{1}{2}\rho a^{\dagger}a \right) + \frac{n_{\text{th}}\tau_a}{T_{\text{cav}}} \left(a^{\dagger}\rho a - \frac{1}{2}aa^{\dagger}\rho - \frac{1}{2}\rho aa^{\dagger} \right)$$