Modeling and Control of Quantum Systems

Mazyar Mirrahimi Pierre Rouchon

mazyar.mirrahimi@inria.fr pierre.rouchon@ensmp.fr
http://cas.ensmp.fr/~rouchon/QuantumSyst/index.html

Lecture 5: November 29, 2010

Outline

1 Quantum measurement

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Quantum Non-Demolition (QND) measurement
- Stochastic process attached to a POVM

2 A discrete-time open system: the LKB photon box

- The Markov chain model
- Jaynes-Cumming propagator
- Resonant case
- Dispersive case

3 Measurement uncertainties and density matrix formulation

- Why density matrices
- Measurement uncertainties and Kraus maps

For the system defined on Hilbert space \mathcal{H}, take
■ an observable \mathcal{O} (Hermitian operator) defined on \mathcal{H} :

$$
\mathcal{O}=\sum_{\nu} \lambda_{\nu} P_{\nu}
$$

where λ_{ν} 's are the eigenvalues of \mathcal{O} and P_{ν} is the projection operator over the associated eigenspace; \mathcal{O} can be degenerate and therefore the projection operator P_{ν} is not necessarily a rank-1 operator.

- a quantum state (a priori mixed) given by the density operator ρ on \mathcal{H}, Hermitian, positive and of trace 1; $\operatorname{Tr}\left(\rho^{2}\right) \leq 1$ with equality only when ρ is an orthogonal projector on some pure quantum state $|\psi\rangle$, i.e., $\rho=|\psi\rangle\langle\psi|$.

Projective measurement of the physical observable
$\mathcal{O}=\sum_{\nu} \lambda_{\nu} P_{\nu}$ for the quantum state ρ :
1 The probability of obtaining the value λ_{ν} is given by $p_{\nu}=\operatorname{Tr}\left(\rho P_{\nu}\right)$; note that $\sum_{\nu} p_{\nu}=1$ as $\sum_{\nu} P_{\nu}=\mathbf{1}_{\mathcal{H}}\left(\mathbf{1}_{\mathcal{H}}\right.$ represents the identity operator of \mathcal{H}).
2 After the measurement, the conditional (a posteriori) state ρ_{+}of the system, given the outcome λ_{ν}, is

$$
\rho_{+}=\frac{P_{\nu} \rho P_{\nu}}{p_{\nu}} \quad \text { (collapse of the wave packet) }
$$

3 When $\rho=|\psi\rangle\langle\psi|, p_{\nu}=\langle\psi| P_{\nu}|\psi\rangle, \rho_{+}=\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|$with $\left|\psi_{+}\right\rangle=\frac{P_{\nu} \psi}{\sqrt{p_{\nu}}}$.
\mathcal{O} non degenerate: von Neumann measurement.
Example: $\mathcal{H}=\mathbb{C}^{2},|\psi\rangle=(|g\rangle+|e\rangle) / \sqrt{2}, \mathcal{O}=\sigma_{z}$; measuring consists in turning on, for a small time, a laser resonant between $|g\rangle$ and a highly unstable third state $|f\rangle$; fluorescence means $\left|\psi_{+}\right\rangle=|g\rangle$, no fluorescence means $\left|\psi_{+}\right\rangle_{\text {渞 }}|e\rangle_{\text {. }}$

System S of interest (a quantized electromagnetic field) interacts with the meter M (a probe atom), and the experimenter measures projectively the meter M (the probe atom). Need for a Composite system: $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$ where \mathcal{H}_{S} and \mathcal{H}_{M} are the Hilbert space of S and M. Measurement process in three successive steps:
1 Initially the quantum state is separable

$$
\mathcal{H}_{S} \otimes \mathcal{H}_{M} \ni|\Psi\rangle=\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle
$$

with a well defined and known state $\left|\theta_{M}\right\rangle$ for M.
2 Then a Schrödinger evolution during a small time (unitary operator $U_{S, M}$) of the composite system from $\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle$ and producing $U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)$, entangled in general.
3 Finally a projective measurement of the meter M :
$\mathcal{O}_{M}=1_{S} \otimes\left(\sum_{\nu} \lambda_{\nu} P_{\nu}\right)$ the measured observable for the meter. Projection operator P_{ν} is a rank-1 projection in \mathcal{H}_{M} over the eigenstate $\left|\lambda_{\nu}\right\rangle \in \mathcal{H}_{M}: P_{\nu}=\left|\lambda_{\nu}\right\rangle\left\langle\lambda_{\nu}\right|$.

Define the measurement operators \mathcal{M}_{ν} via

$$
\forall\left|\psi_{S}\right\rangle \in \mathcal{H}_{S}, \quad U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)=\sum_{\nu}\left(\mathcal{M}_{\nu}\left|\psi_{S}\right\rangle\right) \otimes\left|\lambda_{\nu}\right\rangle
$$

Then $\sum_{\nu} \mathcal{M}_{\nu}^{\dagger} \mathcal{M}_{\nu}=\mathbf{1}_{S}$. The set $\left\{\mathcal{M}_{\nu}\right\}$ defines a Positive Operator Valued Measurement (POVM). In $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$, projective measurement of $\mathcal{O}_{M}=\mathbf{1}_{S} \otimes\left(\sum_{\nu} \lambda_{\nu} P_{\nu}\right)$ with quantum state $U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)$:
1 The probability of obtaining the value λ_{ν} is given by

$$
p_{\nu}=\left\langle\psi_{S}\right| \mathcal{M}_{\nu}^{\dagger} \mathcal{M}_{\nu}\left|\psi_{S}\right\rangle
$$

2 After the measurement, the conditional (a posteriori) state of the system, given the outcome λ_{ν}, is

$$
\left|\psi_{S}\right\rangle_{+}=\frac{\mathcal{M}_{\nu}\left|\psi_{S}\right\rangle}{\sqrt{p_{\nu}}}
$$

For mixed state ρ (instead of pure state $\left|\psi_{s}\right\rangle$):
$p_{\nu}=\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)$ and $\rho_{+}=\frac{\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)}$,
$U_{S, M}$ is the propagator generated by $H=H_{S}+H_{M}+H_{S M}$ where H_{S} (resp. $H_{M}, H_{S M}$) describes the system (resp. the meter, system-meter interaction). For time-invariant $H: U_{S, M}=e^{-i \tau H}$ where τ is the interaction time.
A necessary condition for meter measurement to encode some information on the system S itself: $\left[H, \mathcal{O}_{M}\right] \neq 0$. When $H_{M}=0$, this necessary condition reads $\left[H_{S M}, \mathcal{O}_{M}\right] \neq 0$.
Proof: otherwise $\mathcal{O}_{M} U_{S, M}=U_{S, M} \mathcal{O}_{M}$. With $\mathcal{O}_{M}=\sum_{\nu} \lambda_{\nu} \mathbf{1}_{S} \otimes\left|\lambda_{\nu}\right\rangle$ we have
$\forall \nu, \quad \mathcal{O}_{M} U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)=U_{S, M} \mathcal{O}_{M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)=\lambda_{\nu} U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)$.
Thus, necessarily $U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\lambda_{\nu}\right\rangle\right)=\left(U_{\nu}\left|\psi_{S}\right\rangle\right) \otimes\left|\lambda_{\nu}\right\rangle$ where U_{ν} is a unitary transformation on \mathcal{H}_{S} only. With $\left|\theta_{M}\right\rangle=\sum_{\nu} \theta_{\nu}\left|\lambda_{\nu}\right\rangle$, we get:

$$
\forall\left|\psi_{S}\right\rangle \in \mathcal{H}_{S} U_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\theta_{M}\right\rangle\right)=\sum_{\nu} \theta_{\nu}\left(U_{\nu}\left|\psi_{S}\right\rangle\right) \otimes\left|\lambda_{\nu}\right\rangle
$$

Then measurement operators \mathcal{M}_{ν} are equal to $\theta_{\nu} U_{\nu}$. The probability to get measurement outcome $\nu,\left\langle\psi_{S}\right| \mathcal{M}_{\nu}^{\dagger} \mathcal{M}_{\nu}\left|\psi_{S}\right\rangle=\left|\theta_{\nu}\right|^{2}$, is completely independent of systems state $\left|\psi_{s}\right\rangle$.

The POVM $\left(\mathcal{M}_{\nu}\right)$ (system S, interaction with the meter M via $H=H_{S}+H_{M}+H_{S M}$, von Neumann measurements on the meter via \mathcal{O}_{M}) is a QND measurement of the system observable \mathcal{O}_{S} if the eigenspaces of \mathcal{O}_{S} are invariant with respect to the measurement operators \mathcal{M}_{ν}. A sufficient but not necessary condition for this is $\left[H, \mathcal{O}_{S}\right]=0$.
Under this condition \mathcal{O}_{S} and $U_{S, M}$ commute. Assume \mathcal{O}_{S} non degenerate and take the eigenstate $|\mu\rangle$ to the eigenvalue $\mu \in \mathbb{R}$:

$$
\mathcal{O}_{S} U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=U_{S, M} \mathcal{O}_{S}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=\mu U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)
$$

Thus $U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=|\mu\rangle \otimes\left(U_{\mu}\left|\theta_{M}\right\rangle\right)$ with U_{μ} unitary on \mathcal{H}_{M}. We also have

$$
U_{S, M}\left(|\mu\rangle \otimes\left|\theta_{M}\right\rangle\right)=\sum_{\nu} \mathcal{M}_{\nu}|\mu\rangle \otimes\left|\lambda_{\nu}\right\rangle .
$$

Thus necessarily,each $\mathcal{M}_{\nu}|\mu\rangle$ is colinear to $|\mu\rangle$.
When $\rho=|\mu\rangle\langle\mu|$, the conditional state remains unchanged $\rho_{+}=\mathbb{M}_{\nu}(\rho)$ whatever the meter measure outcome ν is. When the spectrum of \mathcal{O}_{S} is degenerate: for all $\nu, \mathcal{M}_{\nu} P_{\mu}=P_{\mu} \mathcal{M}_{\nu}$ where P_{μ} is the projector on the eigenspace associated to μ :

- To the POVM $\left(\mathcal{M}_{\nu}\right)$ on \mathcal{H}_{S} is attached a stochastic process of quantum state ρ

$$
\rho_{+}=\frac{\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)} \text { with probability } p_{\nu}=\operatorname{Tr}\left(\mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}\right)
$$

■ For any observable A on \mathcal{H}_{S}, its conditional expectation value after the transition knowing the state ρ

$$
\mathbb{E}\left(\operatorname{Tr}\left(A \rho_{+}\right) \mid \rho\right)=\operatorname{Tr}(A \mathbb{K} \rho)
$$

where the linear map $\rho \mapsto \mathbb{K} \rho=\sum_{\nu} \mathcal{M}_{\nu} \rho \mathcal{M}_{\nu}^{\dagger}$ is a Kraus map.
■ If \bar{A} is a stationary point of the adjoint Kraus map \mathbb{K}^{*}, $\mathbb{K}^{*} \bar{A}=\sum_{\nu} \mathcal{M}_{\nu}^{\dagger} \bar{A} \mathcal{M}_{\nu}$, then $\operatorname{Tr}(\bar{A} \rho)$ is a martingale:

$$
\mathbb{E}\left(\operatorname{Tr}\left(\bar{A} \rho_{+}\right) \mid \rho\right)=\operatorname{Tr}(\bar{A} \mathbb{K} \rho)=\operatorname{Tr}\left(\rho \mathbb{K}^{*} \bar{A}\right)=\operatorname{Tr}(\rho \bar{A})
$$

■ QND measurement of $\mathcal{O}_{S}=\sum_{\mu} \sigma_{\mu} P_{\mu}: \mathbb{K}^{*} P_{\mu}=P_{\mu}$ and each $\bar{\rho}=P_{\mu} / \operatorname{Tr}\left(P_{\mu}\right)$ is a fixed point of the above stochastic $\operatorname{process}\left(\rho_{+} \equiv \bar{\rho}\right.$ if $\left.\rho=\bar{\rho}\right)$

The LKB Photon-Box: measuring photons with atoms

Atoms get out of box B one by one, undergo then a first Rabi pulse in Ramsey zone R_{1}, become entangled with electromagnetic field trapped in C, undergo a second Rabi pulse in Ramsey zone R_{2} and finally are measured in the detector D.

■ System S corresponds to a quantized mode in C :

$$
\mathcal{H}_{S}=\left\{\sum_{n=0}^{\infty} \psi_{n}|n\rangle \mid\left(\psi_{n}\right)_{n=0}^{\infty} \in I^{2}(\mathbb{C})\right\}
$$

where $|n\rangle$ represents the Fock state associated to exactly n photons inside the cavity
■ Meter M is associated to atoms: $\mathcal{H}_{M}=\mathbb{C}^{2}$, each atom admits two-level and is described by a wave function $c_{g}|g\rangle+c_{e}|e\rangle$ with $\left|c_{g}\right|^{2}+\left|c_{e}\right|^{2}=1$; atoms leaving B are all in state $|g\rangle$
$■$ When atom comes out B, the state $|\Psi\rangle_{B} \in \mathcal{H}_{M} \otimes \mathcal{H}_{S}$ of the composite system atom/field is separable

$$
|\Psi\rangle_{B}=|g\rangle \otimes|\psi\rangle
$$

■ When atom comes out B : $|\Psi\rangle_{B}=|g\rangle \otimes|\psi\rangle$.
■ When atom comes out the first Ramsey zone R_{1} the state remains separable but has changed to

$$
|\Psi\rangle_{R_{1}}=\left(U_{R_{1}} \otimes \mathbf{1}\right)|\Psi\rangle_{B}=\left(U_{R_{1}}|g\rangle\right) \otimes|\psi\rangle
$$

where the unitary transformation performed in R_{1} only affects the atom:

$$
U_{R_{1}}=e^{-i \frac{\theta_{1}}{2}\left(x_{1} \sigma_{x}+y_{1} \sigma_{y}+z_{1} \sigma_{z}\right)}=\cos \left(\frac{\theta_{1}}{2}\right)-i \sin \left(\frac{\theta_{1}}{2}\right)\left(x_{1} \sigma_{x}+y_{1} \sigma_{y}+z_{1} \sigma_{z}\right)
$$

corresponds, in the Bloch sphere representation, to a rotation of angle θ_{1} around $x_{1} \vec{\imath}+y_{1} \vec{\jmath}+z_{1} \vec{k}\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=1\right)$

■ When atom comes out the first Ramsey zone R_{1} : $|\Psi\rangle_{R_{1}}=\left(U_{R_{1}}|g\rangle\right) \otimes|\psi\rangle$.
■ When atom comes out cavity C, the state does not remain separable: atom and field becomes entangled and the state is described by

$$
|\Psi\rangle_{C}=U_{C}|\Psi\rangle_{R_{1}}
$$

where the unitary transformation U_{C} on $\mathcal{H}_{M} \otimes \mathcal{H}_{S}$ is associated to a Jaynes-Cumming Hamiltonian:

$$
H_{C}=\frac{\Delta}{2} \sigma_{z}+i \frac{\Omega}{2}\left(\sigma_{-} a^{\dagger}-\sigma_{+} a\right)
$$

Parameters: $\Delta=\omega_{e g}-\omega_{c}, \Omega$.

■ When atom comes out cavity $C:|\Psi\rangle_{C}=U_{C}\left(\left(U_{R_{1}}|g\rangle\right) \otimes|\psi\rangle\right)$.
■ When atom comes out second Ramsey zone R_{2}, the state becomes

$$
|\Psi\rangle_{R_{2}}=\left(U_{R_{2}} \otimes \mathbf{1}\right)|\Psi\rangle_{C} \text { with } U_{R_{2}}=e^{-i \frac{\theta_{2}}{2}\left(x_{2} \sigma_{x}+y_{2} \sigma_{y}+z_{2} \sigma_{z}\right)}
$$

■ Just before the measurement in D, the state is given by

$$
|\Psi\rangle_{R_{2}}=U_{S M}(|g\rangle \otimes|\psi\rangle)=|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle
$$

where $U_{S M}=U_{R_{2}} U_{C} U_{R_{1}}$ is the total unitary transformation defining the linear measurement operators \mathcal{M}_{g} and \mathcal{M}_{e} on \mathcal{H}_{s}.

The Markov chain model (5)

Just before the measurement in D, the atom/field state is:

$$
|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle
$$

Denote by $s \in\{g, e\}$ the measurement outcome in detector D : with probability $p_{s}=\langle\psi| \mathcal{M}_{s}^{\dagger} \mathcal{M}_{s}|\psi\rangle$ we get s. Just after the measurement outcome s, the state becomes separable:

$$
|\Psi\rangle_{D}=\frac{1}{\sqrt{p_{s}}}|s\rangle \otimes\left(\mathcal{M}_{s}|\psi\rangle\right)=\frac{|s\rangle \otimes\left(\mathcal{M}_{s}|\psi\rangle\right)}{\sqrt{\langle\psi| \mathcal{M}_{s}^{\dagger} \mathcal{M}_{s}|\psi\rangle}} .
$$

Markov process (density matrix formulation)

$$
\rho_{+}= \begin{cases}\mathbb{M}_{g}(\rho)=\frac{\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{g} \rho \mathcal{M}_{q}^{\dagger}\right)}, & \text { with probability } p_{g}=\operatorname{Tr}\left(\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}\right) \\ \mathbb{M}_{e}(\rho)=\frac{\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}\right)}, & \text { with probability } p_{e}=\operatorname{Tr}\left(\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}\right) .\end{cases}
$$

Exercice

Show that, for any density matrix $\rho, \mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}+\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}$ does not depend on $\left(\theta_{2}, x_{2}, y_{2}, z_{2}\right)$, the parameters of the second Ramsey pulse in R_{2}.

The composite system lives on the Hilbert space $\mathbb{C}^{2} \otimes L^{2}(\mathbb{R} ; \mathbb{C}) \sim \mathbb{C}^{2} \otimes I^{2}(\mathbb{C})$ with the Jaynes-Cummings Hamiltonian

$$
\frac{\omega_{e g}}{2} \sigma_{z}+\omega_{c}\left(a^{\dagger} a+\frac{1}{2}\right)+i \frac{\Omega(t)}{2} \sigma_{x}\left(a^{\dagger}-a\right)
$$

with the usual scales $\Omega \ll \omega_{c}, \omega_{e g},\left|\omega_{c}-\omega_{e g}\right| \ll \omega_{c}, \omega_{e g}$ and $|d \Omega / d t| \ll \omega_{c} \Omega, \omega_{e g} \Omega$.

We consider the change of frame: $|\psi\rangle=e^{-i \omega_{c} t\left(a^{\dagger} a+\frac{1}{2}\right)} e^{-i \omega_{c} t \sigma_{z}}|\phi\rangle$. The system becomes $i \frac{d}{d t}|\phi\rangle=H_{\text {int }}|\phi\rangle$ with

$$
H_{\text {int }}=\frac{\Delta}{2} \sigma_{z}+i \frac{\Omega(t)}{2}\left(e^{-i \omega_{c} t}|g\rangle\langle e|+e^{i \omega_{c} t}|e\rangle\langle g|\right)\left(e^{i \omega_{c} t} a^{\dagger}-e^{-i \omega_{c} t} a\right),
$$

where $\Delta=\omega_{\text {eg }}-\omega_{c}$.
The secular terms of $H_{\text {int }}$ are given by (RWA, first order approximation):

$$
H_{\text {rwa }}=\frac{\Delta}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+i \frac{\Omega(t)}{2}\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right) .
$$

We compute the propagator for the simple case where $\Omega(t)$ is constant.

Jaynes-Cumming propagator

Exercice: Let us assume that the Jaynes-Cumming propagator U_{C} admits the following form

$$
U_{C}=e^{-i \tau\left(\frac{\Delta(|e\rangle\langle e|-|g\rangle\langle g|)}{2}+i \frac{\Omega\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)}{2}\right)}
$$

where τ is an interaction time.
■ Show by recurrence on integer k that

$$
\begin{aligned}
& \left(\Delta(|e\rangle\langle e|-|g\rangle\langle g|)+i \Omega\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)\right)^{2 k}= \\
& |e\rangle\langle e|\left(\Delta^{2}+(N+1) \Omega^{2}\right)^{k}+|g\rangle\langle g|\left(\Delta^{2}+N \Omega^{2}\right)^{k}
\end{aligned}
$$

and that

$$
\begin{aligned}
&\left(\Delta(|e\rangle\langle e|-|g\rangle\langle g|)+i \Omega\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)\right)^{2 k+1}= \\
&|e\rangle\langle e| \Delta\left(\Delta^{2}+(N+1) \Omega^{2}\right)^{k}-|g\rangle\langle g| \Delta\left(\Delta^{2}+N \Omega^{2}\right)^{k} \\
&+i \Omega\left(|g\rangle\langle e|\left(\Delta^{2}+N \Omega^{2}\right)^{k} a^{\dagger}-|e\rangle\langle g| a\left(\Delta^{2}+N \Omega^{2}\right)^{k}\right)
\end{aligned}
$$

- Deduce that

$$
\begin{aligned}
& U_{C}=|g\rangle\langle g|\left(\cos \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)+i \frac{\Delta \sin \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+N \Omega^{2}}}\right) \\
&+|e\rangle\langle e|\left(\cos \left(\frac{\tau \sqrt{\Delta^{2}+(N+1) \Omega^{2}}}{2}\right)-i \frac{\Delta \sin \left(\frac{\tau \sqrt{\Delta^{2}+(N+1) \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+(N+1) \Omega^{2}}}\right) \\
&+|g\rangle\langle e|\left(\frac{\Omega \sin \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+N \Omega^{2}}}\right) a^{\dagger}-|e\rangle\langle g| a\left(\frac{\Omega \sin \left(\frac{\tau \sqrt{\Delta^{2}+N \Omega^{2}}}{2}\right)}{\sqrt{\Delta^{2}+N \Omega^{2}}}\right)
\end{aligned}
$$

where $N=a^{\dagger} a$ the photon-number operator (a is the photon annihilator operator).

- In the resonant case, $\Delta=0$, prove that:

$$
\begin{aligned}
U_{C}=|g\rangle\langle g| \cos & \left(\frac{\Theta}{2} \sqrt{N}\right)+|e\rangle\langle e| \cos \left(\frac{\Theta}{2} \sqrt{N+1}\right) \\
& +|g\rangle\langle e|\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right) a^{\dagger}-|e\rangle\langle g| a\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right)
\end{aligned}
$$

where $N=a^{\dagger} a$ is the photon number operator, the adjustable parameter Θ being the Rabi angle with zero photon. What is its value?

- In the dispersive case, $|\Delta| \gg|\Omega|$, and when the interaction time τ is large, $\Delta \tau \sim\left(\frac{\Delta}{\Omega}\right)^{2}$, show that, up to first order terms in Ω / Δ, we get

$$
\begin{aligned}
& e^{-i \tau\left(\frac{\Delta(|e\rangle\langle e|-|g\rangle\langle g|)}{2}+i \frac{\Omega\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)}{2}\right)} \\
& = \\
& |g\rangle\langle g| e^{i\left(\frac{\Delta \tau}{2}+\frac{\Omega^{2} \tau}{4 \Delta} N\right)}+|e\rangle\langle e| e^{-i\left(\frac{\Delta \tau}{2}+\frac{\Omega^{2} \tau}{4 \Delta}(N+1)\right)} .
\end{aligned}
$$

We take

$$
U_{R_{1}}=e^{-i \frac{\theta_{1}}{2} \sigma_{y}}=\cos \left(\frac{\theta_{1}}{2}\right)+\sin \left(\frac{\theta_{1}}{2}\right)(|g\rangle\langle e|-|e\rangle\langle g|) \quad \text { and } \quad U_{R_{2}}=\mathbf{1} .
$$

We were looking for \mathcal{M}_{g} and \mathcal{M}_{e} such that

$$
U_{S M}|g\rangle \otimes|\psi\rangle=U_{R_{2}} U_{C} U_{R_{1}}|g\rangle \otimes|\psi\rangle=|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle .
$$

We have

$$
|\Psi\rangle_{R_{1}}=\left(\cos \left(\frac{\theta_{1}}{2}\right)|g\rangle-\sin \left(\frac{\theta_{1}}{2}\right)|e\rangle\right) \otimes|\psi\rangle
$$

and then

$$
\begin{aligned}
& |\Psi\rangle_{R_{2}}=|\Psi\rangle_{C}= \\
& \quad|g\rangle \otimes\left(\cos \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\Theta}{2} \sqrt{N}\right)-\sin \left(\frac{\theta_{1}}{2}\right)\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right) a^{\dagger}\right)|\psi\rangle \\
& -|e\rangle \otimes\left(\sin \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\Theta}{2} \sqrt{N+1}\right)+\cos \left(\frac{\theta_{1}}{2}\right) a\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right)\right)|\psi\rangle .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{M}_{g}=\cos \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\theta}{2} \sqrt{N}\right)-\sin \left(\frac{\theta_{1}}{2}\right)\left(\frac{\sin \left(\frac{\theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right) a^{\dagger} \\
& \mathcal{M}_{e}=-\sin \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\Theta}{2} \sqrt{N+1}\right)-\cos \left(\frac{\theta_{1}}{2}\right) a\left(\frac{\sin \left(\frac{\theta}{2} \sqrt{N}\right)}{\sqrt{N}}\right)
\end{aligned}
$$

Exercice

Verify that these Kraus operators satisfy $\mathcal{M}_{g}^{\dagger} \mathcal{M}_{g}+\mathcal{M}_{e}^{\dagger} \mathcal{M}_{e}=\mathbf{1}$ (hint: use, $N=a^{\dagger} a$, a $f(N)=f(N+1)$ a and $\left.a^{\dagger} f(N)=f(N-1) a^{\dagger}\right)$.

We take

$$
U_{R_{1}}=e^{-i \frac{\pi}{4} \sigma_{y}} \quad \text { and } \quad U_{R_{2}}=e^{-i \frac{\pi}{4}\left(-\sin \eta \sigma_{x}+\cos \eta \sigma_{y}\right)}
$$

Therefore

$$
|\Psi\rangle_{R_{1}}=\frac{|g\rangle-|e\rangle}{\sqrt{2}} \otimes|\psi\rangle .
$$

Then

$$
|\Psi\rangle_{C}=\frac{1}{\sqrt{2}}|g\rangle \otimes e^{-i \phi(N)}|\psi\rangle-\frac{1}{\sqrt{2}}|e\rangle \otimes e^{i \phi(N+1)}|\psi\rangle .
$$

Finally

$$
\begin{aligned}
& 2|\Psi\rangle_{R_{2}}=\left(|g\rangle-e^{-i \eta}|e\rangle\right) \otimes e^{-i \phi(N)}|\psi\rangle-\left(e^{i \eta}|g\rangle+|e\rangle\right) \otimes e^{i \phi(N+1)}|\psi\rangle \\
& \quad=|g\rangle \otimes\left(e^{-i \phi(N)}-e^{i(\eta+\phi(N+1))}\right)|\psi\rangle-|e\rangle \otimes\left(e^{-i(\eta+\phi(N))}+e^{i \phi(N+1)}\right)|\psi\rangle
\end{aligned}
$$

where $\phi(N)=\vartheta_{0}+N \vartheta$ with $\vartheta_{0}=-\frac{\Delta \tau}{2}$ and $\vartheta=-\frac{\Omega^{2} \tau}{4 \Delta}$.

Kraus operators

Taking φ_{0} an arbitrary phase and $\eta=2\left(\varphi_{0}-\vartheta_{0}\right)-\vartheta-\pi$, we find

$$
\mathcal{M}_{g}=\cos \left(\varphi_{0}+N \vartheta\right), \quad \mathcal{M}_{e}=\sin \left(\varphi_{0}+N \vartheta\right)
$$

Therefore the Markov chain model is given by

$$
\rho_{k+1}=\mathbb{M}_{s_{k}}\left(\rho_{k}\right)=\frac{\mathcal{M}_{s_{k}} \rho_{k} \mathcal{M}_{s_{k}}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{s_{k}} \rho_{k} \mathcal{M}_{s_{k}}^{\dagger}\right)},
$$

where $s_{k}=g$ or e with associated probabilities $p_{g, k}$ and $p_{e, k}$ given by

$$
p_{g, k}=\operatorname{Tr}\left(\mathcal{M}_{g} \rho_{k} \mathcal{M}_{g}^{\dagger}\right) \quad \text { and } \quad p_{e, k}=\operatorname{Tr}\left(\mathcal{M}_{e} \rho_{k} \mathcal{M}_{e}^{\dagger}\right)
$$

Here \mathcal{M}_{g} and \mathcal{M}_{e} are given by

$$
\mathcal{M}_{g}=\cos \left(\varphi_{0}+N \vartheta\right), \quad \mathcal{M}_{e}=\sin \left(\varphi_{0}+N \vartheta\right)
$$

This is a QND measurement for the observable N of photon number. Indeed, as the Kraus operators \mathcal{M}_{g} and \mathcal{M}_{e} commute with N, the mean value of N does not change through the measurement procedure:

$$
\mathbb{E}\left(\operatorname{Tr}\left(N \rho_{k+1}\right) \mid \rho_{k}\right)=\operatorname{Tr}\left(N \rho_{k}\right) .
$$

Also, the eigenstates of the observable N (the Fock states) are invariant with respect to the measurement procedure:

$$
\mathbb{M}_{g}(|n\rangle\langle n|)=|n\rangle\langle n| \quad \text { and } \quad \mathbb{M}_{e}(|n\rangle\langle n|)=|n\rangle\langle n| \quad \text { for all } n .
$$

Measurement in $|g\rangle$

$$
|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle \longrightarrow \frac{|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle}{\| \mathcal{M}_{g}|\psi\rangle \|_{\mathcal{H}}}
$$

Measurement in $|e\rangle$

$$
|g\rangle \otimes \mathcal{M}_{g}|\psi\rangle+|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle \longrightarrow \frac{|e\rangle \otimes \mathcal{M}_{e}|\psi\rangle}{\| \mathcal{M}_{e}|\psi\rangle \|_{\mathcal{H}}}
$$

Why density matrices (2)

The atom-detector does not always detect the atoms.
Therefore 3 outcomes:
Atom in $|g\rangle, \quad$ Atom in $|e\rangle, \quad$ No detection

Best estimate for the

 case$$
\begin{gathered}
\left.\mathbb{E}\left(|\psi\rangle_{+}| | \psi\right\rangle\right)=\| \mathcal{M}_{g}|\psi\rangle \|_{\mathcal{H}} \mathcal{M}_{g}|\psi\rangle+\| \mathcal{M}_{e}|\psi\rangle \|_{\mathcal{H}} \mathcal{M}_{e}|\psi\rangle \\
\text { This is not a well-defined wavefunction }
\end{gathered}
$$

Barycenter in the sense of geodesics of $\mathbb{S}(\mathcal{H})$ not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space

$$
\mathbb{C P}(\mathcal{H}) \equiv \mathbb{S}(\mathcal{H}) / \mathbb{S}^{1}
$$

Projector over the state $|\psi\rangle: P_{|\psi\rangle}=|\psi\rangle\langle\psi|$
Detection in $|g\rangle$: the projector is given by
$P_{\left|\psi_{+}\right\rangle}=\frac{\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}}{\| \mathcal{M}_{g}|\psi\rangle \|_{\mathcal{H}}^{2}}=\frac{\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}}{\left.\left|\langle\psi| \mathcal{M}_{g}^{\dagger} \mathcal{M}_{g}\right| \psi\right\rangle\left.\right|^{2}}=\frac{\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}\right)}$
Detection in $|e\rangle$: the projector is given by

$$
P_{\left|\psi_{+}\right\rangle}=\frac{\mathcal{M}_{e}|\psi\rangle\langle\psi| \mathcal{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{e}|\psi\rangle\langle\psi| \mathcal{M}_{e}^{\dagger}\right)}
$$

Probabilities:

$$
p_{g}=\operatorname{Tr}\left(\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}\right) \quad \text { and } \quad p_{e}=\operatorname{Tr}\left(\mathcal{M}_{e}|\psi\rangle\langle\psi| \mathcal{M}_{e}^{\dagger}\right)
$$

Why density matrices (4)

Imperfect detection: barycenter

$$
\begin{aligned}
|\psi\rangle\langle\psi| \longrightarrow & p_{g} \frac{\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}\right)}+p_{e} \frac{\mathcal{M}_{e}|\psi\rangle\langle\psi| \mathcal{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\mathcal{M}_{e}|\psi\rangle\langle\psi| \mathcal{M}_{e}^{\dagger}\right)} \\
& =\mathcal{M}_{g}|\psi\rangle\langle\psi| \mathcal{M}_{g}^{\dagger}+\mathcal{M}_{e}|\psi\rangle\langle\psi| \mathcal{M}_{e}^{\dagger}
\end{aligned}
$$

This is not anymore a projector: no well-defined wave function
New state space of quantum states ρ :

$$
\mathcal{X}=\left\{\rho \in \mathcal{L}(\mathcal{H}) \mid \rho^{\dagger}=\rho, \rho \geq 0, \operatorname{Tr}(\rho)=1\right\}
$$

Pure quantum states ρ correspond to rank 1 projectors and thus to wave functions $|\psi\rangle$ with $\rho=|\psi\rangle\langle\psi|$.

What if we do not detect the atoms after they exit R_{2} ?

The "best estimate" of the cavity state is given by its expectation value

$$
\rho_{+}=p_{g, k} \mathbb{M}_{g}(\rho)+p_{e, k} \mathbb{M}_{e}(\rho)=\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}+\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}=: \mathbb{K}(\rho) .
$$

This linear map is called the Kraus map associated to the Kraus operators \mathcal{M}_{g} and \mathcal{M}_{e}.

In the same way and through a Bayesian filter we can take into account various uncertainties.

Pulse occupation The probability that a pulse is occupied by an atom is given by $\eta_{a}\left(\eta_{a} \in(0,1]\right.$ is called the pulse occupancy rate);
Detector efficiency The detector can miss an atom with a probability of $1-\eta_{d}\left(\eta_{d} \in(0,1]\right.$ is called the detector's efficiency rate);
Detector faults The detector can make a mistake by detecting an atom in $|g\rangle$ while it is in the state $|e\rangle$ or vice-versa; this happens with a probability of $\eta_{f}\left(\eta_{f} \in[0,1 / 2]\right.$ is called the detector's fault rate);

We basically have three possibilities for the detection output:
Atom detected in $|g\rangle$ either the atom is really in the state $|g\rangle$ or the detector has made a mistake and it is actually in the state $|e\rangle$;
Atom detected in $|e\rangle$ either the atom is really in the state $|e\rangle$ or the detector has made a mistake and it is actually in the state $|g\rangle$;
No atom detected either the pulse has been empty or the detector has missed the atom.

Either the atom is actually in the state $|e\rangle$ and the detector has made a mistake by detecting it in $|g\rangle$ (this happens with a probability p_{g}^{f}) or the atom is really in the state $|g\rangle$ (this happens with probability $1-p_{g}^{f}$).

Conditional probablity p_{g}^{f} : We apply the Bayesian formula

$$
p_{g}^{f}=\frac{\eta_{f} p_{e}}{\eta_{f} p_{e}+\left(1-\eta_{f}\right) p_{g}},
$$

where $p_{g}=\operatorname{Tr}\left(\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}\right)$ and $p_{e}=\operatorname{Tr}\left(\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}\right)$.

Conditional evolution of density matrix:

$$
\begin{aligned}
\rho_{+} & =p_{g}^{f} \mathbb{M}_{e}(\rho)+\left(1-p_{g}^{f}\right) \mathbb{M}_{g}(\rho) \\
& =\frac{\eta_{f}}{\eta_{f} p_{e}+\left(1-\eta_{f}\right) p_{g}} \mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}+\frac{1-\eta_{f}}{\eta_{f} p_{e}+\left(1-\eta_{f}\right) p_{g}} \mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}
\end{aligned}
$$

Atom detected in $|e\rangle$

In the same way

$$
\rho_{+}=\frac{\eta_{f}}{\eta_{f} p_{g}+\left(1-\eta_{f}\right) p_{e}} \mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}+\frac{1-\eta_{f}}{\eta_{f} p_{g}+\left(1-\eta_{f}\right) p_{e}} \mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}
$$

Either the pulse has been empty (this happens with a probability p_{na}) or there has been an atom which has not been detected by the detector (this happens with the probability $1-p_{\text {na }}$).

Conditional probability p_{na} :

$$
p_{\mathrm{na}}=\frac{1-\eta_{a}}{\eta_{a}\left(1-\eta_{d}\right)+\left(1-\eta_{a}\right)}=\frac{1-\eta_{a}}{1-\eta_{a} \eta_{d}} .
$$

In such case the density matrix remains untouched.
The undetected atom case leads to an evolution of the density matrix through the Kraus representation.

Conditional evolution:

$$
\begin{aligned}
\rho_{+} & =p_{\mathrm{na}} \rho+\left(1-p_{\mathrm{na}}\right)\left(\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}+\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}\right) \\
& =\frac{1-\eta_{a}}{1-\eta_{a} \eta_{d}} \rho+\frac{\eta_{a}\left(1-\eta_{d}\right)}{1-\eta_{a} \eta_{d}}\left(\mathcal{M}_{g} \rho \mathcal{M}_{g}^{\dagger}+\mathcal{M}_{e} \rho \mathcal{M}_{e}^{\dagger}\right)
\end{aligned}
$$

