Modeling and Control of Quantum Systems

Mazyar Mirrahimi Pierre Rouchon

mazyar.mirrahimi@inria.fr pierre.rouchon@ensmp.fr

http://cas.ensmp.fr/~rouchon/QuantumSyst/index.html

Lecture 4: November 22, 2010

(日) (日) (日) (日) (日) (日) (日)

1 Controllability

- State and propagator controllability
- Lie-algebra rank condition
- A graph sufficient controllability condition

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 Lyapunov control

- State stabilization
- Tracking and quantum gate design

3 Optimal control

- Stationary conditions
- Monotone scheme
- Optimality and resonance

Schrödinger equation

$$i\frac{d}{dt}|\psi\rangle = \left(H_0 + \sum_{k=1}^m u_k H_k\right)|\psi\rangle$$

State controllability

For any $|\psi_a\rangle$ and $|\psi_b\rangle$ on the unit sphere of \mathcal{H} , there exist a time T > 0, a global phase $\theta \in [0, 2\pi[$ and a piecewise continuous control $[0, T] \ni t \mapsto u(t)$ such that the solution with initial condition $|\psi\rangle_0 = |\psi_a\rangle$ satisfies $|\psi\rangle_T = e^{i\theta} |\psi_b\rangle$.

¹See, e.g., Introduction to Quantum Control and Dynamics by D. D'Alessandro. Chapman & Hall/CRC, 2008.

Controllability of bilinear Schrödinger equations

Propagator equation:

$$i\frac{d}{dt}U = \left(H_0 + \sum_{k=1}^m u_k H_k\right)U, \quad U(0) = \mathbf{1}$$

We have $|\psi\rangle_t = U(t) |\psi\rangle_0$.

Operator controllability

For any unitary operator *V* on \mathcal{H} , there exist a time T > 0, a global phase θ and a piecewise continuous control $[0, T] \ni t \mapsto u(t)$ such that the solution of propagator equation satisfies $U_T = e^{i\theta} V$.

Operator controllability implies state controllability

(日) (日) (日) (日) (日) (日) (日)

Lie-algebra rank condition

$$\frac{d}{dt}U = \left(A_0 + \sum_{k=1}^m u_k A_k\right)U$$

with $A_k = H_k/i$ are skew-Hermitian. We define

$$\mathcal{L}_{0} = \operatorname{span}\{A_{0}, A_{1}, \dots, A_{m}\}$$
$$\mathcal{L}_{1} = \operatorname{span}(\mathcal{L}_{0}, [\mathcal{L}_{0}, \mathcal{L}_{0}])$$
$$\mathcal{L}_{2} = \operatorname{span}(\mathcal{L}_{1}, [\mathcal{L}_{1}, \mathcal{L}_{1}])$$
$$\vdots$$
$$= \mathcal{L}_{m} = \operatorname{span}(\mathcal{L}_{m-1}, [\mathcal{L}_{m-1}, \mathcal{L}_{m}])$$

$$\mathcal{L} = \mathcal{L}_{\nu} = \operatorname{span}(\mathcal{L}_{\nu-1}, [\mathcal{L}_{\nu-1}, \mathcal{L}_{\nu-1}])$$

Lie Algebra Rank Condition

Operator controllable if, and only if, the Lie algebra generated by the m + 1 skew-Hermitian matrices $\{-iH_0, -iH_1, \dots, -iH_m\}$ is either su(n) or u(n).

Exercice

Show that $i\frac{d}{dt} |\psi\rangle = \left(\frac{\omega_{eg}}{2}\sigma_z + \frac{u}{2}\sigma_x\right) |\psi\rangle$, $|\psi\rangle \in \mathbb{C}^2$ is controllable.

We consider $H = H_0 + uH_1$, $(|j\rangle)_{j=1,...,n}$ the eigenbasis of H_0 . We assume $H_0 |j\rangle = \omega_j |j\rangle$ where $\omega_j \in \mathbb{R}$, we consider a graph *G*:

 $V = \{ |1\rangle, \ldots, |n\rangle \}, \quad E = \{ (|j_1\rangle, |j_2\rangle) \mid 1 \le j_1 < j_2 \le n, \ \langle j_1 | H_1 | j_2 \rangle \neq 0 \}.$

G amits a degenerate transition if there exist $(|j_1\rangle, |j_2\rangle) \in E$ and $(|l_1\rangle, |l_2\rangle) \in E$, admitting the same transition frequencies,

$$|\omega_{j_1} - \omega_{j_2}| = |\omega_{l_1} - \omega_{l_2}|.$$

A sufficient controllability condition

Remove from *E*, all the edges with identical transition frequencies. Denote by $\overline{E} \subset E$ the reduced set of edges without degenerate transitions and by $\overline{G} = (V, \overline{E})$. If \overline{G} is connected, then the system is operator controllable. The dynamics of the 2-qubit system (state $|\psi\rangle\in\mathbb{C}^2\otimes\mathbb{C}^2$) obey

 $i\frac{d}{dt}|\psi\rangle = (H_0 + uH_1)|\psi\rangle = (Z_1Z_2 + u(X_1 + X_2))|\psi\rangle \quad (1)$

with $u \in \mathbb{R}$ as control.

- 1 Prove that X_1X_2 commutes with H_0 and with H_1 .
- 2 Is the system controllable ?
- 3 Use the spectral basis of $X_1 X_2$ and the decomposition span{ $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ } = span{ $|++\rangle$, $|--\rangle$ } \oplus span{ $|+-\rangle$, $|-+\rangle$ } with $|+\rangle = \frac{|0\rangle+|1\rangle}{\sqrt{2}}$, $|-\rangle = \frac{|0\rangle-|1\rangle}{\sqrt{2}}$, to deduce a splitting of this system into two separated systems on span{ $|++\rangle$, $|--\rangle$ } and on span{ $|+-\rangle$, $|-+\rangle$ }.
- 4 Prove that one of these sub-systems is controllable and that the other one is not controllable.

Bilinear Schrödinger equation:

$$i rac{d}{dt} \ket{\psi} = (H_0 + u(t)H_1) \ket{\psi}$$

Control task: to prepare $|\bar{\psi}
angle$ such that

$$H_0 \left| \bar{\psi} \right\rangle = \bar{\omega} \left| \bar{\psi} \right\rangle.$$

The states $|\psi\rangle$ and ${\it e}^{i\phi}\,|\psi\rangle$ represent the same physical states

We add a fictitious control:

$$irac{d}{dt}\ket{\psi} = (H_0 + u(t)H_1)\ket{\psi} + \omega(t)\ket{\psi}$$

 $|ar{\psi}
angle$ is a stationary solution for $u(t)\equiv 0$ and $\omega(t)\equiv -ar{\omega}.$

We look for feedback laws $u(t) = f(|\psi\rangle)$ and $\omega(t) = g(|\psi\rangle)$ such that the solution of

$$irac{d}{dt}|\psi
angle = (H_0 + f(|\psi
angle)H_1 + g(|\psi
angle))|\psi
angle$$

converges asymptotically towards $|\bar{\psi}\rangle$.

Remark

These feedback laws are calculated off-line and by simulating the closed-loop system and are then applied in open-loop on the real system.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A Lyapunov function

We consider

$$\mathcal{V}(\ket{\psi}) = rac{1}{2} \left\| \ket{\psi} - \ket{ar{\psi}}
ight\|^2 = 1 - \Re(ig\langle ar{\psi} \mid \psi ig
angle).$$

We have

$$\frac{d}{dt}\mathcal{V} = -u(t)\Im\langle\bar{\psi} \mid H_1 \mid \psi\rangle - (\omega(t) + \bar{\omega})\Im(\langle\bar{\psi} \mid \psi\rangle)$$

Choice of feedback laws

 $u(t) \equiv a\Im(\langle \bar{\psi} \mid H_1 \mid \psi \rangle)$ and $\omega(t) \equiv -\bar{\omega} + b\Im(\langle \bar{\psi} \mid \psi \rangle)$, where a, b > 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Lyapunov function and Lasalle invariance principle)

Take $\Omega \subset \mathbb{R}^n$ an open and non-empty subset of \mathbb{R}^n and $\Omega \ni x \mapsto v(x) \in \mathbb{R}^n$ continuously differentiable function of x. Consider $\Omega \ni x \mapsto V(x) \in \mathbb{R}$ a continuously differentiable function of x and assume that

1 there exits $c \in \mathbb{R}$ such that the subset $V_c = \{x \in \Omega \mid V(x) \le c\}$ of \mathbb{R}^n is compact (bounded and closed) and non-empty.

2 *V* is a decreasing time function for solutions of $\frac{d}{dt}x = v(x)$ inside *V_c*:

$$orall x \in V_c, \quad rac{d}{dt}V(x) =
abla V(x) \cdot v(x) = \sum_{i=1}^n rac{\partial V}{\partial x_i}(x) \ v_i(x) \leq 0$$

Then for any initial condition $x^0 \in V_c$, the solution of $\frac{d}{dt}x = v(x)$ remains in V_c , is defined for all t > 0 (no explosion in finite time) and converges towards the largest invariant set included in

$$\left\{x\in V_c\mid \frac{d}{dt}V(x)=0\right\}.$$

Application to Schrödinger equation

$d\mathcal{V}/dt = 0$ and invariance

$$\Im(\langle \bar{\psi} \mid \psi \rangle) = 0,$$

$$\Im(\langle \bar{\psi} \mid H_1 \mid \psi \rangle) = 0,$$

$$\Re(\langle \bar{\psi} \mid [H_0, H_1] \mid \psi \rangle) = 0,$$

$$\vdots$$

$$\Im(\langle \bar{\psi} \mid ad_{H_1}^{2k} H_0 \mid \psi \rangle) = 0,$$

$$\Re(\langle \bar{\psi} \mid ad_{H_1}^{2k+1} H_0 \mid \psi \rangle) = 0.$$

Assume that the spectrum of H_0 is not $\bar{\omega}$ -degenerate: i.e. H_0 is not degenerate and for any two eigenvalues $\omega_{\alpha} \neq \omega_{\beta}$, $|\omega_{\alpha} - \bar{\omega}| \neq |\omega_{\beta} - \bar{\omega}|$;

Ω-limit set

Intersection of \mathbb{S}^{2n-1} with $\mathbb{R} |\bar{\psi}\rangle \bigcup_{\alpha} \mathbb{C} |\psi_{\alpha}\rangle$, where $|\psi_{\alpha}\rangle$ is any eigenvector of H_0 non co-linear with $|\bar{\psi}\rangle$ and satisfying $\langle \bar{\psi} | H_1 | \psi_{\alpha} \rangle = 0$.

H

Convergence Analysis

Theorem

Under the assumption of H_0 not $\bar{\omega}$ -degenerate and mono-photonic transitions to $|\bar{\psi}\rangle$ ($\langle\bar{\psi} | H_1 | \psi_{\alpha}\rangle \neq 0$ for all eigenvector $|\psi_{\alpha}\rangle$ of H_0), the Ω -limit set reduces to $\{|\bar{\psi}\rangle, -|\bar{\psi}\rangle\}$. The equilibrium $-|\bar{\psi}\rangle$ is unstable and the attraction region for the equilibrium $|\psi\rangle$ is exactly $\mathbb{S}^{2n-1}/\{-|\bar{\psi}\rangle\}$.

Remark

Assumptions of H_0 not $\bar{\omega}$ -degenerate and mono-photonic transitions to $|\bar{\psi}\rangle$

\leftrightarrow

Controllability of linearized system around $(|\psi\rangle, u, \omega) = (|\bar{\psi}\rangle, 0, -\bar{\omega})$

Main idea: stabilizing around another reference trajectory, around which the linearized system is controllable.

Reference trajectory:

$$i\frac{d}{dt}|\psi_r\rangle = (H_0 + u_r(t)H_1 + \omega_r(t))|\psi_r\rangle$$

Same Lyapunov function: $\mathcal{V}(t, |\psi\rangle) = 1 - \Re(\langle \psi_r(t) | \psi \rangle).$

Feedback laws:

$$u(t, |\psi\rangle) = u_r(t) + a\Im(\langle \psi_r(t) | H_1 | \psi\rangle),$$

$$\omega(t, |\psi\rangle) = \omega_r(t) + b\Im(\langle \psi_r(t) | \psi\rangle)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tracking and quantum gate design

We consider a drift-less propagator dynamics:

$$i\frac{d}{dt}U = \left(\omega\mathbf{1} + \sum_{k=1}^{m} u_k H_k\right)U, \qquad U\Big|_{t=0} = \mathbf{1}.$$

Periodic reference trajectory: u_k^r and ω_r periodic and odd.

Main idea

By a Coron's result, as soon as $\text{Lie}(H_1, \ldots, H_m) = su(n)$, one can find reference controls ω^r and u_k^r around which the linearized system is controllable.

Lyapunov function: $\mathcal{V}(U, U^r) = n - \Re(\text{Tr}(U^{\dagger}U^r))$. Feedback laws:

$$u_{k} = u_{k}^{r} - a_{k} \Im(\operatorname{Tr}\left(U^{\dagger}H_{k}U^{r}\right)),$$

$$\omega = \omega^{r} - b\Im(\operatorname{Tr}\left(U^{\dagger}U^{r}\right)).$$

(日) (日) (日) (日) (日) (日) (日)

Remark

The LaSalle's invariance principle also works for time-periodic systems; only one needs to be be careful about the notion of invariance:

A set *S* is said to be invariant for the time-periodic system $\frac{d}{dt}x = v(x, t)$ if, for all $x_0 \in S$ there exists a time $t_0 > 0$ such that the solution starting from x_0 at time t_0 remains in the set *S* for all $t \ge t_0$.

(日) (日) (日) (日) (日) (日) (日)

Two optimal control problems

For given T, $|\psi_a\rangle$ and $|\psi_b\rangle$, find the open-loop control $[0, T] \ni t \mapsto u(t)$ such that

$$\min_{\substack{u_k \in L^2([0,T],\mathbb{R}) \\ i\frac{d}{dt} |\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k) |\psi\rangle \\ |\psi\rangle_{t=0} = |\psi_a\rangle, \ |\langle\psi_b|\psi\rangle|_{t=T}^2 = 1 } \frac{\frac{1}{2} \int_0^T \left(\sum_{k=1}^m u_k^2\right) dt dt}{|\psi|_{k=1}^2}$$

Since the initial and final constraints are difficult to satisfy simultaneously from a numerical point of view, consider the second problem where the final constraint is penalized with $\alpha > 0$:

$$\min_{\substack{u_k \in L^2([0, T], \mathbb{R}) \\ |\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k) |\psi\rangle \\ |\psi\rangle_{t=0} = |\psi_a\rangle}} \frac{\frac{1}{2} \int_0^T \left(\sum_{k=1}^m u_k^2\right) + \frac{\alpha}{2} \left(1 - |\langle \psi_b |\psi\rangle|_T^2\right)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

First order stationary conditions

For two-points problem, the first order stationary conditions read:

$$\begin{cases} i\frac{d}{dt}|\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|\psi\rangle, \ t \in (0,T) \\ i\frac{d}{dt}|p\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|p\rangle, \ t \in (0,T) \\ u_k = -\Im\left(\langle p|H_k|\psi\rangle\right), \ k = 1, \dots, m, \ t \in (0,T) \\ |\psi\rangle_{t=0} = |\psi_a\rangle, \ |\langle\psi_b|\psi\rangle|_{t=T}^2 = 1 \end{cases}$$

For the relaxed problem, the first order stationary conditions read:

$$\begin{cases} i\frac{d}{dt}|\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|\psi\rangle, \ t \in (0,T) \\ i\frac{d}{dt}|p\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|p\rangle, \ t \in (0,T) \\ u_k = -\Im\left(\langle p|H_k|\psi\rangle\right), \ k = 1, \dots, m, \ t \in (0,T) \\ |\psi\rangle_{t=0} = |\psi_a\rangle, \ |p\rangle_{t=T} = -\alpha\langle\psi_b|\psi\rangle_{t=T} \ |\psi_b\rangle. \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The dynamical system

$$(\Sigma) \begin{cases} i\frac{d}{dt}|\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k) |\psi\rangle, \ t \in (0, T) \\ i\frac{d}{dt}|p\rangle = (H_0 + \sum_{k=1}^m u_k H_k) |p\rangle, \ t \in (0, T) \\ u_k = -\Im \left(\langle p|H_k|\psi\rangle \right), \ k = 1, \dots, m, \ t \in (0, T) \end{cases}$$

is Hamiltonian with $|\psi\rangle$ and $|\rho\rangle$ being the conjugate variables. The underlying Hamiltonian function is given by (Pontryaguin Maximum Principle): $\overline{\mathbb{H}}(|\psi\rangle, |\rho\rangle) = \min_{u \in \mathbb{R}^m} \mathbb{H}(|\psi\rangle, |\rho\rangle, u)$ where

$$\mathbb{H}(\ket{\psi},\ket{p},u) = \frac{1}{2}\left(\sum_{k=1}^{m}u_{k}^{2}\right) + \Im\left(\left\langle p \left| H_{0} + \sum_{k=1}^{m}u_{k}H_{k} \right| \psi \right\rangle\right).$$

Thus for any solutions $(\ket{\psi}, \ket{p})$ of (Σ) ,

$$\overline{\mathbb{H}}(\ket{\psi}, \ket{p}) = \Im\left(\langle p | H_0 | \psi \rangle\right) - \frac{1}{2} \left(\sum_{k=1}^m \Im\left(\langle p | H_k | \psi \rangle\right)^2\right)$$

is independent of t.

Main difficulty: such systems are not, in general, integrable in the Arnold-Liouville sense.

Monotone numerical scheme for the relaxed problem $(1)^2$

Take an L^2 control $[0, T] \ni t \mapsto u(t)$ (dim(u) = 1 here) and denote by

■ $|\psi_u\rangle$ the solution of forward system $i\frac{d}{dt}|\psi\rangle = (H_0 + uH_1)|\psi\rangle$ starting from $|\psi_a\rangle$.

• $|p_u\rangle$ the adjoint associated to u, i.e. the solution of the backward system $i\frac{d}{dt}|p_u\rangle = (H_0 + uH_1)|p_u\rangle$ with $|p_u\rangle_T = -\alpha P |\psi_u\rangle_T$, P projector on $|\psi_b\rangle$, $P |\phi\rangle \equiv \langle \psi_b |\phi\rangle |\psi_b\rangle$.

$$J(u) = \frac{1}{2} \int_0^T u^2 + \frac{\alpha}{2} (1 - |\langle \psi_b | \psi_u \rangle|_T^2).$$

Starting from an initial guess $u^0 \in L^2([0, T], \mathbb{R})$, the monotone scheme generates a sequence of controls $u^{\nu} \in L^2([0, T], \mathbb{R})$, $\nu = 1, 2, \ldots$, such that the cost $J(u^{\nu})$ is decreasing, $J(u^{\nu+1}) \leq J(u^{\nu})$.

²D. Tannor, V. Kazakov, and V. Orlov. *Time Dependent Quantum Molecular Dynamics*, chapter Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds, pages 347–360. Plenum, 1992.

Assume that, at step ν , we have computed the control u^{ν} , the associated quantum state $|\psi^{\nu}\rangle = |\psi_{u^{\nu}}\rangle$ and its adjoint $|p^{\nu}\rangle = |p_{u^{\nu}}\rangle$. We get their new time values $u^{\nu+1}$, $|\psi^{\nu+1}\rangle$ and $|p^{\nu+1}\rangle$ in two steps:

1 Imposing $u^{\nu+1} = -\Im \left(\langle p^{\nu} | H_1 | \psi^{\nu+1} \rangle \right)$ is just a feedback; one get $u^{\nu+1}$ just by a forward integration of the nonlinear Schrödinger equation,

$$i\frac{d}{dt}|\psi\rangle = (H_0 - \Im\left(\langle p^{\nu}|H_1|\psi\rangle\right)H_1)|\psi\rangle, \quad |\psi\rangle_0 = |\psi_a\rangle,$$

that provides $[0, T] \ni t \mapsto |\psi^{\nu+1}\rangle$ and the new control $u^{\nu+1}$. **2** Backward integration from t = T to t = 0 of

$$i\frac{d}{dt}|\boldsymbol{p}\rangle = \left(\boldsymbol{H}_{0} + \boldsymbol{u}^{\nu+1}(t)\boldsymbol{H}_{1}\right)|\boldsymbol{p}\rangle, \quad |\boldsymbol{p}\rangle_{T} = -\alpha \left\langle\psi_{b}|\psi^{\nu+1}\right\rangle_{T}|\psi_{b}\rangle$$

yields to the new adjoint trajectory $[0, T] \ni t \mapsto |p^{\nu+1}\rangle$.

Why $J(u^{\nu+1}) \leq J(u^{\nu})$?

Because we have the identity for any open-loop controls u and v.

$$\begin{aligned} J(u) - J(v) &= -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | \boldsymbol{P} | \psi_u - \psi_v \rangle \right)_T \\ &+ \frac{1}{2} \left(\int_0^T (u - v) \left(u + v + 2\Im \left(\langle \boldsymbol{p}_v | \boldsymbol{H}_1 | \psi_u \rangle \right) \right) \right). \end{aligned}$$

If $u = -\Im(\langle p_v | H_1 | \psi_u \rangle)$ for all $t \in [0, T)$, we have

$$J(u)-J(v) = -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | \boldsymbol{P} | \psi_u - \psi_v \rangle \right)_T - \frac{1}{2} \left(\int_0^T (u-v)^2 \right)$$

and thus
$$J(u) \leq J(v)$$
.
Take $v = u^{\nu}$, $u = u^{\nu+1}$: then $|p_v\rangle = |p^{\nu}\rangle$, $|\psi_v\rangle = |\psi^{\nu}\rangle$, $|p_u\rangle = |p^{\nu+1}\rangle$ and $|\psi_u\rangle = |\psi^{\nu+1}\rangle$.

Monotone numerical scheme for the relaxed problem (4)

Proof of

$$J(u) - J(v) = -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | P | \psi_u - \psi_v \rangle \right)_T + \frac{1}{2} \left(\int_0^T (u - v) \left(u + v + 2\Im \left(\langle p_v | H_1 | \psi_u \rangle \right) \right) \right).$$

Start with

$$J(u)-J(v) = -\frac{\alpha \left(\langle \psi_u - \psi_v | P | \psi_u - \psi_v \rangle_T + \langle \psi_u - \psi_v | P | \psi_v \rangle_T + \langle \psi_v | P | \psi_u - \psi_v \rangle_T\right)}{2} + \int_0^T \frac{(u-v)(u+v)}{2}.$$

 $\text{Hermitian product of } i \frac{d}{dt} (|\psi_u\rangle - |\psi_v\rangle) = (H_0 + vH_1) (|\psi_u\rangle - |\psi_v\rangle) + (u - v)H_1 |\psi_u\rangle \text{ with } |\rho_v\rangle:$

$$\left\langle \rho_{\mathbf{v}} \left| \frac{d(\psi_{U} - \psi_{\mathbf{v}})}{dt} \right. \right\rangle = \left\langle \rho_{\mathbf{v}} \left| \frac{H_{0} + vH_{1}}{i} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle + \left\langle \rho_{\mathbf{v}} \left| \frac{(u - v)H_{1}}{i} \right| \psi_{u} \right\rangle.$$

Integration by parts (use $|\psi_V\rangle_0 = |\psi_u\rangle_0$, $|p_v\rangle_T = -\alpha P |\psi_v\rangle_T$ and $\frac{d}{dt} \langle p_v| = -\langle p_v| \left(\frac{H_0 + vH_1}{i}\right)$):

$$\begin{split} \int_{0}^{T} \left\langle p_{\mathbf{v}} \left| \frac{d(\psi_{u} - \psi_{\mathbf{v}})}{dt} \right\rangle &= \left\langle p_{\mathbf{v}} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle_{T} - \left\langle p_{\mathbf{v}} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle_{0} - \int_{0}^{T} \left\langle \frac{dp_{\mathbf{v}}}{dt} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle \\ &= -\alpha \left\langle \psi_{\mathbf{v}} \right| P |\psi_{u} - \psi_{\mathbf{v}} \right\rangle_{T} + \int_{0}^{T} \left\langle p_{\mathbf{v}} \left| \frac{H_{0} + \nu H_{1}}{i} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle \end{split}$$

Thus
$$-\alpha \langle \psi_{\mathbf{v}} | \mathbf{P} | \psi_{u} - \psi_{\mathbf{v}} \rangle_{T} = \int_{0}^{T} \left\langle \mathbf{p}_{\mathbf{v}} \left| \frac{(u-v)H_{1}}{i} \right| \psi_{u} \right\rangle$$
 and
 $\alpha \Re \left(\langle \psi_{\mathbf{v}} | \mathbf{P} | \psi_{u} - \psi_{\mathbf{v}} \rangle_{T} \right) = -\int_{0}^{T} \Im \left(\langle \mathbf{p}_{\mathbf{v}} | (u-v)H_{1} | \psi_{u} \rangle \right)$. Finally we have

$$J(u) - J(v) = -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | P | \psi_u - \psi_v \rangle \right)_T + \frac{1}{2} \left(\int_0^T (u - v) \left(u + v + 2\Im \left(\langle p_v | H_1 | \psi_u \rangle \right) \right) \right).$$

Optimality and resonance (1)³

For given
$$T$$
, $a_k \ge 0$ and $b_k \ge 0$ $(\sum_{k=1}^n a_k^2 = \sum_{k=1}^n b_k^2 = 1)$,

$$\min_{\substack{\mathbf{u}_{k,l} \in L^{2}([0, T], \mathbb{C}), (k, l) \in I \\ i\frac{d}{dt} |\psi\rangle = \left(\sum_{(k,l) \in I} \mu_{kl} \mathbf{u}_{kl} |k\rangle \langle l|\right) |\psi\rangle, \\ |\langle k|\psi\rangle|_{t=0}^{2} = a_{k}^{2}, |\langle k|\psi\rangle|_{t=T}^{2} = b_{k}^{2}, k = 1, \dots, n$$

1

`

admits the same minimal cost as the following reduced problem

$$\min_{\substack{\mathbf{v}_{k,l} \in L^2([0,T],\mathbb{R}), \ \mathbf{v}_{kl} = -\mathbf{v}_{l,k}, \ (k,l) \in I \\ \frac{d}{dt} |\phi\rangle = \left(\sum_{(k,l) \in I} \mu_{kl} \mathbf{v}_{kl} |k\rangle \langle l|\right) |\phi\rangle \\ \langle k|\phi\rangle|_{t=0} = a_k, \ \langle k|\phi\rangle_{t=T} = b_k, \ k = 1, \dots, n }$$

where the components of $|\psi\rangle = |\phi\rangle$ remain real, the \mathbf{u}_{kl} 's are purely imaginary, $\mathbf{u}_{kl} = i\mathbf{v}_{kl}$ ($\mathbf{v}_{kl} \in \mathbb{R}$ with $\mathbf{v}_{kl} = -\mathbf{v}_{lk}$).

³U. Boscain and G. Charlot. Resonance of minimizers for n-level quantum systems with an arbitrary cost. *ESAIM COCV*, 10:593–614,2004, Section 2004, Secti

Optimality and resonance (2)

Go back to resulting optimal physical controls ($\mathbf{u}_{kl} = i\mathbf{v}_{kl}$):

 $\mathbf{u}_{kl}(t)e^{i(\omega_k-\omega_l)t}+\mathbf{u}_{kl}^*(t)e^{-i(\omega_k-\omega_l)t}=-2\mathbf{v}_{kl}(t)\sin\left((\omega_k-\omega_l)t\right).$

- They are in resonance with the frequency transition between |k⟩ and |l⟩. They contain only amplitude modulations (up to a π phase-shift since v_{kl} can pass through zero).
- For drift-less quantum systems

$$i\frac{d}{dt}\left|\psi\right\rangle = \left(\sum_{(k,l)\in I} \mu_{kl} \mathbf{u}_{kl}\left|k\right\rangle\left\langle l\right|\right)\left|\psi\right\rangle$$

population transfer minimizing the L^2 control norm is achieved by resonant controls $\mathbf{u}_{kl} = i\mathbf{v}_{kl}$ with $\mathbf{v}_{kl} \in \mathbb{R}$ (the reduction of the problem to a real case of half dimension).

Optimality and resonance (3)

Associated to any $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ consider

$$|\psi\rangle \mapsto |\psi^{\theta}\rangle = \left(\sum_{k=1}^{n} e^{i\theta_{k}} |k\rangle \langle k|\right) |\psi\rangle, \qquad \mathbf{u}_{kl} \mapsto \mathbf{u}_{kl}^{\theta} = e^{i(\theta_{k} - \theta_{l})} \mathbf{u}_{kl}.$$

These transformations leave unchanged cost and constraints of

$$\min_{\substack{\mathbf{u}_{k,l} \in L^2([0,T],\mathbb{C}), (k,l) \in I \\ i\frac{d}{dt} |\psi\rangle = \left(\sum_{(k,l) \in I} \mu_{kl} \mathbf{u}_{kl} |k\rangle \langle l|\right) |\psi\rangle, \\ |\langle \mathbf{k} |\psi\rangle|_{t=0}^2 = \mathbf{a}_k^2, \ |\langle \mathbf{k} |\psi\rangle|_{t=T}^2 = \mathbf{b}_k^2, \ k = 1, \dots, n$$

`

1

_ /

that coincides with

$$\min_{\substack{\mathbf{u}_{k,l} \in L^2([0,T], \mathbb{C}), (k,l) \in I \\ i\frac{d}{dt} |\psi\rangle = \left(\sum_{(k,l) \in I} \mu_{kl} \mathbf{u}_{kl} |k\rangle \langle l|\right) |\psi\rangle,} \frac{\frac{1}{2} \int_0^I \left(\sum_{(k,l) \in I} |\mathbf{u}_{kl}|^2\right).}{\left(\sum_{(k,l) \in I} \mu_{kl} \mathbf{u}_{kl} |k\rangle \langle l|\right) |\psi\rangle,}$$
$$\frac{\langle \mathbf{k} |\psi\rangle_{t=0} = \mathbf{a}_k, |\langle \mathbf{k} |\psi\rangle|_{t=T}^2 = b_k^2, \ \mathbf{k} = 1, \dots, n$$

Optimality and resonance (4)

Set $\psi_k = \langle k | \psi \rangle$ and $\mathbf{z}_{kl} = \psi_k \psi_l^*$: $\frac{d}{dt} (|\psi_k|^2) = \sum_{l \mid (k,l) \in I} \mu_{kl} \frac{\mathbf{u}_{kl} \mathbf{z}_{kl}^* - \mathbf{u}_{kl}^* \mathbf{z}_{kl}}{i}$ Evolution of the direction of ψ_k in the complex plane is governed by

$$\psi_k^* \frac{d}{dt} \psi_k - \psi_k \frac{d}{dt} \psi_k^* = \sum_{I \mid (k,l) \in I} \mu_{kl} \frac{\mathbf{u}_{kl} \mathbf{z}_{kl}^* + \mathbf{u}_{kl}^* \mathbf{z}_{kl}}{i}$$

For
$$(k, l) \in l$$
 set $v_{kl}(t) = \begin{cases} 0, & \text{if } \mathbf{z}_{kl}(t) = 0; \\ \frac{\mathbf{u}_{kl}(t)\mathbf{z}_{kl}^*(t) - \mathbf{u}_{kl}^*(t)\mathbf{z}_{kl}(t)}{2i|\mathbf{z}_{kl}(t)|}, & \text{if } \mathbf{z}_{kl}(t) \neq 0;. \end{cases}$

- We have $v_{kl} = -v_{lk}$ since $\mathbf{u}_{kl}^* = \mathbf{u}_{lk}$ and $z_{kl}^* = z_{lk}$. Moreover $|v_{kl}| \le |\mathbf{u}_{kl}|$. Thus each v_{kl} belongs to $L^2([0, T], \mathbb{R})$ and the solution $|\phi\rangle$ of $\frac{d}{dt}\phi_k = \sum_{l \mid (k,l) \in I} \mu_{kl}v_{kl}\phi_l, \phi_k(0) = a_k, \quad k = 1, \dots, n$ coincides with $\phi_k = |\psi_k|$.
- To summarize: starting from complex controls $\mathbf{u}_{kl} \in L^2([0, T], \mathbb{C})$ satisfying the constraints of the full problem, we have constructed real controls $v_{kl} \in L^2([0, T], \mathbb{C})$ satisfying the constraints of the reduced problem; the cost associated to \mathbf{u}_{kl} is larger than the cost associated to v_{kl} since $|v_{kl}| \leq |u_{kl}|$.

Outline of the 8 lectures

- Lect. 1 (Oct. 4) Introduction on LKB Photon-Box: control issues for classical and quantum oscillators (creation/annihilation operator, coherent state).
 - Part 1, open-loop control of Schrödinger systems:
 - Lect. 2 (Oct. 11) RWA and multi-frequency averaging; 2-level system (half spin) and Jaynes-Cummings model (spin-spring)
 - Lect. 3 (Oct. 25) Law-Eberly method for trapped ions; adiabatic invariance and control.
 - Lect. 4 (Nov. 22) Controllability, Lyapounov control and optimal control
 - Part 2, closed-loop control of open quantum systems:
 - Lect. 5 (Nov. 29) Measurement and quantum trajectories (discrete time, Kraus operators, LKB-photon box)
 - Lect. 6 (Dec. 6) Feedback stabilization (Photon-box, quantum filter, Lyapunov, separation principle, delay compensation)
 - Lect. 7 (Dec. 13) Quantum trajectories (continuous time with Poisson process, Lindblad operators, time/scale reduction, synchronization loop on a A-system)
 - Lect. 8 (Dec. 14) Quantum trajectories (continuous time with Wiener process, homodyn detection, Lyapunov feedback stabilization of entangled states).