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Controllability of bilinear Schrödinger equations1

Schrödinger equation

i d
dt |ψ〉 =

(
H0 +

m∑
k=1

ukHk

)
|ψ〉

State controllability

For any |ψa〉 and |ψb〉 on the unit sphere of H, there exist a time
T > 0, a global phase θ ∈ [0,2π[ and a piecewise continuous
control [0,T ] 3 t 7→ u(t) such that the solution with initial
condition |ψ〉0 = |ψa〉 satisfies |ψ〉T = eiθ |ψb〉.

1See, e.g., Introduction to Quantum Control and Dynamics by
D. D’Alessandro. Chapman & Hall/CRC, 2008.



Controllability of bilinear Schrödinger equations

Propagator equation:

i d
dt U =

(
H0 +

m∑
k=1

ukHk

)
U, U(0) = 1

We have |ψ〉t = U(t) |ψ〉0.

Operator controllability

For any unitary operator V on H, there exist a time T > 0, a
global phase θ and a piecewise continuous control
[0,T ] 3 t 7→ u(t) such that the solution of propagator equation
satisfies UT = eiθV .

Operator controllability implies state controllability



Lie-algebra rank condition

d
dt U =

(
A0 +

m∑
k=1

uk Ak

)
U

with Ak = Hk/i are skew-Hermitian. We define

L0 = span{A0,A1, . . . ,Am}
L1 = span(L0, [L0,L0])

L2 = span(L1, [L1,L1])

...
L = Lν = span(Lν−1, [Lν−1,Lν−1])

Lie Algebra Rank Condition

Operator controllable if, and only if, the Lie algebra generated by
the m + 1 skew-Hermitian matrices {−iH0,−iH1, . . . ,−iHm} is either
su(n) or u(n).

Exercice

Show that i d
dt |ψ〉 =

(ωeg
2 σz + u

2σx
)
|ψ〉, |ψ〉 ∈ C2 is controllable.



A simple sufficient condition

We consider H = H0 + uH1, (|j〉)j=1,...,n the eigenbasis of H0.
We assume H0 |j〉 = ωj |j〉 where ωj ∈ R, we consider a graph G:

V = {|1〉 , . . . , |n〉}, E = {(|j1〉 , |j2〉) | 1 ≤ j1 < j2 ≤ n, 〈j1|H1|j2〉 6= 0} .

G amits a degenerate transition if there exist (|j1〉 , |j2〉) ∈ E and
(|l1〉 , |l2〉) ∈ E , admitting the same transition frequencies,

|ωj1 − ωj2 | = |ωl1 − ωl2 |.

A sufficient controllability condition

Remove from E , all the edges with identical transition frequencies.
Denote by Ē ⊂ E the reduced set of edges without degenerate
transitions and by Ḡ = (V , Ē). If Ḡ is connected, then the system is
operator controllable.



Controllability of a 2-qubit in Ising interaction

The dynamics of the 2-qubit system (state |ψ〉 ∈ C2 ⊗ C2) obey

i d
dt |ψ〉 = (H0 + uH1) |ψ〉 = (Z1Z2 + u(X1 + X2)) |ψ〉 (1)

with u ∈ R as control.
1 Prove that X1X2 commutes with H0 and with H1.
2 Is the system controllable ?
3 Use the spectral basis of X1X2 and the decomposition

span{|00〉 , |01〉 , |10〉 , |11〉} =

span{|++〉 , |−−〉} ⊕ span{|+−〉 , |−+〉} with |+〉 = |0〉+|1〉√
2

,

|−〉 = |0〉−|1〉√
2

, to deduce a splitting of this system into two
separated systems on span{|++〉 , |−−〉} and on
span{|+−〉 , |−+〉}.

4 Prove that one of these sub-systems is controllable and
that the other one is not controllable.



Lyapunov control

Bilinear Schrödinger equation:

i
d
dt
|ψ〉 = (H0 + u(t)H1) |ψ〉

Control task: to prepare
∣∣ψ̄〉 such that

H0
∣∣ψ̄〉 = ω̄

∣∣ψ̄〉 .
The states |ψ〉 and eiφ |ψ〉 represent the same physical states

We add a fictitious control:

i
d
dt
|ψ〉 = (H0 + u(t)H1) |ψ〉+ω(t) |ψ〉∣∣ψ̄〉 is a stationary solution for u(t) ≡ 0 and ω(t) ≡ −ω̄.



Lyapunov control

We look for feedback laws u(t) = f (|ψ〉) and ω(t) = g(|ψ〉) such
that the solution of

i
d
dt
|ψ〉 = (H0 + f (|ψ〉)H1 + g(|ψ〉)) |ψ〉

converges asymptotically towards
∣∣ψ̄〉.

Remark

These feedback laws are calculated off-line and by simulating
the closed-loop system and are then applied in open-loop on
the real system.



A Lyapunov function

We consider

V(|ψ〉) =
1
2
∥∥|ψ〉 − ∣∣ψ̄〉∥∥2

= 1−<(
〈
ψ̄ | ψ

〉
).

We have

d
dt
V = −u(t)=

〈
ψ̄ | H1 | ψ

〉
− (ω(t) + ω̄)=(

〈
ψ̄ | ψ

〉
)

Choice of feedback laws

u(t) ≡ a=(
〈
ψ̄ | H1 | ψ

〉
) and ω(t) ≡ −ω̄ + b=(

〈
ψ̄ | ψ

〉
),

where a,b > 0.



LaSalle’s invariance principle

Theorem (Lyapunov function and Lasalle invariance principle)

Take Ω ⊂ Rn an open and non-empty subset of Rn and
Ω 3 x 7→ v(x) ∈ Rn continuously differentiable function of x. Consider
Ω 3 x 7→ V (x) ∈ R a continuously differentiable function of x and
assume that

1 there exits c ∈ R such that the subset Vc = {x ∈ Ω | V (x) ≤ c}
of Rn is compact (bounded and closed) and non-empty.

2 V is a decreasing time function for solutions of d
dt x = v(x) inside

Vc :

∀x ∈ Vc ,
d
dt V (x) = ∇V (x) · v(x) =

n∑
i=1

∂V
∂xi

(x) vi (x) ≤ 0

Then for any initial condition x0 ∈ Vc , the solution of d
dt x = v(x)

remains in Vc , is defined for all t > 0 (no explosion in finite time) and
converges towards the largest invariant set included in{

x ∈ Vc | d
dt V (x) = 0

}
.



Application to Schrödinger equation

dV/dt = 0 and invariance

=(
〈
ψ̄ | ψ

〉
) = 0,

=(
〈
ψ̄ | H1 | ψ

〉
) = 0,

<(
〈
ψ̄ | [H0,H1] | ψ

〉
) = 0,
...

=(
〈
ψ̄ | ad2k

H1
H0 | ψ

〉
) = 0,

<(
〈
ψ̄ | ad2k+1

H1
H0 | ψ

〉
) = 0.

Assume that the spectrum of H0 is not ω̄-degenerate: i.e. H0 is
not degenerate and for any two eigenvalues ωα 6= ωβ ,

|ωα − ω̄| 6= |ωβ − ω̄|;

Ω-limit set

Intersection of S2n−1 with R
∣∣ψ̄〉⋃α C |ψα〉, where |ψα〉 is any

eigenvector of H0 non co-linear with
∣∣ψ̄〉 and satisfying〈

ψ̄ | H1 | ψα
〉

= 0.



Convergence Analysis

Theorem

Under the assumption of H0 not ω̄-degenerate and
mono-photonic transitions to

∣∣ψ̄〉 (
〈
ψ̄ | H1 | ψα

〉
6= 0 for all

eigenvector |ψα〉 of H0), the Ω-limit set reduces to {
∣∣ψ̄〉 ,− ∣∣ψ̄〉}.

The equilibrium −
∣∣ψ̄〉 is unstable and the attraction region for

the equilibrium |ψ〉 is exactly S2n−1/{−
∣∣ψ̄〉}.

Remark

Assumptions of H0 not ω̄-degenerate and mono-photonic
transitions to

∣∣ψ̄〉
↔

Controllability of linearized system around
(|ψ〉 ,u, ω) = (

∣∣ψ̄〉 ,0,−ω̄)



Relaxing the assumptions: tracking

Main idea: stabilizing around another reference trajectory,
around which the linearized system is controllable.

Reference trajectory:

i
d
dt
|ψr 〉 = (H0 + ur (t)H1 + ωr (t)) |ψr 〉

Same Lyapunov function: V(t , |ψ〉) = 1−<(〈ψr (t) | ψ〉).

Feedback laws:

u(t , |ψ〉) = ur (t) + a=(〈ψr (t) | H1 | ψ〉),
ω(t , |ψ〉) = ωr (t) + b=(〈ψr (t) | ψ〉)



Tracking and quantum gate design

We consider a drift-less propagator dynamics:

i
d
dt

U =

(
ω1 +

m∑
k=1

ukHk

)
U, U

∣∣∣
t=0

= 1.

Periodic reference trajectory: ur
k and ωr periodic and odd.

Main idea

By a Coron’s result, as soon as Lie(H1, . . . ,Hm) = su(n), one
can find reference controls ωr and ur

k around which the
linearized system is controllable.

Lyapunov function: V(U,U r ) = n −<(Tr
(
U†U r)).

Feedback laws:

uk = ur
k − ak=(Tr

(
U†HkU r

)
),

ω = ωr − b=(Tr
(

U†U r
)

).



Remark

The LaSalle’s invariance principle also works for time-periodic
systems; only one needs to be be careful about the notion of
invariance:
A set S is said to be invariant for the time-periodic system
d
dt x = v(x , t) if, for all x0 ∈ S there exists a time t0 > 0 such that
the solution starting from x0 at time t0 remains in the set S for
all t ≥ t0.



Two optimal control problems

For given T , |ψa〉 and |ψb〉, find the open-loop control
[0,T ] 3 t 7→ u(t) such that

min
uk ∈ L2([0,T ],R)

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk ) |ψ〉

|ψ〉t=0 = |ψa〉 , |〈ψb|ψ〉|2t=T = 1

1
2

∫ T

0

(
m∑

k=1

u2
k

)

Since the initial and final constraints are difficult to satisfy
simultaneously from a numerical point of view, consider the
second problem where the final constraint is penalized with
α > 0:

min
uk ∈ L2([0,T ],R)

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk ) |ψ〉

|ψ〉t=0 = |ψa〉

1
2

∫ T

0

(
m∑

k=1

u2
k

)
+α

2

(
1−|〈ψb|ψ〉|2T

)



First order stationary conditions

For two-points problem, the first order stationary conditions
read: 

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk ) |ψ〉 , t ∈ (0,T )

i d
dt |p〉 = (H0 +

∑m
k=1 ukHk ) |p〉 , t ∈ (0,T )

uk = −=
(
〈p|Hk |ψ〉

)
, k = 1, . . . ,m, t ∈ (0,T )

|ψ〉t=0 = |ψa〉 , |〈ψb|ψ〉|2t=T = 1

For the relaxed problem, the first order stationary conditions
read: 

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk ) |ψ〉 , t ∈ (0,T )

i d
dt |p〉 = (H0 +

∑m
k=1 ukHk ) |p〉 , t ∈ (0,T )

uk = −=
(
〈p|Hk |ψ〉

)
, k = 1, . . . ,m, t ∈ (0,T )

|ψ〉t=0 = |ψa〉 , |p〉t=T = −α〈ψb|ψ〉t=T |ψb〉.



The underlying classical Hamiltonian dynamics

The dynamical system

(Σ)

 i d
dt |ψ〉 = (H0 +

∑m
k=1 uk Hk ) |ψ〉 , t ∈ (0,T )

i d
dt |p〉 = (H0 +

∑m
k=1 uk Hk ) |p〉 , t ∈ (0,T )

uk = −= (〈p|Hk |ψ〉) , k = 1, . . . ,m, t ∈ (0,T )

is Hamiltonian with |ψ〉 and |p〉 being the conjugate variables. The
underlying Hamiltonian function is given by (Pontryaguin Maximum
Principle): H(|ψ〉 , |p〉) = minu∈Rm H(|ψ〉 , |p〉 ,u) where

H(|ψ〉 , |p〉 ,u) = 1
2

(
m∑

k=1

u2
k

)
+ =

(〈
p

∣∣∣∣∣H0 +
m∑

k=1

uk Hk

∣∣∣∣∣ψ
〉)

.

Thus for any solutions (|ψ〉 , |p〉) of (Σ) ,

H(|ψ〉 , |p〉) = = (〈p |H0|ψ〉)− 1
2

(
m∑

k=1

=
(
〈p|Hk |ψ〉

)2
)
.

is independent of t .
Main difficulty: such systems are not, in general, integrable in the
Arnold-Liouville sense.



Monotone numerical scheme for the relaxed problem (1)2

Take an L2 control [0,T ] 3 t 7→ u(t) (dim(u) = 1 here) and
denote by

|ψu〉 the solution of forward system i d
dt |ψ〉 = (H0 + uH1) |ψ〉

starting from |ψa〉.
|pu〉 the adjoint associated to u, i.e. the solution of the
backward system i d

dt |pu〉 = (H0 + uH1) |pu〉 with
|pu〉T = −αP |ψu〉T , P projector on |ψb〉,
P |φ〉 ≡ 〈ψb|φ〉 |ψb〉.
J(u) = 1

2

∫ T
0 u2 + α

2 (1− |〈ψb|ψu〉|2T ).

Starting from an initial guess u0 ∈ L2([0,T ],R), the monotone
scheme generates a sequence of controls uν ∈ L2([0,T ],R),
ν = 1,2, . . ., such that the cost J(uν) is decreasing,
J(uν+1) ≤ J(uν).

2D. Tannor, V. Kazakov, and V. Orlov. Time Dependent Quantum
Molecular Dynamics, chapter Control of photochemical branching: Novel
procedures for finding optimal pulses and global upper bounds, pages
347–360. Plenum, 1992.



Monotone numerical scheme for the relaxed problem (2)

Assume that, at step ν, we have computed the control uν , the
associated quantum state |ψν〉 = |ψuν 〉 and its adjoint
|pν〉 = |puν 〉. We get their new time values uν+1,

∣∣ψν+1〉 and∣∣pν+1〉 in two steps:
1 Imposing uν+1 = −=

(〈
pν |H1|ψν+1〉) is just a feedback;

one get uν+1 just by a forward integration of the nonlinear
Schrödinger equation,

i d
dt |ψ〉 = (H0 −= (〈pν |H1|ψ〉) H1) |ψ〉 , |ψ〉0 = |ψa〉 ,

that provides [0,T ] 3 t 7→
∣∣ψν+1〉 and the new control uν+1.

2 Backward integration from t = T to t = 0 of

i d
dt |p〉 =

(
H0 + uν+1(t)H1

)
|p〉 , |p〉T = −α

〈
ψb|ψν+1

〉
T
|ψb〉

yields to the new adjoint trajectory [0,T ] 3 t 7→
∣∣pν+1〉.



Monotone numerical scheme for the relaxed problem (3)

Why J(uν+1) ≤ J(uν) ?
Because we have the identity for any open-loop controls u
and v .

J(u)− J(v) = −α
2 (〈ψu − ψv |P|ψu − ψv 〉)T

+ 1
2

(∫ T

0
(u − v) (u + v + 2= (〈pv |H1|ψu〉))

)
.

If u = −= (〈pv |H1|ψu〉) for all t ∈ [0,T ), we have

J(u)−J(v) = −α
2 (〈ψu − ψv |P|ψu − ψv 〉)T−

1
2

(∫ T

0
(u − v)2

)

and thus J(u) ≤ J(v).
Take v = uν , u = uν+1: then |pv 〉 = |pν〉, |ψv 〉 = |ψν〉,
|pu〉 =

∣∣pν+1〉 and |ψu〉 =
∣∣ψν+1〉.



Monotone numerical scheme for the relaxed problem (4)

Proof of

J(u) − J(v) = −α2 (〈ψu − ψv |P|ψu − ψv 〉)T + 1
2

(∫ T

0
(u − v) (u + v + 2= (〈pv |H1|ψu〉))

)
.

Start with

J(u)−J(v) = −
α

(
〈ψu−ψv |P|ψu−ψv 〉T +〈ψu−ψv |P|ψv 〉T +〈ψv |P|ψu−ψv 〉T

)
2 +

∫ T

0

(u − v)(u + v)

2
.

Hermitian product of i d
dt (|ψu〉 − |ψv 〉) = (H0 + vH1) (|ψu〉 − |ψv 〉) + (u − v)H1 |ψu〉 with |pv 〉:

〈
pv

∣∣∣ d(ψu−ψv )
dt

〉
=
〈

pv

∣∣∣ H0+vH1
i

∣∣∣ψu − ψv
〉

+

〈
pv

∣∣∣∣ (u−v)H1
i

∣∣∣∣ψu

〉
.

Integration by parts (use |ψv 〉0 = |ψu〉0, |pv 〉T = −αP |ψv 〉T and d
dt 〈pv | = −〈pv |

( H0+vH1
i

)
):

∫ T

0

〈
pv

∣∣∣ d(ψu−ψv )
dt

〉
= 〈pv |ψu − ψv 〉T − 〈pv |ψu − ψv 〉0 −

∫ T

0

〈
dpv
dt

∣∣∣ψu − ψv
〉

= −α〈ψv |P|ψu − ψv 〉T +

∫ T

0

〈
pv

∣∣∣ H0+vH1
i

∣∣∣ψu − ψv
〉

Thus−α〈ψv |P|ψu − ψv 〉T =
∫ T

0

〈
pv

∣∣∣∣ (u−v)H1
i

∣∣∣∣ψu

〉
and

α<
(
〈ψv |P|ψu − ψv 〉T

)
= −

∫ T
0 = (〈pv |(u − v)H1|ψu〉). Finally we have

J(u) − J(v) = −α2 (〈ψu − ψv |P|ψu − ψv 〉)T + 1
2

(∫ T

0
(u − v) (u + v + 2= (〈pv |H1|ψu〉))

)
.



Optimality and resonance (1)3

For given T , ak ≥ 0 and bk ≥ 0 (
∑n

k=1 a2
k =

∑n
k=1 b2

k = 1),

min
uk,l ∈ L2([0,T ],C), (k , l) ∈ I

i d
dt |ψ〉 =

(∑
(k,l)∈I µklukl |k〉 〈l |

)
|ψ〉 ,

|〈k |ψ〉|2t=0 = a2
k , |〈k |ψ〉|2t=T = b2

k , k = 1, . . . ,n

1
2

∫ T

0

 ∑
(k,l)∈I

|ukl |2


admits the same minimal cost as the following reduced problem

min
vk,l ∈ L2([0,T ],R), vkl = −vl,k , (k , l) ∈ I

d
dt |φ〉 =

(∑
(k,l)∈I µklvkl |k〉 〈l |

)
|φ〉

〈k |φ〉|t=0 = ak , 〈k |φ〉t=T = bk , k = 1, . . . ,n

1
2

∫ T

0

 ∑
(k,l)∈I

|vkl |2


where the components of |ψ〉 = |φ〉 remain real, the ukl ’s are purely
imaginary, ukl = ivkl (vkl ∈ R with vkl = −vlk ).

3U. Boscain and G. Charlot. Resonance of minimizers for n-level quantum
systems with an arbitrary cost. ESAIM COCV, 10:593–614, 2004.



Optimality and resonance (2)

Go back to resulting optimal physical controls (ukl = ivkl ):

ukl(t)ei(ωk−ωl )t +u∗kl(t)e
−i(ωk−ωl )t = −2vkl(t) sin ((ωk − ωl)t) .

They are in resonance with the frequency transition
between |k〉 and |l〉. They contain only amplitude
modulations (up to a π phase-shift since vkl can pass
through zero).
For drift-less quantum systems

i d
dt |ψ〉 =

 ∑
(k ,l)∈I

µklukl |k〉 〈l |

 |ψ〉
population transfer minimizing the L2 control norm is
achieved by resonant controls ukl = ivkl with vkl ∈ R (the
reduction of the problem to a real case of half dimension).



Optimality and resonance (3)

Associated to any θ = (θ1, θ2, . . . , θn) consider

|ψ〉 7→
∣∣ψθ〉 =

(
n∑

k=1

eiθk |k〉 〈k |

)
|ψ〉 , ukl 7→ uθkl = ei(θk−θl )ukl .

These transformations leave unchanged cost and constraints of

min
uk,l ∈ L2([0,T ],C), (k , l) ∈ I

i d
dt |ψ〉 =

(∑
(k,l)∈I µklukl |k〉 〈l |

)
|ψ〉 ,

|〈k |ψ〉|2t=0 = a2
k , |〈k |ψ〉|2t=T = b2

k , k = 1, . . . ,n

1
2

∫ T

0

 ∑
(k,l)∈I

|ukl |2
 .

that coincides with

min
uk,l ∈ L2([0,T ],C), (k , l) ∈ I

i d
dt |ψ〉 =

(∑
(k,l)∈I µklukl |k〉 〈l |

)
|ψ〉 ,

〈k |ψ〉t=0 = ak , |〈k |ψ〉|2t=T = b2
k , k = 1, . . . ,n

1
2

∫ T

0

 ∑
(k,l)∈I

|ukl |2
 .



Optimality and resonance (4)

Set ψk = 〈k |ψ〉 and zkl = ψkψ
∗
l : d

dt (|ψk |2) =
∑

l | (k,l)∈I µkl
ukl z
∗
kl−u∗kl zkl

i
Evolution of the direction of ψk in the complex plane is governed by

ψ∗k
d
dtψk − ψk

d
dtψ
∗
k =

∑
l | (k,l)∈I

µkl
uklz∗kl + u∗klzkl

i
.

For (k , l) ∈ I set vkl(t) =

{
0, if zkl(t) = 0;
ukl (t)z∗kl (t)−u∗kl (t)zkl (t)

2i|zkl (t)| , if zkl(t) 6= 0;.
.

We have vkl = −vlk since u∗kl = ulk and z∗kl = zlk . Moreover |vkl | ≤ |ukl |.
Thus each vkl belongs to L2([0,T ],R) and the solution |φ〉 of
d
dt φk =

∑
l | (k,l)∈I µklvklφl , φk (0) = ak , k = 1, . . . , n coincides with

φk = |ψk |.
To summarize: starting from complex controls ukl ∈ L2([0,T ],C)
satisfying the constraints of the full problem, we have constructed real
controls vkl ∈ L2([0,T ],C) satisfying the constraints of the reduced
problem; the cost associated to ukl is larger than the cost associated to
vkl since |vkl | ≤ |ukl |.



Outline of the 8 lectures

Lect. 1 (Oct. 4) Introduction on LKB Photon-Box: control issues for classical and
quantum oscillators (creation/annihilation operator, coherent state).

Part 1, open-loop control of Schrödinger systems:
Lect. 2 (Oct. 11) RWA and multi-frequency averaging; 2-level

system (half spin) and Jaynes-Cummings model
(spin-spring)

Lect. 3 (Oct. 25) Law-Eberly method for trapped ions; adiabatic
invariance and control.

Lect. 4 (Nov. 22) Controllability, Lyapounov control and optimal
control

Part 2, closed-loop control of open quantum systems:

Lect. 5 (Nov. 29) Measurement and quantum trajectories (discrete
time, Kraus operators, LKB-photon box)

Lect. 6 (Dec. 6) Feedback stabilization (Photon-box, quantum filter,
Lyapunov, separation principle, delay
compensation)

Lect. 7 (Dec. 13) Quantum trajectories (continuous time with
Poisson process, Lindblad operators, time/scale
reduction, synchronization loop on a Λ-system)

Lect. 8 (Dec. 14) Quantum trajectories (continuous time with Wiener
process, homodyn detection, Lyapunov feedback
stabilization of entangled states).
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