Modeling and Control of Quantum Systems

Mazyar Mirrahimi Pierre Rouchon

mazyar.mirrahimi@inria.fr pierre.rouchon@ensmp.fr
http://cas.ensmp.fr/~rouchon/QuantumSyst/index.html

Lecture 2: October 11, 2010

Outline

1 RWA and multi-frequency averaging

2 The 2-level system

3 Jaynes-Cummings model

Un-measured quantum system \rightarrow Bilinear Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=\left(H_{0}+u(t) H_{1}\right)|\psi\rangle
$$

$■|\psi\rangle \in \mathcal{H}$ the system's wavefunction with $\||\psi\rangle \|_{\mathcal{H}}=1$;
■ the free Hamiltonian, H_{0}, is a Hermitian operator defined on \mathcal{H};

- the control Hamiltonian, H_{1}, is a Hermitian operator defined on \mathcal{H};
\square the control $u(t): \mathbb{R}^{+} \mapsto \mathbb{R}$ is a scalar control.
Here we consider the case of finite dimensional \mathcal{H}

We consider the controls of the form

$$
u(t)=\epsilon\left(\sum_{j=1}^{r} \mathbf{u}_{j} e^{i \omega_{j} t}+\mathbf{u}_{j}^{*} e^{-i \omega_{j} t}\right)
$$

■ $\epsilon>0$ is a small parameter;
■ $\epsilon \mathbf{u}_{j}$ is the constant complex amplitude associated to the pulsation $\omega_{j} \geq 0$;

- r stands for the number of independent pulsations $\left(\omega_{j} \neq \omega_{k}\right.$ for $j \neq k$).

We are interested in approximations, for ϵ tending to 0^{+}, of trajectories $t \mapsto\left|\psi_{\epsilon}\right\rangle_{t}$ of

$$
\frac{d}{d t}\left|\psi_{\epsilon}\right\rangle=\left(A_{0}+\epsilon\left(\sum_{j=1}^{r} \mathbf{u}_{j} e^{i \omega_{j} t}+\mathbf{u}_{j}^{*} e^{-i \omega_{j} t}\right) A_{1}\right)\left|\psi_{\epsilon}\right\rangle
$$

where $A_{0}=-i H_{0}$ and $A_{1}=-i H_{1}$ are skew-Hermitian.

Rotating frame

Consider the following change of variables

$$
\left|\psi_{\epsilon}\right\rangle_{t}=e^{A_{0} t}\left|\phi_{\epsilon}\right\rangle_{t} .
$$

The resulting system is said to be in the "interaction frame"

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon B(t)\left|\phi_{\epsilon}\right\rangle
$$

where $B(t)$ is a skew-Hermitian operator whose time-dependence is almost periodic:

$$
B(t)=\sum_{j=1}^{r} \mathbf{u}_{j} e^{i \omega_{j} t} e^{-A_{0} t} A_{1} e^{A_{0} t}+\mathbf{u}_{j}^{*} e^{-i \omega_{j} t} e^{-A_{0} t} A_{1} e^{A_{0} t} .
$$

Main idea

We can write

$$
B(t)=\bar{B}+\frac{d}{d t} \widetilde{B}(t),
$$

where \bar{B} is a constant skew-Hermitian matrix and $\widetilde{B}(t)$ is a bounded almost periodic skew-Hermitian matrix.

Multi-frequency averaging: first order

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\bar{B}+\frac{d}{d t} \widetilde{B}(t)\right)\left|\phi_{\epsilon}\right\rangle
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{1 \mathrm{st}}\right\rangle=\epsilon \bar{B}\left|\phi_{\epsilon}^{1 \mathrm{st}}\right\rangle
$$

initialized at the same state $\left|\phi_{\epsilon}^{1 \text { st }}\right\rangle_{0}=\left|\phi_{\epsilon}\right\rangle_{0}$.
Theorem: first order approximation (Rotating Wave Approximation)
Consider the functions $\left|\phi_{\epsilon}\right\rangle$ and $\left|\phi_{\epsilon}^{1 \text { st }}\right\rangle$ initialized at the same state and following the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta$ [we have

$$
\max _{t \in\left[0, \frac{1}{\epsilon}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{1 s t}\right\rangle_{t} \| \leq M \epsilon
$$

Proof's idea

Almost periodic change of variables:

$$
\left|\chi_{\epsilon}\right\rangle=(1-\epsilon \widetilde{B}(t))\left|\phi_{\epsilon}\right\rangle
$$

well-defined for $\epsilon>0$ sufficiently small.
The dynamics can be written as

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \bar{B}+\epsilon^{2} F(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

where $F(\epsilon, t)$ is uniformly bounded in time.

More precisely, the dynamics of $\left|\chi_{\epsilon}\right\rangle$ is given by

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \bar{B}+\epsilon^{2}[\bar{B}, \widetilde{B}(t)]-\epsilon^{2} \widetilde{B}(t) \frac{d}{d t} \widetilde{B}(t)+\epsilon^{3} E(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

- $E(\epsilon, t)$ is still almost periodic but its entries are no more linear combinations of time-exponentials;
- $\widetilde{B}(t) \frac{d}{d t} \widetilde{B}(t)$ is an almost periodic operator whose entries are linear combinations of oscillating time-exponentials.
We can write

$$
\widetilde{B}(t) \frac{d}{d t} \widetilde{B}(t)=\bar{D}+\frac{d}{d t} \widetilde{D}(t)
$$

where $\widetilde{D}(t)$ is almost periodic. We have

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \bar{B}-\epsilon^{2} \bar{D}+\epsilon^{2} \frac{d}{d t}([\bar{B}, \widetilde{C}(t)]-\widetilde{D}(t))+\epsilon^{3} E(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

where the skew-Hermitian operators \bar{B} and \bar{D} are constants and the other ones $\widetilde{C}, \widetilde{D}$, and E are almost periodic.

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\bar{B}+\frac{d}{d t} \widetilde{B}(t)\right)\left|\phi_{\epsilon}\right\rangle,
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle=\left(\epsilon \bar{B}-\epsilon^{2} \bar{D}\right)\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle
$$

initialized at the same state $\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{0}=\left|\phi_{\epsilon}\right\rangle_{0}$.

Theorem: second order approximation

Consider the functions $\left|\phi_{\epsilon}\right\rangle$ and $\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle$ initialized at the same state and following the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta$ [we have

$$
\max _{t \in\left[0, \frac{1}{\epsilon^{2}}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{t} \| \leq M \epsilon
$$

Proof's idea

Another almost periodic change of variables

$$
\left|\xi_{\epsilon}\right\rangle=\left(1-\epsilon^{2}([\bar{B}, \widetilde{C}(t)]-\widetilde{D}(t))\right)\left|\chi_{\epsilon}\right\rangle .
$$

The dynamics can be written as

$$
\frac{d}{d t}\left|\xi_{\epsilon}\right\rangle=\left(\epsilon \bar{B}-\epsilon^{2} \bar{D}+\epsilon^{3} G(\epsilon, t)\right)\left|\xi_{\epsilon}\right\rangle
$$

where G is almost periodic and therefore uniformly bounded in time.

We consider the Hamiltonian

$$
H=H_{0}+\sum_{k=1}^{m} u_{k} H_{k}, \quad u_{k}(t)=\sum_{j=1}^{r} \mathbf{u}_{k, j} e^{\omega_{j} t}+\mathbf{u}_{k, j}^{*} e^{-\omega_{j} t}
$$

The Hamiltonian in interaction frame

$$
H_{\text {int }}(t)=\sum_{k, j}\left(\mathbf{u}_{k, j} e^{\omega_{j} t}+\mathbf{u}_{k, j}^{*} e^{-\omega_{j} t}\right) e^{i H_{0} t} H_{k} e^{-i H_{0} t}
$$

We define the first order Hamiltonian

$$
H_{\mathrm{rwa}}^{1 \mathrm{st}}=\overline{H_{\mathrm{int}}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} H_{\mathrm{int}}(t) d t
$$

and the second order Hamiltonian

$$
H_{\text {rwa }}^{2 \text { nd }}=H_{\text {rwa }}^{1 \text { st }}-i \overline{\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\left(\int_{t}\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\right)}
$$

Remark

In the above analysis we have assumed the complex amplitudes $\mathbf{u}_{k, j}$ to be constant. However, the whole analysis holds for the case where each one $\mathbf{u}_{k, j}$'s is of a small magnitude, admits a finite number of discontinuities and, between two successive discontinuities, is a slowly time varying function that is continuously differentiable.

The simplest quantum system: a ground state $|g\rangle$ of energy ω_{g}; an excited state $|e\rangle$ of energy ω_{e}. The quantum state $|\psi\rangle \in \mathbb{C}^{2}$ is a linear superposition $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and obey to the Schrödinger equation (ψ_{g} and ψ_{e} depend on t).
Schrödinger equation for the uncontrolled 2-level system ($\hbar=1$) :

$$
\imath \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\left(\omega_{e}|e\rangle\langle e|+\omega_{g}|g\rangle\langle g|\right)|\psi\rangle
$$

where H_{0} is the Hamiltonian, a Hermitian operator $H_{0}^{\dagger}=H_{0}$. Energy is defined up to a constant: H_{0} and $H_{0}+\varpi(t) \mathbf{1}(\varpi(t) \in \mathbb{R}$ arbitrary) are attached to the same physical system. If $|\psi\rangle$ satisfies $i \hbar \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle$ then $|\chi\rangle=e^{-i \vartheta(t)}|\psi\rangle$ with $\frac{d}{d t} \vartheta=\varpi$ obeys to $i \hbar \frac{d}{d t}|\chi\rangle=\left(H_{0}+\varpi I\right)|\chi\rangle$. Thus for any $\vartheta,|\psi\rangle$ and $e^{-i \vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time.

Take origin of energy such that ω_{g} (resp. ω_{e}) becomes $-\frac{\omega_{e}-\omega_{g}}{2}$ (resp. $\frac{\omega_{e}-\omega_{g}}{2}$) and set $\omega_{e g}=\omega_{e}-\omega_{g}$
The solution of $i \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\frac{\omega_{e g}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)|\psi\rangle$ is

$$
|\psi\rangle_{t}=\psi_{g 0} e^{\frac{i \omega_{e g} t}{2}}|g\rangle+\psi_{e 0} e^{\frac{-i \omega_{e g} t}{2}}|e\rangle .
$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the coherent evolution the controlled Hamiltonian
$H(t)=\frac{\omega_{e g}}{2} \sigma_{z}+\frac{u(t)}{2} \sigma_{x}=\frac{\omega_{e g}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+\frac{u(t)}{2}(|e\rangle\langle g|+|g\rangle\langle e|)$
The controlled Schrödinger equation $i \hbar \frac{d}{d t}|\psi\rangle=\left(H_{0}+u H_{1}\right)|\psi\rangle$ reads:

$$
i \frac{d}{d t}\binom{\psi_{e}}{\psi_{g}}=\frac{\omega_{e g}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}+\frac{u(t)}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}
$$

The 3 Pauli Matrices ${ }^{1}$

$$
\sigma_{x}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{y}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{z}=|e\rangle\langle e|-|g\rangle\langle g|
$$

${ }^{1}$ They correspond, up to multiplication by i, to the 3 imaginary quaternions.
$\sigma_{x}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{y}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{z}=|e\rangle\langle e|-|g\rangle\langle g|$ $\sigma_{x}^{2}=1, \quad \sigma_{x} \sigma_{y}=i \sigma_{z}, \quad\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, \quad$ circular permutation \ldots

■ Since for any $\theta \in \mathbb{R}$, $e^{i \theta \sigma_{x}}=\cos \theta+i \sin \theta \sigma_{x}$ (idem for σ_{y} and σ_{z}), the solution of $i \frac{d}{d t}|\psi\rangle=\frac{\omega_{e g}}{2} \sigma_{z}|\psi\rangle$ is

$$
|\psi\rangle_{t}=e^{\frac{-i \omega_{e g} t}{2} \sigma_{z}}|\psi\rangle_{0}=\left(\cos \left(\frac{\omega_{e g} t}{2}\right) \mathbf{1}-i \sin \left(\frac{\omega_{e g} t}{2}\right) \sigma_{z}\right)|\psi\rangle_{0}
$$

■ For $\alpha, \beta=x, y, z, \alpha \neq \beta$ we have

$$
\sigma_{\alpha} e^{i \theta \sigma_{\beta}}=e^{-i \theta \sigma_{\beta}} \sigma_{\alpha}, \quad\left(e^{i \theta \sigma_{\alpha}}\right)^{-1}=\left(e^{i \theta \sigma_{\alpha}}\right)^{\dagger}=e^{-i \theta \sigma_{\alpha}}
$$

and also

$$
e^{-\frac{i \theta}{2} \sigma_{\alpha}} \sigma_{\beta} e^{\frac{i \theta}{2} \sigma_{\alpha}}=e^{-i \theta \sigma_{\alpha}} \sigma_{\beta}=\sigma_{\beta} e^{i \theta \sigma_{\alpha}}
$$

In $i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{e g}}{2} \sigma_{z}+\frac{u}{2} \sigma_{x}\right)|\psi\rangle$, take a resonant control $u=\mathbf{u} e^{i \omega_{e g} t}+\mathbf{u}^{*} e^{-i \omega_{e g} t}$ with \mathbf{u} slowly varying complex amplitude $\left|\frac{d}{d t} \mathbf{u}\right| \ll \omega_{e g}|\mathbf{u}|$. Set $H_{0}=\frac{\omega_{e g}}{2} \sigma_{z}$ and $\epsilon H_{1}=\frac{u}{2} \sigma_{x}$ and consider $|\psi\rangle=e^{-\frac{i \omega_{e g} t}{2} \sigma_{z}}|\phi\rangle$ to eliminate the drift H_{0} and to get the Hamiltonian in the interaction frame:

$$
\begin{gathered}
i \frac{d}{d t}|\phi\rangle=\frac{u}{2} e^{\frac{i \omega_{e g} t}{2} \sigma_{z}} \sigma_{x} e^{-\frac{i \omega_{e g} t}{2} \sigma_{z}}|\phi\rangle=H_{\text {int }}|\phi\rangle \\
\sigma^{+}=|e\rangle\langle g| \quad \sigma^{-}=|g\rangle\langle e|
\end{gathered}
$$

with $H_{\text {int }}=\frac{u}{2} e^{i \omega_{e g} t} \frac{\overbrace{\frac{\sigma_{x}+i \sigma_{y}}{}}^{2}}{2}+\frac{u}{2} e^{-i \omega_{e g} t} \frac{\overbrace{\sigma_{x}-i \sigma_{y}}^{2}}{2}$
The RWA consists in neglecting the oscillating terms at frequency $2 \omega_{e g}$ when $|\mathbf{u}| \ll \Omega$:

$$
H_{\text {int }}=\left(\frac{\mathbf{u} e^{2 i \omega_{e g} t}+\mathbf{u}^{*}}{2}\right) \sigma^{+}+\left(\frac{\mathbf{u}+\mathbf{u}^{*} e^{-2 i \omega_{e g} t}}{2}\right) \sigma^{-} .
$$

Thus

$$
\overline{H_{i n t}}=\frac{\mathbf{u}^{*} \sigma^{+}+\mathbf{u} \sigma^{-}}{2}
$$

Second order approximation and Bloch-Siegert shift

The decomposition of $H_{\text {int }}$,

$$
H_{\text {int }}=\underbrace{\frac{\mathbf{u}^{*}}{2} \sigma_{+}+\frac{\mathbf{u}}{2} \sigma_{-}}_{\overline{H_{\text {int }}}}+\underbrace{\frac{\mathbf{u} e^{2 i \omega_{e g} t}}{2} \sigma_{+}+\frac{\mathbf{u}^{*} e^{-2 i \omega_{e g} t}}{2} \sigma_{-}}_{H_{\text {int }}-\overline{H_{\text {int }}}},
$$

provides the first order approximation (RWA)
$H_{\text {rwa }}^{1 \text { st }}=\overline{H_{\text {int }}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} H_{\text {int }}(t) d t$, and also the second order approximation $H_{\text {rwa }}^{2 \text { nd }}=H_{\text {rwa }}^{\text {st }}-i\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\left(\int_{t}\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\right)$. Since
$\int_{t} H_{\text {int }}-\overline{H_{\text {int }}}=\frac{\mathbf{u} e^{2 i \omega_{e g} t}}{4 i \omega_{e g}} \sigma_{+}-\frac{\mathbf{u}^{*} e^{-2 i \omega_{e g} t}}{4 i \omega_{e g}} \sigma_{-}$, we have

$$
\overline{\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\left(\int_{t}\left(H_{\text {int }}-\overline{H_{\text {int }}}\right)\right)}=-\frac{|\mathbf{u}|^{2}}{8 i \omega_{e g}} \sigma_{z}
$$

(use $\sigma_{+}^{2}=\sigma_{-}^{2}=0$ and $\sigma_{z}=\sigma_{+} \sigma_{-}-\sigma_{-} \sigma_{+}$).
The second order approximation reads:

$$
H_{\mathrm{rwa}}^{2^{\text {nd }}}=H_{\mathrm{rwa}}^{1 \mathrm{st}}+\left(\frac{|\mathbf{u}|^{2}}{8 \omega_{e g}}\right) \sigma_{z}=\frac{\mathbf{u}^{*}}{2} \sigma_{+}+\frac{\mathbf{u}}{2} \sigma_{-}+\left(\frac{|\mathbf{u}|^{2}}{8 \omega_{e g}}\right) \sigma_{z} .
$$

The 2nd order correction $\frac{|\mathbf{u}|^{2}}{4 \omega_{r}} \sigma_{z}$ is called the Bloch-Siegert shift.

Take the first order approximation
(Σ) $\quad i \frac{d}{d t}|\phi\rangle=\frac{\left(\mathbf{u}^{*} \sigma^{+}+\mathbf{u} \sigma^{-}\right)}{2}|\phi\rangle=\frac{\left(\mathbf{u}^{*}|e\rangle\langle g|+\mathbf{u}|g\rangle\langle e|\right)}{2}|\phi\rangle$
with control $\mathbf{u} \in \mathbb{C}$.
1 Take constant control $\mathbf{u}(t)=\Omega_{r} e^{i \theta}$ for $t \in[0, T], T>0$. Show that $i \frac{d}{d t}|\phi\rangle=\frac{\Omega_{r}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)}{2}|\phi\rangle$.
2 Set $\Theta_{r}=\frac{\Omega_{r}}{2} T$. Show that the solution at T of the propagator $U_{t} \in S U(2), i \frac{d}{d t} U=\frac{\Omega_{r}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)}{2} U, U_{0}=\mathbf{1}$ is given by

$$
U_{T}=\cos \Theta_{r} 1-i \sin \Theta_{r}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right),
$$

3 Take a wave function $|\bar{\phi}\rangle$. Show that exist Ω_{r} and θ such that $U_{T}|g\rangle=e^{i \alpha}|\bar{\phi}\rangle$, where α is some global phase.
4 Prove that for any given two wave functions $\left|\phi_{a}\right\rangle$ and $\left|\phi_{b}\right\rangle$ exists a piece-wise constant control $[0,2 T] \ni t \mapsto \mathbf{u}(t) \in \mathbb{C}$ such that the solution of (Σ) with $|\phi\rangle_{0}=\left|\phi_{a}\right\rangle$ satisfies $|\phi\rangle_{T}=e^{i \beta}\left|\phi_{b}\right\rangle$ for some global phase β.

The quantum harmonic oscillator lives on $L^{2}(\mathbb{R}, \mathbb{C}) \sim I^{2}(\mathbb{C})$ with controlled Hamiltonian

$$
-\frac{\omega_{c}}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega_{c}}{2} x^{2}+\sqrt{2} u x \sim \omega_{c}\left(a^{\dagger} a+\frac{1}{2}\right)+u\left(a+a^{\dagger}\right)
$$

(remember that $a=X+i P=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$).
The 2-level system lives on \mathbb{C}^{2} with Hamiltonian $H_{a}=\frac{\omega_{e g}}{2} \sigma_{z}$.
The composite system lives on the tensor product $\mathbb{C}^{2} \otimes L^{2}(\mathbb{R}, \mathbb{C}) \sim \mathbb{C}^{2} \otimes I^{2}(\mathbb{C})$ with controlled Hamiltonian

$$
\begin{aligned}
& \frac{\omega_{e g}}{2} \sigma_{z} \otimes \mathbf{1}_{L^{2}(\mathbb{R}, \mathbb{C})}+\omega_{c} \mathbf{1}_{\mathbb{C}^{2}} \otimes\left(a^{\dagger} a+\frac{1}{2}\right)+u \mathbf{1}_{\mathbb{C}^{2}} \otimes\left(a+a^{\dagger}\right) \\
&-i \frac{\Omega}{2} \sigma_{x} \otimes\left(a^{\dagger}-a\right)
\end{aligned}
$$

Shortcut notations for the Jaynes-Cummings Hamiltonian:

$$
H_{J C}=\frac{\omega_{e g}}{2} \sigma_{z}+\omega_{C}\left(a^{\dagger} a+\frac{1}{2}\right)+u\left(a+a^{\dagger}\right)-i \frac{\Omega}{2} \sigma_{x}\left(a^{\dagger}-a\right)
$$

with the usual scales $\Omega \ll \omega_{c}, \omega_{e g},\left|\omega_{c}-\omega_{e g}\right| \ll \omega_{c}, \omega_{e g}$ and $|u| \ll \omega_{c}, \omega_{e g}$.

The Schrödinger system
$i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{e g}}{2} \sigma_{z}+\omega_{c}\left(a^{\dagger} a+\frac{1}{2}\right)+u\left(a+a^{\dagger}\right)-i \frac{\Omega}{2} \sigma_{x}\left(a^{\dagger}-a\right)\right)|\psi\rangle$
corresponds to two coupled scalar PDE's:

$$
\begin{aligned}
& i \frac{\partial \psi_{g}}{\partial t}=\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+\left(\sqrt{2} u x-\frac{\omega_{e g}}{2}\right) \psi_{g}+i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{e} \\
& i \frac{\partial \psi_{e}}{\partial t}=\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}+\left(\sqrt{2} u x+\frac{\omega_{e g}}{2}\right) \psi_{e}+i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{g}
\end{aligned}
$$

since $a=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $|\psi\rangle$ corresponds to
$\left(\psi_{g}(x, t), \psi_{e}(x, t)\right)$ where $\psi_{g}(., t), \psi_{e}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\left\|\psi_{g}\right\|^{2}+\left\|\psi_{e}\right\|^{2}=1$.
$\ln H_{J C}=\frac{\omega_{e g}}{2} \sigma_{z}+\omega_{C}\left(a^{\dagger} a+\frac{1}{2}\right)+u\left(a+a^{\dagger}\right)-i \frac{\Omega}{2} \sigma_{x}\left(a^{\dagger}-a\right)$, $\omega_{e g}=\omega_{c}=\omega_{r}$ and $u(t)=\mathbf{u} e^{i \omega_{r} t}+\mathbf{u}^{*} e^{-i \omega_{r} t}$ with slowly varying complex amplitude \mathbf{u} and $|\Omega|,|\mathbf{u}| \ll \omega_{r}$. Then $H_{J C}=H_{0}+\epsilon H_{1}$ where ϵ is a small parameter and

$$
\begin{aligned}
& H_{0}=\frac{\omega_{r}}{2} \sigma_{z}+\omega_{r}\left(a^{\dagger} a+\frac{1}{2}\right) \\
& \epsilon H_{1}=\left(\mathbf{u} e^{i \omega_{r} t}+\mathbf{u}^{*} e^{-i \omega_{r} t}\right)\left(a+a^{\dagger}\right)-i \frac{\Omega}{2} \sigma_{x}\left(a^{\dagger}-a\right)
\end{aligned}
$$

$H_{\text {int }}$ is obtained by setting $|\psi\rangle=e^{-i \omega_{r} t\left(a^{\dagger} a+\frac{1}{2}\right)} e^{\frac{-i \omega_{r} t}{2} \sigma_{z}}|\phi\rangle$ in $i \frac{d}{d t}|\psi\rangle=H_{J C}|\psi\rangle$ to get $i \frac{d}{d t}|\phi\rangle=H_{\text {int }}|\phi\rangle$ with

$$
\begin{aligned}
H_{\text {int }}= & \left(\mathbf{u} e^{i \omega_{r} t}+\mathbf{u}^{*} e^{-i \omega_{r} t}\right)\left(e^{-i \omega_{r} t} a+e^{i \omega_{r} t} a^{\dagger}\right) \\
& \quad-i \frac{\Omega}{2}\left(e^{-i \omega_{r} t}|g\rangle\langle e|+e^{i \omega_{r} t}|e\rangle\langle g|\right)\left(e^{i \omega_{r} t} a^{\dagger}-e^{-i \omega_{r} t} a\right)
\end{aligned}
$$

where we used
$e^{\frac{i \theta}{2} \sigma_{z}} \sigma_{x} e^{-\frac{i \theta}{2} \sigma_{z}}=e^{-i \theta} \sigma_{-}+e^{i \theta} \sigma_{+}, \quad e^{i \theta\left(a^{\dagger} a+\frac{1}{2}\right)} a e^{-i \theta\left(a^{\dagger} a+\frac{1}{2}\right)}=e^{-i \theta} a$

The secular terms in $H_{\text {int }}$ are given by (RWA, first order approximation)

$$
H_{\text {rwa }}^{1 \mathrm{st}}=\mathbf{u} a+\mathbf{u}^{*} a^{\dagger}-i \frac{\Omega}{2}\left(|g\rangle\langle e| a^{\dagger}-|e\rangle\langle g| a\right)
$$

Set $H_{\text {rwa }}^{1 \text { st }}=H_{0}+u_{1} H_{1}+u_{2} H_{2}$ where $\mathbf{u}=\frac{1}{\sqrt{2}}\left(u_{1}+i u_{2}\right)$, $u_{1}, u_{2} \in \mathbb{R}:$

$$
H_{0}=-\frac{\Omega}{2}\left(X \sigma_{y}+P \sigma_{x}\right), H_{1}=\frac{a+a^{\dagger}}{\sqrt{2}}=\sqrt{2} X, H_{2}=\frac{a-a^{\dagger}}{i \sqrt{2}}=\sqrt{2} P .
$$

The quantum state $|\phi\rangle$ is described by two elements of $L^{2}(\mathbb{R}, \mathbb{C}), \phi_{g}$ and ϕ_{e}, whose time evolution is given by

$$
\begin{aligned}
i \frac{\partial \phi_{g}}{\partial t} & =\left(u_{1} x+i u_{2} \frac{\partial}{\partial x}\right) \phi_{g}+i \frac{\Omega}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \phi_{e} \\
i \frac{\partial \phi_{e}}{\partial t} & =\left(u_{1} x+i u_{2} \frac{\partial}{\partial x}\right) \phi_{e}+i \frac{\Omega}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \phi_{g}
\end{aligned}
$$

since X stands for $\frac{x}{\sqrt{2}}$ and P for $-\frac{i}{\sqrt{2}} \frac{\partial}{\partial x}$.

Exercise: JC systems with impulse controls

Consider the average JC model (resonant case, $\mathbf{u} \in \mathbb{C}$ as control.).

$$
i \frac{d}{d t}|\psi\rangle=\left(i \frac{\Omega}{2}\left(\sigma_{+} a-\sigma_{-} a^{\dagger}\right)+\mathbf{u} a^{\dagger}+\mathbf{u}^{*} a\right)|\psi\rangle
$$

1 Set $\mathbf{v} \in \mathbb{C}$ solution of $\frac{d}{d t} \mathbf{v}=-i \mathbf{u}$ and consider the following change of frame $|\phi\rangle=D_{-\mathbf{v}}|\psi\rangle$ with the displacement operator $D_{-\mathbf{v}}=e^{-\mathbf{v} a^{\dagger}+\mathbf{v}^{*} a}$. Show that, up to a global phase change, we have, with $\tilde{u}=i \frac{\Omega}{2} \mathbf{v}$,

$$
i \frac{d}{d t}|\phi\rangle=\left(\frac{i \Omega}{2}\left(\sigma_{+} a-\sigma_{-} a^{\dagger}\right)+\left(\tilde{\mathbf{u}} \sigma_{+}+\tilde{\mathbf{u}}^{*} \sigma_{-}\right)\right)|\phi\rangle
$$

2 Take the orthonormal basis $\{|g, n\rangle,|e, n\rangle\}$ with $n \in \mathbb{N}$ being the photon number and where for instance $|g, n\rangle$ stands for the tensor product $|g\rangle \otimes|n\rangle$. Set $|\phi\rangle=\sum_{n} \phi_{g, n}|g, n\rangle+\phi_{e, n}|e, n\rangle$ with $\phi_{g, n}, \phi_{e, n} \in \mathbb{C}$ depending on t and $\sum_{n}\left|\phi_{g, n}\right|^{2}+\left|\phi_{e, n}\right|^{2}=1$. Show that, for $n \geq 0$
$i \frac{d}{d t} \phi_{g, n+1}=-i \frac{\Omega}{2} \sqrt{n+1} \phi_{e, n}+\tilde{\mathbf{u}}^{*} \phi_{e, n+1}, \quad i \frac{d}{d t} \phi_{e, n}=i \frac{\Omega}{2} \sqrt{n+1} \phi_{g, n+1}+\tilde{\mathbf{u}} \phi_{g, n}$
and $i \frac{d}{d t} \phi_{g, 0}=\tilde{\mathbf{u}}^{*} \phi_{e, 0}$.
3 Assume that $|\phi\rangle_{0}=|g, 0\rangle$. Construct an open-loop control $[0, T] \ni t \mapsto \tilde{\mathbf{u}}(t)$ such that $|\phi\rangle_{T}=|g, 1\rangle$.
4 Generalize the above open-loop control when the goal state $|\phi\rangle_{T}$ is $|g, n\rangle$ with any arbitrary photon number n.

With $A=\alpha \boldsymbol{a}^{\dagger}$ and $B=-\alpha^{*}$ a, Glauber formula gives:

$$
\begin{aligned}
& D_{\alpha}=e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha a^{\dagger}} e^{-\alpha^{*} a}=e^{+\frac{|\alpha|^{2}}{2}} e^{-\alpha^{*} a} e^{\alpha a^{\dagger}} \\
& D_{-\alpha} a D_{\alpha}=a+\alpha \quad \text { and } \quad D_{-\alpha} a^{\dagger} D_{\alpha}=a^{\dagger}+\alpha^{*}
\end{aligned}
$$

With $A=2 i \Im \alpha X \sim i \sqrt{2} \Im \alpha x$ and $B=-2 \Re \alpha P \sim-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}$,
Glauber formula gives ${ }^{2}$:

$$
\begin{aligned}
& D_{\alpha}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} e^{-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}} \\
& \left(D_{\alpha}|\psi\rangle\right)_{x, t}=e^{-i \Re \alpha \Omega \alpha} e^{i \sqrt{2} \Im \alpha x} \psi(x-\sqrt{2} \Re \alpha, t)
\end{aligned}
$$

For any $\alpha, \beta, \epsilon \in \mathbb{C}$, we have

$$
\begin{aligned}
& D_{\alpha+\beta}=e^{\frac{\alpha^{*} \beta-\alpha \beta^{*}}{2}} D_{\alpha} D_{\beta} \\
& D_{\alpha+\epsilon} D_{-\alpha}=\left(1+\frac{\alpha \epsilon^{*}-\alpha^{*} \epsilon}{2}\right) \mathbf{1}+\epsilon \boldsymbol{a}^{\dagger}-\epsilon^{*} \boldsymbol{a}+O\left(|\epsilon|^{2}\right) \\
& \left(\frac{d}{d t} D_{\alpha}\right) D_{-\alpha}=\left(\frac{\alpha \frac{d}{d t} \alpha^{*}-\alpha^{*} \frac{d}{d t} \alpha}{2}\right) \mathbf{1}+\left(\frac{d}{d t} \alpha\right) \boldsymbol{a}^{\dagger}-\left(\frac{d}{d t} \alpha^{*}\right) a .
\end{aligned}
$$

${ }^{2}$ Remember that a time-delay of r corresponds to the operator $e^{-r \frac{d}{d t}}$.

