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Model of classical systems

control

perturbation

measure

system

For the harmonic oscillator of pulsation ω with measured
position y , controlled by the force u and subject to an additional
unknown force w .

x = (x1, x2) ∈ R2, y = x1
d
dt x1 = x2,

d
dt x2 = −ω2x1 + u + w



Feedback for classical systems

 feedback

observer/controller

perturbation
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Proportional Integral Derivative (PID) for d2

dt2 y = −ω2y + u + w
with the set point v = y set point

u = −Kp
(
y − y set point

)
− Kd

d
dt

(
y − y set point

)
− Kint

∫ (
y − y set point

)
with the positive gains (Kp,Kd ,Kint) tuned as follows
(0 < Ω0 ∼ ω, 0 < ξ ∼ 1, 0 < ε� 1:

Kp = Ω2
0, Kd = 2ξΩ0, ,Kint = εΩ3

0.



Control theory for classical systems

Controllability: the control u can steer the state x to any
location (example: d

dt x1 = x2, d
dt x2 = −ω2x1 + u).

Observability: from the knowledge of u and y one can
recover without ambiguity the state x .
Feed-forward u = ur (t) associated to reference trajectory
t 7→ (x r (t),ur (t), y r (t)) (performance).
Feed-back u = ur (t) + ∆u where ∆u depends on the
measured output error ∆y = y − y r (t) (stability).
Stability and robustness : asymptotic regime for t large of
∆x and ∆y , sensitivity to perturbations and errors.



Control of quantum harmonic oscillator: LKB photon-box

“ x ”= |
|g
|e

Detection in |g or |e
Control “ u” =

Output “y”

Simple schematic of LKB experiment for control of cavity field

The model

|ψ〉k+1 =



DαMg |ψ〉k∥∥∥Mg |ψ〉k
∥∥∥
H

Detect. in |g〉
(

proba.
∥∥∥Mg |ψ〉k

∥∥∥2

H

)
DαMe |ψ〉k∥∥∥Me |ψ〉k

∥∥∥
H

Detect. in |e〉
(

proba.
∥∥∥Me |ψ〉k

∥∥∥2

H

)



Outline of the 8 lectures

Lect. 1 (Oct. 4) Introduction on LKB Photon-Box. Quantum harmonic
oscillator (creation/annihilation operator, coherent state,
non-controllability).

Lect. 2 (Oct. 11) 2-level system (Pauli matrices, Bloch sphere, RWA, Rabi
oscillation, controllability). Jaynes-Cummings model (RWA,
resonant and off resonant propagator).

Lect. 3 (Oct. 25) Controllability and motion planing (RWA, resonant and
optimal control)

Lect. 4 (Nov. 22) Motion planing (adiabatic, Lyapunov, Law-Eberly)

Lect. 5 (Nov. 29) Quantum trajectories (discrete time, Kraus operators,
LKB-photon box)

Lect. 6 (Dec. 6) Feedback stabilization (Photon-box, quantum filter,
Lyapunov, separation principle, delay compensation)

Lect. 7 (Dec. 13) Quantum trajectories (continuous time with Poisson
process, Lindblad operators, time/scale reduction,
synchronization loop on a Λ-system)

Lect. 8 (Dec. 14) Quantum trajectories (continuous time with Wiener
process, homodyn detection, Lyapunov feedback stabilization
of entangled states).
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Photon-box (1): measurement process

|
|g
|e

Detection in |g or |e

Simple schematic of LKB experiment for measurement of cavity field



Photon-box (2) : atom-field entanglement
Initial state Atom in |g〉 and cavity in |ψ〉 ∈ H where

H =

{ ∞∑
k=n

cn |n〉 | (cn) ∈ l2(C)

}
.

We can write the initial state as

|g〉 ⊗ |ψ〉 ∈ C2 ⊗H.
State before detection a joint unitary evolution implies an entangled
state

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉
whereMg andMe are operators acting on H.
The unitarity condition implies:

M†
gMg +M†

eMe = 1

Example of non-resonant interaction

Mg = cos(ϑN + ϕ), Me = sin(ϑN + ϕ), N = diag(n)



Photon-box (3): entanglement

Final state is inseparable: we can not write

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 =
(
α̃ |g〉+ β̃ |e〉

)
⊗
(∑

n

c̃n |n〉
)
.

We can not associate to the cavity (nor to the atom) a
well-defined wavefunction just before the measurement.

However, we can still compute the probability of having the
atom in |g〉 or in |e〉:

Pg =
∥∥∥Mg |ψ〉

∥∥∥2

H
, Pe =

∥∥∥Me |ψ〉
∥∥∥2

H
.



Photon-box (4): measurement and collapse

Measurement in |g〉

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 −→
|g〉 ⊗Mg |ψ〉∥∥∥Mg |ψ〉

∥∥∥
H

,

Measurement in |e〉

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 −→
|e〉 ⊗Me |ψ〉∥∥∥Me |ψ〉

∥∥∥
H

,



Photon-box (5): quantum Monte-Carlo trajectories

Stochastic evolution: ψk the wave function after the
measurement of atom number k − 1.

|ψ〉k+1 =



DαMg |ψ〉k∥∥∥Mg |ψ〉k
∥∥∥
H

Detect. in |g〉
(

proba.
∥∥∥Mg |ψ〉k

∥∥∥2

H

)
DαMe |ψ〉k∥∥∥Me |ψ〉k

∥∥∥
H

Detect. in |e〉
(

proba.
∥∥∥Me |ψ〉k

∥∥∥2

H

)

We have a Markov chain



Photon-box (6): imperfect measurement

The atom-detector does not always detect the atoms.
Therefore 3 outcomes:

Atom in |g〉, Atom in |e〉, No detection

Best estimate for the no-detection case

E
(
|ψ〉+ | |ψ〉

)
=
∥∥∥Mg |ψ〉

∥∥∥
H
Mg |ψ〉+

∥∥∥Me |ψ〉
∥∥∥
H
Me |ψ〉

This is not a well-defined wavefunction

Barycenter in the sense of geodesics of S(H)
not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space
CP(H) ≡ S(H)/S1



Photon-box (7): density matrix language

Projector over the state |ψ〉: P|ψ〉 = |ψ〉 〈ψ|

Detection in |g〉: the projector is given by

P|ψ+〉 =
Mg |ψ〉 〈ψ|M†

g∥∥Mg |ψ〉
∥∥∥2

H

=
Mg |ψ〉 〈ψ|M†

g∣∣∣〈ψ | M†
gMg | ψ

〉∣∣∣2 =
Mg |ψ〉 〈ψ|M†

g

Tr
(
Mg |ψ〉 〈ψ|M†

g

)
Detection in |e〉: the projector is given by

P|ψ+〉 =
Me |ψ〉 〈ψ|M†

e

Tr
(
Me |ψ〉 〈ψ|M†

e

)
Probabilities:

pg = Tr
(
Mg |ψ〉 〈ψ|M†

g

)
and pe = Tr

(
Me |ψ〉 〈ψ|M†

e

)



Photon-box (8): density matrix language

Imperfect detection: barycenter

|ψ〉 〈ψ| −→ pg
Mg |ψ〉 〈ψ|M†g

Tr
(
Mg |ψ〉 〈ψ|M†g

) + pe
Me |ψ〉 〈ψ|M†e

Tr
(
Me |ψ〉 〈ψ|M†e

)
=Mg |ψ〉 〈ψ|M†g +Me |ψ〉 〈ψ|M†e.

This is not anymore a projector: no well-defined wave function

New state space

X = {ρ ∈ L(H) | ρ† = ρ, ρ ≥ 0,Tr (ρ) = 1}



Control of quantum harmonic oscillator: LKB photon-box

“ x ”= |
|g
|e

Detection in |g or |e
Control “ u” =

Output “y”

Simple schematic of LKB experiment for control of cavity field



Harmonic oscillator1 (1): quantization and correspondence principle

Classical Hamiltonian formulation of d2

dt2 x = −ω2x

d
dt x = ωp =

∂H
∂p

, d
dt p = −ωx = −∂H

∂x
, H =

ω

2
(p2 + x2).

Quantization: probability wave function |ψ〉t ∼ (ψ(x , t))x∈R with
|ψ〉t ∼ ψ( , t) ∈ L2(R,C) obeys to the Schrödinger equation
(~ = 1 in all the lectures)

i d
dt |ψ〉 = H |ψ〉 , H = ω(P2 + X 2) = −ω

2
∂2

∂x2 +
ω

2
x2

where H results from H by replacing x by position operator√
2X and p by impulsion operator

√
2P = −i ∂∂x .

PDE model: i ∂ψ∂t (x , t) = −ω
2
∂2ψ
∂x2 (x , t) + ω

2 x2ψ(x , t), x ∈ R.
1Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique

Quantique, volume I& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.
Oxford University Press, 2003.



Harmonic oscillator (2): annihilation and creation operators

Averaged position 〈X 〉t = 〈ψ|X |ψ〉 and impulsion 〈P〉t = 〈ψ|P|ψ〉 2:

〈X 〉t = 1√
2

∫ +∞

−∞
x |ψ|2dx , , 〈P〉t = − i√

2

∫ +∞

−∞
ψ∗
∂ψ

∂x
dx .

Annihilation a and creation operators a†:

a = X + iP = 1√
2

(
x +

∂

∂x

)
, a† = X − iP = 1√

2

(
x − ∂

∂x

)
Commutation relationships:

[X ,P] = i
2 , [a,a†] = 1, H = ω(P2 + X 2) = ω

(
a†a +

1
2

)
.

Set Xλ = 1
2

(
e−iλa + eiλa†

)
for any angle λ:[

Xλ,Xλ+π2

]
= i

2 .

2We assume everywhere that for each t , x 7→ ψ(x , t) is of the Schwartz
class (fast decay at infinity + smooth).



Harmonic oscillator (3): spectral decomposition and Fock states

[a,a†] = 1 implies that the spectrum of a†a is non-degenerate
and is N.
Fock state with n photon(s): the eigen-state of a†a associated
to the eigen-value n:

a†a |n〉 = n |n〉 , a|n〉 =
√

n |n − 1〉, a†|n〉 =
√

n + 1 |n + 1〉.

The ground state |0〉 (0 photon state or vacuum state) satisfies
a|0〉 = 0 and corresponds to the Gaussian function:

|0〉 ∼ ψ0(x) =
1
π1/4 exp(−x2/2).

The operator a (resp. a†) is the annihilation (resp. creation)
operator since it transfers |n〉 to |n − 1〉 (resp. |n + 1〉) and thus
decreases (resp. increases) the quantum number n by one unit.



Harmonic oscillator (4): displacement operator

Quantization of d2

dt2 x = −ω2x − ω
√

2u

H = ω
(

a†a +
1
2

)
+ u(a + a†).

The associated controlled PDE

i
∂ψ

∂t
(x , t) = −ω

2
∂2ψ

∂x2 (x , t) +
(
ω
2 x2 +

√
2ux

)
ψ(x , t).

Glauber displacement operator Dα (unitary) with α ∈ C:

Dα = eαa†−α∗a = e2i=αX−2ı<αP

From Baker-Campbell Hausdorf formula valid for any operators
A and B,

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + . . .

we get the Glauber formula when [A, [A,B]] = [B, [A,B]] = 0:

eA+B = eA eB e−
1
2 [A,B].



Harmonic oscillator (5): identities resulting from Glauber formula

With A = αa† and B = −α∗a, Glauber formula gives:

Dα = e−
|α|2

2 eαa†e−α
∗a = e+

|α|2
2 e−α

∗aeαa†

D−αaDα = a + α and D−αa†Dα = a† + α∗.

With A = 2i=αX ∼ i
√

2=αx and B = −2ı<αP ∼ −
√

2<α ∂
∂x ,

Glauber formula gives3:

Dα = e−i<α=α ei
√

2=αxe−
√

2<α ∂
∂x

(Dα |ψ〉)x ,t = e−i<α=α ei
√

2=αxψ(x −
√

2<α, t)
For any α, β, ε ∈ C, we have

Dα+β = e
α∗β−αβ∗

2 DαDβ

Dα+εD−α =
(
1 + αε∗−α∗ε

2

)
1 + εa† − ε∗a + O(|ε|2)( d

dt Dα

)
D−α =

(
α

d
dt α
∗−α∗ d

dt α
2

)
1 +

( d
dtα
)

a† −
( d

dtα
∗)a.

3Remember that a time-delay of r corresponds to the operator e−r d
dt .



Harmonic oscillator (6): lack of controllability

Take |ψ〉 solution of the controlled Schrödinger equation
i d

dt |ψ〉 =
(
ω
(
a†a + 1

2

)
+ u(a + a†)

)
|ψ〉. Set 〈a〉 = 〈ψ|aψ〉. Then

d
dt 〈a〉 = −iω〈a〉 − iu.

From a = X + iP, we have 〈a〉 = 〈X 〉+ i〈P〉 where
〈X 〉 = 〈ψ|X |ψ〉 ∈ R and 〈P〉 = 〈ψ|P|ψ〉 ∈ R. Consequently:

d
dt 〈X 〉 = ω〈P〉, d

dt 〈P〉 = −ω〈X 〉 − u.

Consider the change of frame |ψ〉 = e−iθt D〈a〉t |χ〉 with

θt =

∫ t

0

(
|〈a〉|2 + u<(〈a〉)

)
, D〈a〉t = e〈a〉t a

†−〈a〉∗t a,

Then |χ〉 obeys to autonomous Schrödinger equation

i d
dt |χ〉 = ωa†a |χ〉 .

The dynamics of |ψ〉 can be decomposed into two parts:
a controllable part of dimension two for 〈a〉
an uncontrollable part of infinite dimension for |χ〉.



Harmonic oscillator (7): coherent states as reachable ones from |0〉

Coherent states

|α〉 = Dα |0〉 = e−
|α|2

2

+∞∑
n=0

αn
√

n!
|n〉 , α ∈ C

are the states reachable from vacuum set. They are also the
eigen-state of a: a |α〉 = α |α〉.
A widely known result in quantum optics4: classical currents
and sources (generalizing the role played by u) only generate
classical light (quasi-classical states of the quantized field
generalizing the coherent state introduced here)
We just propose here a control theoretic interpretation in terms
of reachable set from vacuum5

4See complement BIII , page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics.Wiley, 1989.

5see also: MM-PR, IEEE Trans. Automatic Control, 2004 and MM-PR,
CDC-ECC, 2005.



Control of quantum harmonic oscillator: LKB photon-box

“ x ”= |
|g
|e

Detection in |g or |e
Control “ u” =

Output “y”

Simple schematic of LKB experiment for control of cavity field



The LKB photon-box
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