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Chapter 1

Introduction

1.1 Control of a classical harmonic oscillator: the PID

controller

Consider a classical harmonic oscillator of pulsation ω where the position y is measured and
the control is given by a force u. Moreover, we assume that the oscillator is also subject
to an additional unknown force w, the perturbation. Thus, the model is given by

d2

dt2
y = −ω2y + u+ w.

In the Laplace domain, it reads y = u+w
s2+ω2 with s = d

dt
and is associated to the bloc diagram

of Figure 1.1. It corresponds to the following system of first order ordinary differential
equations:

d

dt
x1 = x2,

d

dt
x2 = −ω2x1 + u+ w

where x = (x1, x2) ∈ R2 is the state-space (phase-space) and the measured output is just
y = x1.

The control goal is to maintain the output y close the reference constant value yr and
to reduce the influence of the unknown perturbation w. As illustrated by bloc diagram of

Figure 1.1: Bloc diagram of a classical harmonic oscillator; the Laplace variable s corre-
sponds to the operator d

dt
.
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Figure 1.2: The PID control of a classical harmonic oscillator

Figure 1.2, this goal is achieved by a feedback loop with a Proportional Integral Derivative
(PID) controller,

u = −Kp

(
y − yr

)
−Kd

d

dt

(
y − yr

)
−Kint

∫ (
y − yr

)
, (1.1)

where the positive gains (Kp, Kint, Kd) are tuned as follows

Kp = Ω2, Kd = 2ξΩ, , Kint = εΩ3

with positive parameters Ω ∼ ω, ξ ∼ 1 and ε� 1.
Let us analyze this tuning by the behavior of the closed-loop system. Denote by x3

the integral term. The closed-loop system corresponds to the following three ordinary
differential equations (yr is constant here):

d

dt
x1 = x2,

d

dt
x2 = −ω2x1 − Ω2(x1 − yr)− 2ξΩx2 − x3 + w,

d

dt
x3 = εΩ3(x1 − yr).

This system admits two time-scales, the fast one attached to the fast variable (x1, x2) and
the slow one attached to x3 (see appendix D). The fast dynamics in (x1, x2) corresponds
to a forced damped harmonic oscillator:

d2

dt2
x1 = −(ω2 + Ω2)x1 − 2ξ

d

dt
x1 + w + Ω2yr − x3.

For w constant and since x3 is almost constant, x1 converges exponentially towards the
quasi steady-state w+Ω2yr−x3

ω2+Ω2 . Thus the slow dynamics of x3 is approximatively given by

d

dt
x3 = ε

Ω3

ω2 + Ω2
(w − ω2yr − x3)

where we have replaced x1 by w+Ω2yr−x3

ω2+Ω2 . The slow state x3 converges exponentially towards
w − ω2yr. We have proved that for ε small enough and Ω, ξ > 0, the closed loop system
is exponentially stable and that y = x1 converges always towards yr whatever the value of
the unknown constant w is.

Let us notice three important points:



1.1. CONTROL OF A CLASSICAL HARMONIC OSCILLATOR: THE PID CONTROLLER9

r

Figure 1.3: The PID control of a classical harmonic oscillator including a filter of the noisy
signal y

• The closed-loop stability is exponential: we can tune separately the convergence
speed of the fast sub-system in (x1, x2) with Ω and ξ and of the slow one in x3 with
ε.

• The closed-loop stability does not depend on the precise value of the parameter ω
nor on w: only the order of magnitude for ω is necessary to tune the PID gains Kp,
Kint and Kd.

• For w constant, x1 converges always towards the reference yr.

The two first points illustrate the notion of stability and robustness, the third one the
notion of precision and performance.

Let us complete this analysis by adding noise to the measurement of x1: now the
output map becomes y = x1 + ηt where ηt is a white noise of standard deviation σ (δ is
the Dirac distribution at zero): E (ηt1ηt2) = σ2δ(t1 − t2). With such noisy measurement,
the PID controller is not realistic since u includes −Kd

d
dt
ηt and becomes unbounded with

a derivative gain Kd > 0. As illustrated on Figure 1.3, pre-filtering y is needed before
computing u. Consider the second order low-pass filter (cut-off pulsation Ωf > 0 and
damping coefficient ξf > 1 to avoid the resonance pick at Ωf )

yf =
Ω2
f

s2 + 2ξfΩfs+ Ω2
f

y

and replace y by yf in the PID formula (1.1). This PID controller with the pre-filtered yf
yields to a stable closed loop system for previous settings of Kp, Kint and Kd and if we
take Ωf � Ω. The state space description of the closed-loop system includes now the two
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additional states (z1, z2) of the filter:

d

dt
z1 = z2,

d

dt
z2 = −2ξfΩfz2 − Ω2

f (z1 − x1 − ηt)
d

dt
x1 = x2,

d

dt
x2 = −ω2x1 − Ω2(z1 − yr)− 2ξΩz2 − x3 + w

d

dt
x3 = εΩ3(z1 − yr).

With the above tuning, it admits now 3 time scales, a very fast one with (z1, z2), a fast one
with (x1, x2) and a slow one with x3. The quasi-static approximation for the very fast scale
yields to z1 ≈ x1 and z2 ≈ x2. We recover the original two time-scales of the closed-loop
system without the pre-filter.

We have seen here the key role of the pre-filter to overcome the presence of noise in
the measurement process of y. The additional state variables (z1, z2, x3) introduced by the
pre-filter and controller are directly related to the state of an observer that reconstructs in
real-time and in a causal manner the variable (x1, x2) and the constant parameter w from
the knowledge of the past values of u and y. An asymptotic observer1 for

d

dt
x1 = x2,

d

dt
x2 = −ω2x1 + u+ w,

d

dt
w = 0, y = x1 + ηt

admits the following form

d

dt
x̂1 = x̂2 − L1(x̂1 − y),

d

dt
x̂2 = −ω2x̂1 + u+ ŵ − L2(x̂1 − y),

d

dt
ŵ = −Lw(x̂1 − y)

where, if we take the observers gains L1, L2 and Lw as

L1 = 2ξfΩf , L2 = Ω2
f , Lw = εΩ3

we recover, up to some slight modifications, the filter state variables (z1, z2) as (x̂1, x̂2) and
the integral term x3 as ŵ. With this interpretation the PID control with the pre-filtered y
is in fact closely related to the state feedback

u = −K1(x1 − yr)−K2x2 − w, K1 = Ω2, K2 = 2ξΩ

where x1, x2 and w have been replaced by their estimations x̂1, x̂2 and ŵ. We recover here
the general form of an observer-controller combining state estimation and state feedback.

Let us complete this essentially feedback scheme by a feed-forward part. The goal now
is to follow a time varying references yr(t). We consider the tracking problem and not only
the regulation problem. From d2

dt2
y = −ω2y + u + w, it is clear that yr should be at least

C2 and that the reference control ur, whenever w = 0, is given by

ur =
d2

dt2
yr + ω2yr

1A Kalman filter is an asymptotic observer where the correction gains L are parameterized by the noise
level of the measurement output and of the system’s dynamics.
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Figure 1.4: The PID control of a classical harmonic oscillator including a filter of the noisy
signal y, a filter of the piece-wise continuous set-point ysp and the feed-forward part ur.

Exploiting the linearity of the system, we have

d2

dt2
∆y = −ω2∆y + ∆u+ w

for ∆y = y − yr and ∆u = u − ur. We recover previous settings with ∆y, ∆u and 0
instead of y, u and the constant reference yr. Thus the complete feedback scheme with the
feed-forward part brought by yr, d

dt
yr and d2

dt2
yr is given by

u =
d2

dt2
yr + ω2yr −Kp(yf − yr)−Kint

∫
(yf − yr)−Kd

(
d
dt
yf − d

dt
yr
)
.

This scheme requires a smooth reference signal yr. In general it is not the case and we have
to introduce some smoothing process. The simplest one consists in filtering a piece-wise
continuous set-point signal ysp to produce a smooth reference yr. Here a second order filter
is sufficient

d2

dt2
yr + 2ξrΩr

d

dt
yr + Ω2

r(y
r − ysp) = 0

with parameters Ωr > 0 and ξr ∼ 1. The complete tracking scheme is illustrated on
Figure (1.4): starting with the piece-wise continuous set-point ysp, an admissible reference
trajectory (yr, ur) is generated from the output of a second order filter (model reference).
Then the stabilizing PID controller is computed form the tracking error e = yf − yr. It
provides the feedback correction ∆u that is added to the feed-forward control ur.

Modeling of a system with control input u, perturbation input w and measured output
y yields in many cases to a state-space description d

dt
x = f(x, u, w) and an output map

y = h(x) as illustrated on Figure 1.5. We can gather in the same bloc, called controller bloc,
the tracking feedback, the state observer and the feed-forward control based on the new
input ysp. The inputs of the controller bloc are then y and ysp (see Figure (1.6)). Its state
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control

perturbation

measure

state system

Figure 1.5: open-loop bloc diagram of a non-linear classical system

 feedback loop

controller

perturbation

se
t 

p
o

in
t control

measurestate system

Figure 1.6: closed-loop bloc diagram of a non-linear classical system

is denoted by ξ and obeys d
dt
ξ = g(ξ, y, ysp). Its output is then u = k(ξ, y, ysp). The control

goal is then to construct, from the knowledge of the modeling equations, d
dt
x = f(x, u, w)

and y = h(x), these controller equations, d
dt
ξ = g(ξ, y, ysp) and u = k(ξ, y, ysp), such that,

for the closed-loop system, y follows the time-varying set-point ysp. The controller has to
be robust and to compensate modelling errors, measurement noise, unknown perturbations
w. The practical implementation just consists in a numerical integration of the differential
equations of the controller. For a small enough sampling time-step, the explicit first order
Euler scheme is usually sufficient.

The elaboration of the controller equations from the modeling ones relies on several key
notions that have been implicitly used for the harmonic oscillator controller displayed on
Figure 1.4:

• Controllability: for any states xa and xb, the possibility to find a transition time
T > 0 and an open-loop control [0, T ] 3 t 7→ u(t) steering the system from xa to xb,
i.e. such that solution of the initial value problem d

dt
x = f(x, u(t)) with x(0) = xa

satisfies x(T ) = xb; for the harmonic oscillator such open-loop controls are given by
u(t) = d2

dt2
γ(t) +ω2γ(t) where γ(t) are smooth functions (at least piece-wise C2) such

that (γ(0), d
dt
γ(0)) = (xa1, x

a
2) and (γ(T ), d

dt
γ(T )) = (xb1, x

b
2);

• Observability: from the knowledge of u and y one can recover without ambiguity the
state x; for the harmonic oscillator x1 = y and x2 = d

dt
y.



1.2. CONTROL OF A QUANTUM HARMONIC OSCILLATOR: THE LKB PHOTON-BOX13

“ x ”= |
|g
|e

Detection in |g or |e
Control “ u” =

Output “y”

Figure 1.7: Simple schematic of LKB experiment for control of cavity field

• Feed-forward: u = ur(t) associated to reference trajectory t 7→ (xr(t), ur(t), yr(t))
(performance); for the harmonic oscillator, we have parameterized the reference tra-
jectory via C2 curves t 7→ γ(t) and (xr1, x

r
2, u

r, yr) = (γ, d
dt
γ, d

2

dt2
γ + ω2γ, γ). Such

motion planing solution has been used to get the feed-forward open-loop control ur
with γ = yr.

• Feedback stabilization and tracking : u = ur(t) + ∆u where ∆u depends on the
tracking state error ∆x = x− xr to ensure that ∆x tends to 0 in closed-loop; for the
harmonic oscillator, ∆u = −Kp∆x1 −Kd∆x2 is exponentially stabilizing as soon as
the gains Kp, Kd > 0.

• Asymptotic observers and real-time state estimation: design a filter of the form
d
dt
x̂ = f(x̂, u) + L(h(x̂) − y) that forgets its initial condition and converges towards

x as t tends to infinity: for the harmonic oscillator

d

dt
x̂1 = x̂2 − L1(x̂1 − y),

d

dt
x̂2 = −ω2x̂1 + u− L2(x̂1 − y)

converges exponentially toward (x1, x2) as soon as the observer gains L1, L2 > 0.

• Stability and robustness: for t large, ∆x and x̂ − x remain small even in presence
of small modelling errors and noises; for the harmonic oscillator, the exponential
convergence ensure robustness to errors.

1.2 Control of a quantum harmonic oscillator: the

LKB photon-box

Controlling a quantum harmonic oscillator is not as simple as controlling a classical one.
Many problems and questions remain to be set and answered. The main difference between
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classical and quantum systems is not the relation between the control input and the state:
controllability extends directly to quantum systems and many feed-forward control strategy
are used experimentally (they are addressed in Chapter 3). The major difference is due to
the relation between the state and the measurement: this relation is drastically different
from the classical case, as we have to take into account a non-deterministic back-action of
the measurement process on the state (see Chapter 4 for models of open quantum systems).
To have a first idea of this essential difference, let us consider the photon-box experiment
conducted at the ”Laboratoire Kasler-Brossel” (LKB) of Ecole Normale Supérieure in Paris
(see [33, 28]) where a quantum harmonic oscillator is controlled and measured. As sketched
on Figure 1.7, the state is described by a complex probability amplitude wave function |ψ〉2.
It belongs to a Hilbert space H that we assume to be finite dimensional here. Thus |ψ〉 is
just a vector with complex entries and of length one (finite dimensional truncation to nmax

photons)

|ψ〉 =

 ψ0
...

ψnmax

 , ‖ |ψ〉 ‖2
H =

∑
n

|ψn|2 = 1.

This system admits a nice discrete-time formulation: the differential equations are then
replaced by recurrence ones. If k is the time-index, |ψ〉k denotes the state at time or step
k. The control input at time k is then denoted by uk ∈ C. The measure output at time
k is denoted by yk. It takes only two discrete values denoted by e and g: yk ∈ {e, g}.
Quantum physics provides a stochastic model, i.e., a controlled Markov chain of state |ψ〉k
with state-dependent jump probabilities and where yk is just the type of jump that has
occurred at step k:

|ψ〉k+1 =



Duk Mg |ψ〉k∥∥∥Mg |ψ〉k
∥∥∥
H

if yk = g
(

probability pg,k =
∥∥∥Mg |ψ〉k

∥∥∥2

H

)
Duk Me |ψ〉k∥∥∥Me |ψ〉k

∥∥∥
H

if yk = e
(

probability pe,k =
∥∥∥Me |ψ〉k

∥∥∥2

H

)
.

The measurement operatorsMg andMe are such thatM†
gMg +M†

eMe = 1 since pe,k +
pg,k ≡ 1. The control operator Du is unitary, i.e. D†uDu = 1. It corresponds to the
propagator of a u-dependent Schrödinger equation satisfied by |ψ〉.

Physically, |ψ〉 is the quantum state of an eigen-mode trapped between the two mirrors
of a super-conducting electromagnetic cavity, u is the complex amplitude of a classical
electromagnetic pulse and yk corresponds to the energy measurement for the k’th two-level
atom after its passage though the cavity and thus after its interaction with the cavity state
|ψ〉k. This explains why the measurement outcomes, g for ground state and e for excited
state, have probabilities depending on |ψ〉k.

2See appendix A for summary of Dirac notations of ”Bra” and ”Ket”
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MatricesMg andMe admit simple forms when the atom/field interaction is dispersive
(see [33]):

Mg = diag (cos(ϑn+ ϕ0)n=0,...,nmax , Me = diag (sin(ϑn+ ϕ0)n=0,...,nmax

where ϑ and ϕ0 are constant parameters. The unitary operator Du = eua
†−u∗a is given via

a truncation to nmax photons of the annihilation operator a (see Section 2.2):

a |ψ〉 = a



ψ0

ψ1

ψ2
...

ψnmax−1

ψnmax


=



ψ1√
2ψ2√
3ψ3
...√

nmaxψnmax

0


.

Notice that a†a = N = diag(0, 1, . . . , nmax) is the truncated photon-number operator.
For u = 0, Du = 1 and any Fock state |m〉 = (δnm)n∈{0,...,nmax} (m ∈ {0, nmax}) is

a fixed point of the open-loop dynamics: if |ψ〉0 = |m〉 then for all k > 0, |ψ〉k = |m〉
when u = 0. For ϑ/π irrational, |ψ〉k (u = 0) converges to one of these |m〉’s. Whatever
the initial condition |ψ〉0 is and for almost all realizations of the Markov chain starting
form |ψ〉0, |ψ〉k converges to one of the states |m〉 (see [6]); this limit state could change
from one realization to another one; the probability to have |m〉 as limit state is given by
|ψ0,m|2. Even if we start from the same initial state |ψ〉0 the limit state is not deterministic.
A natural goal of the control u will be to ensure a deterministic value |nsp〉 of the limit
state and to ensure that for almost all trajectories and initial states |ψ〉k tends to |nsp〉 as
k 7→ ∞. We will see in Section 5.1 how to ensure such global stabilization towards |nsp〉
via an observer/controller structure (quantum filter and Lyapunov feedback law).

The quantum analogue of unknown perturbations w is essentially played by the envi-
ronment and the decoherence. For the photon box, the major perturbing events are photon
destruction by the cavity mirrors: they produce a drastic jump of the state |ψ〉k since it

is instantaneously replaced by |ψ〉k+ =
a|ψ〉k
‖a|ψ〉k‖

. This jump is not recorded and there is no

possibility to instantaneously know that a photon has been destroyed by the cavity. Conse-
quently it is not possible to compensate exactly such large unknown jumps. However, they
can be compensated asymptotically via a feedback loop as shown in [28]. Let us briefly
explain how: assume, for simplicity, that |ψ〉k has reached |nsp〉 and that a photon has just
been adsorbed by the cavity. Then |ψ〉k+ = |nsp − 1〉. The only way to detect this jump
relies in the statistics of future measures yk+d. If we maintain u = 0, |ψ〉k+d remains con-
stant |nsp − 1〉 and the probability to detect g has changed to cos2(ϑ(nsp−1) +ϕ0) instead
of being equal to cos2(ϑnsp + ϕ0) for |ψ〉 = |nsp〉. It takes a certain time to see that the
measurement statics have changed. Consequently, a feedback scheme can compensate only
asymptotically such perturbations: in closed-loop |ψ〉k+d will return to the goal state |nsp〉
after a certain number of steps d if no new photon destruction occurs. The performance
of the controller and its efficiency to compensate these unknown jumps depend directly on
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the ratio between the convergence time from |nsp − 1〉 to |nsp〉 and the photon’s life time
inside the cavity.

To conclude we recommend the following books dealing with control on one side and
quantum systems on the other side:

• Mathematical system theory and control:

– H.K. Khalil. Nonlinear Systems. MacMillan, 1992.

– J.M. Coron. Control and Nonlinearity. American Mathematical Society, 2007.

– D. D’Alessandro. Introduction to Quantum Control and Dynamics. Chapman
& Hall/CRC, 2008.

• Quantum physics and quantum information

– S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.

– H.M. Wiseman and G.J. Milburn. Quantum Measurement and Control. Cam-
bridge University Press, 2009.

– M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000.

– D. Steck. Quantum and atom optics (course notes).
http://atomoptics.uoregon.edu/ dsteck/teaching/quantum-optics/, 2010.



Chapter 2

Schrödinger models

The models considered here rely on the Schrödinger equation (throughout this document
~ is set to be 1 and therefore the physical units are the atomic ones).

i
d

dt
|ψ〉 = H |ψ〉 ,

where the wave function |ψ〉 belongs to a Hilbert space H of finite or infinite dimension,
is of unit length (〈ψ|ψ〉 = 1) and where the Hamiltionan H is a Hermitian operator on H
(H† = H). H is time varying though an affine dependence on m scalar controls uk ∈ R,
k ∈ {1, . . . ,m}, H = H0 +

∑m
k=1 uHk.

We start with the simple but important case of 2-level systems (spin-half system) where
H is of dimension 2. Then we consider the quantized harmonic oscillator (spring system)
the simplest infinite dimensional case where we will define, through the Hamiltonian H,
the creation and annihilation operators. We continue with the composite system (spin-
spring system) made of two kinds of sub-systems: 2-level systems and quantized harmonic
oscillators. We consider then n-qubit systems appearing in quantum information and 3-
level systems. We end with controlled Shrödinger partial differential equations (1-D and
n-D cases).

We have recalled in appendix A, Bra and Ket notations (Dirac notations), usual compu-
tations with operators, their spectral decompositions, tensor product related to composite
systems and the passage from the wave function |ψ〉 to the density operator ρ.

The first 3 sections of this chapter are directly inspired of [33][chapter 3].

2.1 2-level systems

2.1.1 Schrödinger equation and Pauli matrices

Take the system of figure 2.1. Typically, it corresponds to an electron around an atom.
This electron is either in the ground state |g〉 of energy Eg, or in the excited state |e〉 of
energy Ee (Eg < Ee). We discard the other energy levels. We proceed here similarly to
flexible mechanical systems where one usually considers only few vibration modes: instead

17
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Figure 2.1: a 2-level system

of looking at the partial differential form of the Schrödinger equation describing the time
evolution of the electron wave function, we consider only its components along two eigen-
modes, one corresponds to the fundamental state and the other to the excited state. We
will see below that controls are close to resonance and thus such an approximation is very
natural.

The quantum state, described by |ψ〉 ∈ C2 of length 1, 〈ψ|ψ〉 = 1, is a linear superpo-
sition of |g〉 ∈ C2, the ground state, and |e〉 ∈ C2, the excited state, two orthogonal states,
〈g|e〉 = 0, of length 1, 〈g|g〉 = 〈e|e〉 = 1:

|ψ〉 = ψg |g〉+ ψe |e〉

with ψg, ψe ∈ C the complex probability amplitudes1. This state |ψ〉 depends on time t.
For this simple 2-level system, the Schrödinger equation is just an ordinary differential
equation

i
d

dt
|ψ〉 = H |ψ〉 = (Eg |g〉 〈g|+ Ee |e〉 〈e|) |ψ〉

completely characterized by H, the Hamiltonian operator (H† = H) corresponding to the
system’s energy (H is measured in frequency unit since we have assumed ~ = 1) 2.

Since energies are defined up to a scalar, the Hamiltonians H and H + u0(t)I (with an
arbitrary u0(t) ∈ R) describe the same physical system. If |ψ〉 obeys i d

dt
|ψ〉 = H |ψ〉 then

|χ〉 = e−iθ0(t) |ψ〉 with d
dt
θ0 = u0 satisfies i d

dt
|χ〉 = (H + u01) |χ〉 where 1 = |g〉 〈g|+ |e〉 〈e|

stands for the identity operator. Thus for all θ0, |ψ〉 and e−iθ0 |ψ〉 are attached to the same
physical system. The global phase of the quantum state |ψ〉 can be arbitrarily chosen. It
is as if we can add a control u0 of the global phase, this control input u0 being arbitrary
(gauge degree of freedom relative to the origin of the energy scale). Thus the one parameter
family of Hamiltonians

((Eg + u0) |g〉 〈g|+ (Ee + u0) |e〉 〈e|)
u0∈R

1In a more standard formulation, |g〉 stands for

(
0
1

)
, |e〉 for

(
1
0

)
and |ψ〉 for

(
ψe

ψg

)
.

2In a more standard formulation, |g〉 〈g| stands for

(
0
1

)(
0 1

)
=

(
0 0
0 1

)
, |e〉 〈e| for

(
1
0

)(
1 0

)
=(

1 0
0 0

)
and H for

(
Ee 0
0 Eg

)
.
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describes the same system. It is then natural to take u0 = −Ee−Eg
2

and to set ωeg =
Ee−Eg, the pulsation of the photon emitted or absorbed during the transition between the
ground and excited states. This frequency is associated to the light emitted by the electron
during the jump from |e〉 to |g〉. This light is observed experimentally in spectroscopy: its
frequency is a signature of the atom.

For the isolated system, the dynamics of |ψ〉 reads:

i
d

dt
|ψ〉 =

ωeg
2

(|e〉 〈e| − |g〉 〈g|) |ψ〉 .

Thus
|ψ〉t = ψg0 e

iωegt

2 |g〉+ ψe0 e
−iωegt

2 |e〉
where |ψ〉0 = ψg0 |g〉+ ψe0 |e〉. Usually, we denote by

σz = |e〉 〈e| − |g〉 〈g|

this Pauli matrix (see section A.6). Since σ2
z = 1, we have eiθσz = cos θ1 + i sin θσz (θ ∈ R)

and another expression of the time evolution of |ψ〉 is:

|ψ〉t = e−
iωegt

2
σz |ψ〉0 = cos

(
ωegt

2

)
|ψ〉0 − i sin

(
ωegt

2

)
σz |ψ〉0 .

Assume now that the system is in interaction with a classical electromagnetic field
described by the control input u(t) ∈ R. Then the evolution of |ψ〉 still results from a
Schrödinger equation with a Hamiltonian depending on u(t). In many cases, this controlled
Hamiltonian admits the following form (dipolar and long wave-length approximations):

H(t) =
ωeg
2

(|e〉 〈e| − |g〉 〈g|) +
u(t)

2
(|e〉 〈g|+ |g〉 〈e|)

where u is homogenous to a frequency3. At this point, it is very convenient to introduced
the two other Pauli matrices (see section A.6):

σx = |e〉 〈g|+ |g〉 〈e| , σy = −i |e〉 〈g|+ i |g〉 〈e| .

The controlled Hamiltonian is then H = ωeg
2
σz + u(t)

2
σx and the dynamics of the wave

function |ψ〉 reads:

i
d

dt
|ψ〉 =

(
ωeg
2
σz + u(t)

2
σx

)
|ψ〉 (2.1)

Since σz and σx do not commute, there is no simple expression for the solution of the
associated Cauchy problem when u depends on t (in general the system is not integrable).

3 The Schrödinger equation i d
dt |ψ〉 = H |ψ〉 reads with standard notations

i
d

dt

(
ψe

ψg

)
=
ωeg

2

(
1 0
0 −1

)(
ψe

ψg

)
+
u(t)

2

(
0 1
1 0

)(
ψe

ψg

)
.
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If we add the phase control $ ∈ R, we have a 2-input control system

i
d

dt
|φ〉 =

(
ωeg
2
σz + u(t)

2
σx +$(t)1

)
|φ〉 (2.2)

where |ψ〉 = ei
∫ t
0 $(s)ds |φ〉 is solution of (2.1).

2.1.2 Density operator and Bloch sphere

We start with |ψ〉 satisfying i d
dt
|ψ〉 = H |ψ〉. We consider the orthogonal projector ρ =

|ψ〉 〈ψ|, corresponding to the density operator. Then ρ is Hermitian and semi-positive
definite, satisfies Tr (ρ) = 1, ρ2 = ρ and obeys the following equation:

d

dt
ρ = −i[H, ρ]

where [, ] is the commutator: [H, ρ] = Hρ − ρH. During the passage from |ψ〉 to the
projector ρ we lose the global phase: for any angle θ, |ψ〉 and eiθ |ψ〉 yield to the same ρ.
For a 2-level system |ψ〉 = ψg |g〉+ ψe |e〉 we have

|ψ〉 〈ψ| = |ψg|2 |g〉 〈g|+ ψgψ
∗
e |g〉 〈e|+ ψ∗gψe |e〉 〈g|+ |ψe|2 |e〉 〈e| .

With
x = 2<(ψgψ

∗
e), y = 2=(ψgψ

∗
e), z = |ψe|2 − |ψg|2

we get the following expression

ρ =
1 + xσx + yσy + zσz

2
.

Thus (x, y, z) ∈ R3 can be seen as the coordinates in the orthogonal frame (~i,~,~k) of a

vector ~M in R3, called the Bloch vector:

~M = x~i+ y~+ z~k.

Since Tr (ρ2) = x2 + y2 + z2 = 1, ~M is of length one. For |ψ〉 solution of (2.1) or of (2.2),
~M evolves on the unit sphere of R3, called the Bloch sphere, according to

d

dt
~M = (u~i+ ωeg~k)× ~M,

another equivalent writing for d
dt
ρ = −i

[ωeg
2
σz + u

2
σx, ρ

]
. Thus u~i + ωeg~k is the instanta-

neous rotation velocity. Such geometric interpretation of the |ψ〉 dynamics on the Bloch
sphere is very popular in magnetic resonance where the 2-level system corresponds to a
spin-1

2
one. The knowledge of ~M is equivalent to the knowledge of |ψ〉, up to a global

phase.
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2.2 Harmonic oscillator and coherent states

A much more tutorial exposure is available in [22] and more advanced materials can be
found in [8]. We just recall here some basic facts.

The Hamiltonian formulation of a classical harmonic oscillator of pulsation ω, d2

dt2
x =

−ω2x, reads:
d

dt
x = ωp =

∂H
∂p

,
d

dt
p = −ωx = −∂H

∂x

where the classical Hamiltonian H = ω
2
(p2 + x2). The correspondence principle gives

directly, from the classical Hamiltonian formulation, its quantization. The classical Hamil-
tonian becomes then an operator, H, operating on complex-value functions of one real
variable x ∈ R. The quantum state |ψ〉 is thus a function of x and t. It is also denoted here
by ψ(x, t). This function admits complex values and, for each time t, is square-integrable
over x ∈ R with

∫
|ψ(x, t)|2dx = 1: at each time t, |ψ〉t ∈ L2(R,C).

The Hamiltonian operator H is obtained by replacing, in the classical Hamiltonian H,
x by the operator X, the multiplication by x√

2
, p by the derivation P = − i√

2
∂
∂x

. Thus we
have

H = ω(P 2 +X2) = −ω
2

∂2

∂x2
+
ω

2
x2.

The Schrödinger equation

i
d

dt
|ψ〉 = H |ψ〉

is then a partial differential equation that determines the evolution of the probability
amplitude wave function ψ(x, t):

i
∂ψ

∂t
(x, t) = −ω

2

∂2ψ

∂x2
(x, t) +

ω

2
x2ψ(x, t), x ∈ R.

The average position is

〈X〉t = 〈ψ|X|ψ〉 = 1√
2

∫ +∞

−∞
x|ψ|2dx,

and average impulsion reads

〈P 〉t = 〈ψ|P |ψ〉 = − i√
2

∫ +∞

−∞
ψ∗
∂ψ

∂x
dx.

Exercice 2.2.1. Verify via integration by part that 〈P 〉t is real.

With the annihilation and creation operators, a and a†,

a = X + iP = 1√
2

(
x+

∂

∂x

)
, a† = X − iP = 1√

2

(
x− ∂

∂x

)
(2.3)
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we have
[X,P ] = i

2
1, [a, a†] = 1, H = ω(P 2 +X2) = ω

(
a†a+ 1

2
1
)

where 1 stands for the identity operator. Usually the above relations are expressed by
replacing the identity operator 1 with the scalar 1. This yields to the compact expressions:

[X,P ] = i
2
, [a, a†] = 1, H = ω(P 2 +X2) = ω

(
a†a+ 1

2

)
With [a, a†] = 1, the spectral decomposition of a†a is very simple and justifies the denom-
ination of annihilation and creation operators for a and a†. The Hermitian operator a†a
admits N as non degenerate spectrum. The unitary eigen-state associated to the eigen-
value n ∈ N is denoted by |n〉: it is also called a Fock state and n is the number of quanta
of vibration (phonon or photon). Moreover for any n > 0,

a|n〉 =
√
n |n− 1〉, a†|n〉 =

√
n+ 1 |n+ 1〉.

The ground state |0〉 satisfies a|0〉 = 0 and corresponds to the Gaussian function:

ψ0(x) =
1

π1/4
exp(−x2/2).

The operator a (resp. a†) is the annihilation (resp. creation) operator since it transfers
|n〉 to |n− 1〉 (resp. |n+ 1〉) and thus decreases (resp. increases) the quantum number by
one unit.

Add a control u and consider the controlled harmonic oscillator d2

dt2
x = −ω2x − 1√

2
u.

Its quantization yields the following controlled Hamiltonian4

H = ω
(
a†a+ 1

2

)
+ u(a+ a†). (2.4)

that corresponds to the following controlled partial differential equation

i
∂ψ

∂t
(x, t) = −ω

2

∂2ψ

∂x2
(x, t) +

(
ω
2
x2 +

√
2ux

)
ψ(x, t) (2.5)

with ψ(., t) ∈ L2(R,C) such that ‖ψ‖L2 = 1.

Exercice 2.2.2. Set Xλ = 1
2

(
e−iλa+ eiλa†

)
for any angle λ. Prove that[

Xλ, Xλ+
π
2

]
= i

2
.

Exercice 2.2.3. Denote by N = a†a the photon number operator. Show that for any
analytic function f , we have the following identities:

af(N) = f(N + 1)a, a†f(N) = f(N− 1)a†.

Deduce that eiθNae−iθN = e−iθa and eiθNa†e−iθN = eiθa†.
4Notice the similarity with the controlled Hamiltonian of a 2-level system where the annihilation op-

erator a is replaced by σ− = |g〉 〈e|, the jump operator from the excited state |e〉 to the ground state
|g〉.
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For any complex number, denote by Dα the unitary operator

Dα = eαa
†−α∗a (2.6)

also called the (Glauber) displacement operator. Notice that D−1
α = D†α = D−α. When the

operators A and B commute with their commutator, i.e., when [A, [A,B]] = [B, [A,B]] = 0
we have the identity

eA+B = eA eB e−
1
2

[A,B] (2.7)

known as the Glauber formula. Using this formula with A = αa† and B = −α∗a, we get
another expression of Dα

Dα = e−
|α|2

2 eαa
†
e−α

∗a = e+
|α|2

2 e−α
∗aeαa

†
. (2.8)

The term ”displacement” used for Dα comes from the fact that

D−αaDα = a+ α and D−αa
†Dα = a† + α∗. (2.9)

This can be proved applying the Cambell-Baker-Hausdorff formula:

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + . . . . (2.10)

Exercice 2.2.4.

1. Using (2.7), prove the relationships (2.8) and (2.9). Prove also that D−αXDα =
X + <α and D−αPDα = P + =α.

2. Prove also that, for any α, β ∈ C, we have Dα+β = e
α∗β−αβ∗

2 DαDβ.

3. Deduce, for β = ε small, the following approximation

Dα+εD−α =
(
1 + αε∗−α∗ε

2

)
1 + εa† − ε∗a+O(|ε|2).

4. Show that, when α is a smooth function of time,(
d

dt
Dα

)
D−α =

(
α d
dt
α∗−α∗ d

dt
α

2

)
1 +

(
d

dt
α

)
a† −

(
d

dt
α∗
)
a.

Coherent state of amplitude α ∈ C, usually denoted by |α〉, is defined via Dα:

|α〉 = Dα |0〉 = e−
|α|2

2

+∞∑
n=0

αn√
n!
|n〉 (2.11)

where, for each integer n, |n〉 is the Fock state with n photon(s). One has to be careful
with this notation: for α = n positive integer, the coherent state of amplitude α and the
Fock state with n photon(s) are denoted with a similar symbol |α〉 or |n〉 but these states
coincide only when α = n = 0 (vacuum state). Coherent states are eigenstates of the
annihilation operator a:

a |α〉 = α |α〉 .
Exercice 2.2.5. Prove the above equality and also the second equality of (2.11) using (2.8).
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2.3 The Jaynes-Cummings model

This model describes a composite system, made of a 2-level system of states |g〉 and |e〉 and
a quantized harmonic oscillator with a control u. It is widely used in physics literature and
often models an atom with two electronic levels that is quasi-resonantly in interaction with
a quantized mode of an electromagnetic cavity (cavity QED –Quantum Electrodynamics–
with a Rydberg atom [33]). It can also represent a circuit QED. The quantum state |ψ〉
lives thus in the tensor product of C2 and L2(R,C)5. Thus |ψ〉 admits two components
(ψg(x, t), ψe(x, t)) where, for each t, the complex value functions ψg and ψe belong to
L2(R,C). The Hamiltonian of this composite system is the sum of three Hamiltonians: the
Hamiltonian Ha of the 2-level system alone (a for atom), the Hamiltonian of the controlled
harmonic oscillator alone Hc (c for cavity) and finally the interaction Hamiltonian Hint (int
for interaction). We have

Ha = ωeg
2

(|e〉 〈e| − |g〉 〈g|) = ωeg
2
σz, Hc = ωc

(
a†a+ 1

2

)
+ u(a+ a†)

where atomic and cavity pulsations, ωeg and ωc, are close. Since |ψ〉 ∈ C2 ⊗ L2(R,C), we
should write (to be rigorous):

Ha = ωeg
2
σz ⊗ 1L2(R,C), Hc = ωc 1C2 ⊗

(
a†a+ 1

2

)
+ u 1C2 ⊗ (a+ a†)

where 1L2(R,C) and 1C2 are identity operators on L2(R,C) and C2. Since these rigorous
notations are quite inefficient and here unnecessary, we abandon the tensor products sign
and identity operators, as done previously. Thus Ha and Hc commute since they act
on different spaces. However, the interaction Hamiltonian Hac is based on a true tensor
product of two non trivial operators. It admits the following form (dipolar and long wave-
length approximations):

Hac = iΩ
2
(|e〉 〈g|+ |g〉 〈e|)(a† − a) = iΩ

2
σx(a

† − a)

where the tensor product is noted as a simple product 6. The pulsation Ω is called the
vacuum Rabi pulsation. Thus the complete Hamiltonian, called Jaynes and Cummings
Hamiltonian [34], reads with these compact notations:

HJC = ωeg
2
σz + ωc

(
a†a+ 1

2

)
+ u(a+ a†) + iΩ

2
σx(a

† − a). (2.12)

The usual scale assumptions are:

Ω� ωc, ωeg, |ωc − ωeg| � ωc, ωeg and |u| � ωc, ωeg.

5See appendix A for a rapid introdocution on composite systems and tensor product.
6The rigorous expression is Hint = Ω0

2 σx ⊗ (a+ a†).
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The wave function |ψ〉 obeys to a Schrödinger equation i d
dt
|ψ〉 = HJC |ψ〉 that can be seen

as a set of two real partial differential equations for ψg(x, t) and ψe(x, t)

i
∂ψg
∂t

= ωc
2

(
x2 − ∂2

∂x2

)
ψg +

(√
2ux− ωeg

2

)
ψg − i

Ω√
2

∂

∂x
ψe

i
∂ψe
∂t

= ωc
2

(
x2 − ∂2

∂x2

)
ψe +

(√
2ux+ ωeg

2

)
ψe − i

Ω√
2

∂

∂x
ψg

(2.13)

with ‖ψg‖2
L2 + ‖ψe‖2

L2 = 1.

Exercice 2.3.1. Consider the canonical basis {|g, n〉 , |e, n〉}n∈N and set

|ψ〉 =
∑
n∈N

ψg,n |g, n〉+ ψe,n |e, n〉 with ψg,n, ψe,n ∈ C.

Write down the differential equations satisfied by ψg,n and φe,n when |ψ〉 obeys (2.13).

2.4 n-qubit system

The term qubit is just another denomination for 2-level systems (see 2.1). An n-qubit
system is a composite system made of n qubits, each one living in the Hilbert space C2

with Hilbert basis |g〉 (g for ground state) and |e〉 (e for excited state). Its state belongs to
n times︷ ︸︸ ︷

C2 ⊗ C2 . . .⊗ C2 that is isomorphic to C2n . This is very different from a Cartesian product
that will produce C2n (see section A.3). It is usual in quantum information to denote by
|0〉 the excited state |e〉 and by |1〉 the ground state |g〉. It is also usual to denote by Xk

(resp. Yk, Zk) the Pauli operator σx (resp. σy, σz) acting only on the qubit number k.
With this notation the canonical basis of a 2-qubit system is

|0〉 ⊗ |0〉 = |00〉 , |0〉 ⊗ |1〉 = |01〉 , |1〉 ⊗ |0〉 = |10〉 , |1〉 ⊗ |1〉 = |11〉

and, for example,

X1 |00〉 = |10〉 , X1 |01〉 = |11〉 , X1 |10〉 = |00〉 , X1 |11〉 = |01〉

whereas

X2 |00〉 = |01〉 , X2 |01〉 = |00〉 , X2 |10〉 = |11〉 , X2 |11〉 = |10〉

Similarly, the canonical basis of 3-qubit system reads

|000〉 , |001〉 , |010〉 , |100〉 , |011〉 , |101〉 , |110〉 , |111〉 .

and, for any q1, q2 ∈ {0, 1},

X3 |q1q20〉 = |q1q21〉 , X3 |q1q21〉 = |q1q20〉
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Take the case n = 2 and assume an Ising interaction with H0 = JZ1Z2 and that the
scalar control u addresses collectively the 2-qubit system with H1 = J(X1 + X2). Then
the dynamics of the 2-qubit system (state |ψ〉 ∈ C2) obey

i
d

dt
|ψ〉 = (H0 + uH1) |ψ〉 = J(Z1Z2 + u(X1 +X2)) |ψ〉 (2.14)

with u ∈ R as control and J as parameter.
Generalization to a linear chain of n spins yields to an n-qubit state |ψ〉 ∈ C2n obeying

to

i
d

dt
|ψ〉 = J

(
n−1∑
k=1

ZkZk+1 + u

n∑
k=1

Xk

)
|ψ〉 . (2.15)

2.5 3-level systems

The Hilbert space is C3 with an orthonormal frame (|g〉 , |e〉 , |f〉). The controlled Hamil-
tonian is of the form

H = ωg |g〉 〈g|+ ωe |e〉 〈e|+ ωf |f〉 〈f |

+ uµge

(
|g〉 〈e|+ |e〉 〈g|

)
+ uµef

(
|e〉 〈f |+ |f〉 〈e|

)
+ uµgf

(
|g〉 〈f |+ |f〉 〈g|

)
(2.16)

where u ∈ R is the control and (ωg, ωe, ωf , µge, µef , µgf ) are physical constants with ωg ≤
ωe < ωf . For u = 0, |g〉 is always a ground state with lowest energy. When ωg = ωe, the
ground level is degenerate and is spanned by |g〉 and |e〉. Depending on the values of the
coupling constants µge, µef and µgf we have illustrated on figure 2.2 the three important
configurations:

ladder systems when µgf = 0 and µge, µef > 0.

V -systems when µef = 0 and µge, µgf > 0.

Λ-systems when µge = 0 and µef , µgf > 0.

2.6 Partial differential systems

2.6.1 1D-particle in a moving potential well

We consider the control of a quantum particle represented by a complex probability am-
plitude R 3 x 7→ ψ(x, t) solution of

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ (V (x) + ζ̈(t)x)ψ (2.17)
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Ladder V -system Λ-system

Figure 2.2: Three important configurations of 3-level systems with controlled Hamilto-
nian (2.16).

This 1-D Schrödinger equation describes the non relativistic motion of a single charged
particle (mass m = 1, ~ = 1) with a potential V in a non Galilean frame x of absolute
position z = x + ζ where ζ(t) corresponding to the position of the well. Changes of
independent variables (t, x) 7→ (t, z) and dependent variable ψ 7→ φ defined by

ψ(t, z − ζ) = exp

(
i

(
−zζ̇ − ζζ̇ +

1

2

∫ t

0

ζ̇2

))
φ(t, z)

transform (2.17)

i
∂φ

∂t
= −1

2

∂2φ

∂z2
+ V (z − ζ)φ (2.18)

corresponding to the Schrödinger equation in a Galilean frame z. In (2.17) and (2.18),
the control is u = ζ̈ ∈ R the acceleration. The position ζ and it velocity ζ̇ have to be
included into the state: in the Galilean frame the state is (φ, ζ, ζ̇) and the dynamics is
given by (2.18) with d

dt
ζ = ζ̇ and d

dt
ζ̇ = u; in the moving frame the state is (ψ, ζ, ζ̇) and,

for the dynamics, (2.18) is replaced by (2.17).
Controllability depends strongly on the shape of the potential V . We just highlight two

types of potential shape.

• The periodic potential: V (x) ≡ V (x+ a), of the period a > 0.

• The box potential: V (x) = 0 for x ∈ [−a/2, a/2] and V (x) = +∞ for x outside
[−a/2, a/2].

2.6.2 Schrödinger equation with d-dimensional spatial domain

Typically, the spatial dimension d = 3 and the wave function ψ(x, t) depends on x ∈ Rd,
where Rd is considered as a Euclidian space. The controlled Schrödinger equation reads
then

i
∂ψ

∂t
= −∆ψ +

(
V (x) +

m∑
k=1

u(t)µk(x)

)
ψ (2.19)
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where ∆ =
∑d

j=1
∂2

∂xj2 stands for the Laplacian operator, x 7→ V (x) ∈ R is the free

potential, (uk)k=1,...,m are m independent scalar controls depending on t only, and, for each
k, x 7→ µk(x) ∈ R is the coupling potential with the control uk. With d = 1, m = 1,
µ1(x) = x and ζ̈ = u1 we re-discover the 1D-particle in a moving potential (2.17). Notice
that formally with the operators H0 = −∆ + V (x) and Hk = µk(x) for k = 1, . . . ,m, the
dynamics (2.19) admits the usual bilinear form (versus the state ψ and the controls uk):

i
∂ψ

∂t
=

(
H0 +

m∑
k=1

ukHk

)
ψ (2.20)

where H0 and Hk are Hermitian operator acting on an Hilbert space H, uk are scalar
controls and ψ belongs to the unit sphere of H.

A common procedure to derive ordinary differential approximations (finite dimensional
reduction) of (2.19) is based on the spectral decomposition of H0. More precisely, assume
that H0 admits n > 0 orthonormal eigenstates φl(x) with eigenvalues ωl, l = 1, . . . , n.
Then ψ is approximated by

∑n
l=1 ψl(t)φl(x) where ψl(t) obeys to the truncated equations:

i
d

dt
ψl = ωlψl +

m∑
k=1

n∑
j=1

ukµk,ljψj

where the coupling coefficients are given by

µk,lj = 〈φj|Hk|φl〉 =

∫
Rd
φ∗j(x)µk(x)φl(x) dx.

With Dirac notations (see appendix A) these ordinary differential equations read

i
d

dt
|ψ〉 =

(
n∑
l=1

ωl |l〉 〈l|+
m∑
k=1

uk

(
n∑

l1,l2=1

µk,l1l2 |l1〉 〈l2|
))
|ψ〉

where |l〉 stands for φl and |ψ〉 =
∑n

l=1 ψl |l〉 for the finite approximation of the infinite
dimension state ψ(x, t).



Chapter 3

Open-loop control of
Schrödinger-type models

This chapter investigates the following question: for |ψ〉 obeying a controlled Schrödinger
equation i d

dt
|ψ〉 = (H0 +

∑m
k=1 uHk) |ψ〉 with a given initial condition, find an open-loop

control [0, T ] 37→ u(t) such that at the final time T , |ψ〉 has reached a pre-specified target
state. This question is directly linked to controllability, a fundamental notion of system
theory that is considered in section 3.1. In the other sections of this chapter, emphasis
is put on different methods to construct efficiency open-loop steering controls from one
state to another one: resonant control and the rotation wave approximation are treated
in section 3.3; quasi-static controls exploiting adiabatic invariance are presented in sec-
tion 3.4; optimal control techniques minimizing

∫
u2 are investigated in section 3.5; finally,

section 3.6 is devoted to feedback stabilization relying on control Lyapunov functions pro-
vided by fidelity to the target state.

3.1 Controllability

3.1.1 Some definitions

This subsection is directly inspired from chapter 3 of [26] where the proof of results recalled
here are given and where finer controllability characterizations can be found.

Assume that the Hilbert spaceH is of finite dimension n and consider a quantum system
with wave function |ψ〉 on the unit sphere of H and satisfying the following controlled
Schrödinger equation

i
d

dt
|ψ〉 =

(
H0 +

m∑
k=1

ukHk

)
|ψ〉 (3.1)

where u = (u1, . . . , um) ∈ Rm is formed by m independent controls and H0, H1, . . . , Hm

are m+ 1 Hermitian operators on H.

Associated to (3.1) we have the Liouville equation for the density operator ρ, a positive

29
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(not necessarily definite positive) Hermitian operator on H with unit trace (Tr (ρ) = 1):

i
d

dt
ρ =

[(
H0 +

m∑
k=1

ukHk

)
, ρ

]
(3.2)

where [. , .] denotes the commutator. If |ψ〉 satisfies (3.1), then the projector ρ = |ψ〉 〈ψ|
satisfies (3.2).

Associated to (3.1) we have also the propagator equation

i
d

dt
U =

(
H0 +

m∑
k=1

ukHk

)
U (3.3)

where U is a unitary operator on H (U belongs to the compact Lie group U(n), the set of
n× n unitary matrices).

It is clear that we can express the solutions of (3.1) and (3.2) as soon as we have the
solution of (3.3) t 7→ Ut starting from identity, U0 = 1:

|ψ〉t = Ut |ψ〉0 , ρt = Utρ0U
†
t .

When u is time-dependent, (3.3) is not integrable in general and we do not have explicit
expression for Ut, |ψ〉t and ρt.

Since |ψ〉 and eiθ |ψ〉 for any phase θ ∈ [0, 2π[ represent the same physical state, we
have the following controllability definition underlying quantum state preparation.

Definition 3.1.1 (State Controllability). The controlled Schrödinger system (3.1) is said
state controllable if, and only if, for any |a〉 and |b〉 on the unit sphere of H, exist a time
T > 0, a global phase θ ∈ [0, 2π[ and a piecewise continuous control [0, T ] 3 t 7→ u(t) such
that the solution of (3.1) with initial condition |ψ〉0 = |a〉 satisfies |ψ〉T = eiθ |b〉.

Remark 3.1.2. In the above definition, the controllability time T cannot be chosen arbi-
trarily short, even for the finite dimensional case (there exists a non-zero minimal control
time).

Exercice 3.1.3. Consider the example of a qubit following the dynamics

i
d

dt
|ψ〉 = σz |ψ〉+ u(t)σx |ψ〉 .

While we will assume the controllability of the above system (see the next subsection for a
proof), show through a geometrical argument that, by considering an initial state |g〉 and
a target state 1√

2
(|g〉+ |e〉), the control time cannot be made arbitrarily small.

For the Liouville equation we have a similar definition without an arbitrary global
phase θ:
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Definition 3.1.4 (Density Matrix Controllability ). The controlled Liouville equation (3.2)
is said density matrix controllable if, and only if, for any density operator % and any unitary
operator V on H, exist a time T > 0 and a piecewise continuous control [0, T ] 3 t 7→ u(t)
such that the solution of (3.2) with initial condition ρ0 = % satisfies ρT = V %V †.

Exercice 3.1.5. Why cannot we replace V %V † in definition 3.1.4 by an arbitrary density
operator?

For the propagator we have the following controllability definition underlying quantum
gate design:

Definition 3.1.6 (Operator Controllability). The controlled operator equation (3.3) is said
operator controllable if, and only if, for unitary operators V and W on H, exist a time
T > 0, a global phase θ and a piecewise continuous control [0, T ] 3 t 7→ u(t) such that the
solution of (3.3) with initial condition U0 = V satisfies UT = eiθW .

Exercice 3.1.7. Show that operator controllability implies state and density-matrix con-
trollability.

It is more difficult to prove that density-matrix controllability is equivalent to operator
controllability (see [26]) and to find an example showing that state controllability does not
imply operator controllability.

3.1.2 The Lie algebra rank condition

Set Ak = −iHk for k = 0, . . . ,m. Then (3.3) reads

d

dt
U =

(
A0 +

m∑
k=1

ukAk

)
U

where the Ak’s are skew-Hermitian operators (A†k = −Ak). The set of all skew-Hermitian
operators is usually denoted by u(n) and forms a Lie algebra:

• It is a real vector space of dimension n2.

• It is closed for the commutator: if A and B are skew-Hermitian, then [A,B] is also
skew-Hermitian

The sub-set of u(n) with zero trace is denoted by su(n). It is also a Lie algebra (a sub Lie
algebra of u(n)) of dimension n2 − 1. The exponential maps u(n) to U(n) since for any
A ∈ u(n), eA is in U(n) since (eA)† = eA

†
= e−A = (eA)−1. If, moreover A ∈ su(n), then

det(eA) = eTr(A) = e0 = 1 and thus eA ∈ SU(n), where SU(n) denotes the set of n × n
unitary matrices with unit determinant (a sub-group of the group U(n)).

The Lie algebra spanned by the Ak’s, denoted by L = Lie(A0, . . . , Am) is the real vector
space formed by any real linear combination of finite-length Lie brackets (i.e. commutators)
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of Ak’s. The Lie algebra L is obtained after a finite number of steps ν (in any case ν ≤
n2− 2) of the following process starting from the real vector space L0 = span(A0, . . . , Am)
spanned by the Ak’s:

L1 = span(L0, [L0,L0])

L2 = span(L1, [L1,L1])

...

L = Lν = span(Lν−1, [Lν−1,Lν−1])

where, for example, span(L0, [L0,L0]) is a shortcut notation for the vector space spanned
by L0 and all the skew-Hermitian matrices [A,B] with A,B ∈ L0. An explicit computation
of this increasing sequence of vector spaces Lσ ⊂ Lσ+1 consists in starting from a basis of
the vector space Lσ, to compute all the commutators between two elements of this basis,
to complete this basis by commutators adding independent direction to form the basis of
Lσ+1.

Exercice 3.1.8. Compute the sequence (Lσ)0≤σ≤ν for n = 2, m = 1, A0 = i(σz + 1) and
A1 = iσx and show that ν = 2 and L = u(2). What are ν and L when A0 = iσz and
A1 = iσx?

The following controllability theorem is recalled in [26] and goes back to [37]:

Theorem 3.1.9 (Lie Algebra Rank Condition). The system (3.3) is operator controllable
in the sense of definition 3.1.6 if, and only if, the Lie algebra generated by the m + 1
skew-Hermitian matrices {−iH0,−iH1, . . . ,−iHm} is either su(n) or u(n).

This result solves a fundamental issue. But the practical issues remain to be addressed,
in particular, the explicit construction of the open-loop steering control. More precisely,
assume that (3.3) is operator controllable . Then,

• once the initial and final values V and W of definition 3.1.6 are given, the above
theorem does not gives a transition time T > 0 nor an explicit open-loop control
[0, T ] 3 t 7→ u(t) that steers the propagator from U0 = V to UT = eiθW .

• once the initial and final values |ψa〉 and |ψb〉 of definition 3.1.1 are given, the above
theorem does not gives a transition time T > 0 nor an explicit open-loop control
[0, T ] 3 t 7→ u(t) that steers the state from |ψ〉0 = |ψa〉 to |ψ〉T = eiθ |ψb〉.

• once the initial and final values ψa and ψb of definition 3.1.4 are given, the above
theorem does not gives a transition time T > 0 nor an associated explicit open-loop
control [0, T ] 3 t 7→ u(t) that steers the density operator from ρ0 = |ψa〉 〈ψa| to
ρT = |ψb〉 〈ψb|.

Exercice 3.1.10. Deduce from Theorem 3.1.9 the necessary and sufficient conditions on
ωeg for the operator controllability of the 2-level system (2.1).
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Exercice 3.1.11. Take the 2-qubit Ising system (2.14) with J 6= 0.

1. Prove that X1X2 commutes with Z1Z2 and X1 +X2.

2. Is the system controllable ?

3. Use the spectral basis of X1X2 and the decomposition span{|00〉 , |01〉 , |10〉 , |11〉} =

span{|++〉 , |−−〉} ⊕ span{|+−〉 , |−+〉} with |+〉 = |0〉+|1〉√
2

, |−〉 = |0〉−|1〉√
2

, to deduce

a splitting of this system into two separated systems on span{|++〉 , |−−〉} and on
span{|+−〉 , |−+〉}.

4. Prove that one of these sub-systems is controllable and that the other one is not
controllable.

3.1.3 A simple sufficient controllability condition

Consider the single control Hamiltonian H = H0 + uH1 and take an orthonormal basis
(|j〉)j=1,...,n where H0 is diagonal. For each j, H0 |j〉 = ωj |j〉 where ωj ∈ R is the eigenvalue
associated to |j〉. To (H0, H1) is associated the following non oriented graph G = (V,E)
with vertices V formed by the n eigenstates |j〉 and the edges E connecting the pair of
eigenstates (|j1〉 , |j2〉) such that 〈j1|H1|j2〉 6= 0:

V = {|1〉 , . . . , |n〉}, E = {(|j1〉 , |j2〉) | 1 ≤ j1 < j2 ≤ n, 〈j1|H1|j2〉 6= 0} .

This connectivity graph is physically related to single-photon transitions. When the spec-
trum of H0 is degenerate, this graph depends in general on the choice of the arthonormal
basis {|j〉}. The graph G is said to have a degenerate transition if exist two distinct
edges, (|j1〉 , |j2〉) ∈ E and (|l1〉 , |l2〉) ∈ E, admitting the same transition frequencie, i.e.,
|ωj1 − ωj2| = |ωl1 − ωl2|.

The following theorem is proved in [68] for state controllability and in [5] for operator
controllability.

Theorem 3.1.12. Consider a finite dimensional controlled Hamiltonian H0 + uH1 with a
single scalar control u. Consider for a spectral decomposition of H0, the graph G defined
here above. Remove from E, all the edges with identical transition frequencies. Denote
by Ē ⊂ E the reduced set of edges without degenerate transitions and by Ḡ = (V, Ē) the
resulting sub-graph of G. If Ḡ is connected, then i d

dt
|ψ〉 = (H0 +uH1) |ψ〉 is state and also

operator controllable (definitions 3.1.1 and 3.1.6).

Notice that the transition degeneracies can be changed if instead of considering the
graph associated to (H0, H1) we consider the graph associated to (H0 + ūH1, H1) where
H0 is replaced by H̄0 = H0 + ūH1 with some real constant ū. Since controllabilities of
H0 +uH1 and H̄0 +uH1 are identical (these two systems are equivalent up to a shift on u),
it is often possible to deduce controllability from Theorem 3.1.12 by choosing carefully the
shift ū in order to remove eventual degeneracies (Stark shift usually removes degeneracies).
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Exercice 3.1.13. Deduce from Theorem 3.1.12 sufficient conditions on the parameters of
the 3-level system (2.16) for its controllability.

It is interesting to notice that similar sufficient controllability conditions are valid in the
infinite dimensional cases. In [21] state and density matrix approximate controllabilities
are proved if the spectrum (ωn)n∈N of H0 is discrete, and similar non-degeneracy and graph
connectivity assumptions are satisfied.

3.1.4 Harmonic oscillator

The evolution of the quantized harmonic oscillator (2.4) is given by the bilinear controlled
Schrödinger equation i d

dt
|ψ〉 = (H0 + u H1) |ψ〉 , with

• H0 = ωa†a the free evolution Hamiltonian (we have removed the ω/2 off-set by a
change of global phase);

• H1 = (a†+ a) the interaction operator with the classical field described by the scalar
control u ∈ R.

The state |ψ〉 can be seen as an element of L2(R,C). It is thus of infinite dimension and
Theorem 3.1.9 cannot be used rigorously since it holds true only for finite dimensional
systems. Nevertheless, we can compute, at least formally, the controllability Lie algebra
using the usual commutation rule [a, a†] = 1. Since

[a†a, a† + a] = (a† − a), [a†a, a† − a] = (a† + a), [a† + a, a† − a] = 2

we see that
Lie {iH0, iH1} = span{ia†a, i(a+ a†), a− a†, i1}.

It is of dimension 4: the system cannot be controllable.
We can decompose the system into a controllable part (of dimension 2) and an un-

controllable part of infinite dimension. This decomposition is based on a time-dependent
unitary transformation: in the new representation, we extract, from the dynamics, an
autonomous Schrödinger equation modeling the quantum fluctuations around the aver-
age value of a. This unitary transformation corresponds to a displacement operator Dα,
introduced in (2.6), where α ∈ C is a well-chosen time-dependent complex amplitude.
Such transformations are commonly used in quantum optics and underly the fact that
classical currents and sources (generalizing the role played by u) only generate classical
light (quasi-classical states of the field generalizing the coherent states introduced in (2.2))
(see, e.g., [23][complement BIII , page 217]). Here, we only propose a control theoretical
interpretation (see [52] for a more detailed exposure).

Set 〈a〉 = 〈ψ|aψ〉 the average value of a. Since |ψ〉 depends on t, 〈a〉 depends also on t.
It is complex since a is not Hermitian. Applying the dynamics of |ψ〉 and the commutation
relation [a, a†] = 1, we have

d

dt
〈a〉 = −iω〈a〉 − iu (3.4)
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From 〈a〉 = X + iP , we have 〈a〉 = 〈X〉 + i〈P 〉 where 〈X〉 = 〈ψ|X|ψ〉 ∈ R and 〈P 〉 =
〈ψ|P |ψ〉 ∈ R. Consequently (3.4) reads:

d

dt
〈X〉 = ω〈P 〉, d

dt
〈P 〉 = −ω〈X〉 − u.

Consider the time-varying displacement operator

D〈a〉 = e〈a〉a
†−〈a〉∗a.

The action of this unitary transformation on operator a is a translation by the quantity
〈a〉 (see section (2.2))):

D−〈a〉 a D〈a〉 = a+ 〈a〉, D−〈a〉 a
† D〈a〉 = a† + 〈a〉∗,

Set |φ〉 = D−〈a〉 |ψ〉. Then

i
d

dt
|φ〉 =

(
D−〈a〉(ωa

†a+ u(a+ a†))D〈a〉

)
|φ〉+ i

(
d

dt
D−〈a〉

)
D〈a〉 |φ〉

=

(
ω(a† + 〈a〉∗)(a+ 〈a〉) + u(a+ 〈a〉+ a† + 〈a〉∗)

)
|φ〉

+ i

(
〈a〉

d〈a〉∗
dt
−
d〈a〉
dt
〈a〉∗

2
− d〈a〉

dt
a† + d〈a〉∗

dt
a

)
|φ〉

= ωa†a |φ〉+
(
ω|〈a〉|2 + u 〈a〉+〈a〉

∗

2

)
|φ〉

since, with the last formula of exercise 2.2.4, we have(
d

dt
D−〈a〉

)
D〈a〉 =

(
〈a〉 d

dt
〈a〉∗−〈a〉∗ d

dt
〈a〉

2

)
1−

(
d

dt
〈a〉
)
a† +

(
d

dt
〈a〉∗

)
a.

Set |χ〉 = eiθt |φ〉 with the global phase θt =
∫ t

0
(|〈a〉|2 + u<(〈a〉)). It yields to the following

autonomous Schrödinger equation:

i
d

dt
|χ〉 = ωa†a |χ〉 . (3.5)

The dynamics of |ψ〉 can be decomposed into two parts:

• a controllable part of dimension two (3.4) associated to the average of a, the classical
phase of a harmonic oscillator.

• an uncontrollable part of infinite dimension (3.5) corresponding to the quantum fluc-
tuations around the controllable phase-space dynamics.

These computations might be extended to n harmonic oscillators admitting the same con-
trol u but with different frequencies (see [51] for more details).



36 CHAPTER 3. OPEN-LOOP CONTROL OF SCHRÖDINGER-TYPE MODELS

Exercice 3.1.14. Consider the Jaynes-Cummings model presented in Section 2.3:

i
d

dt
|ψ〉 =

(
ωeg
2
σz + ωc

(
a†a+ 1

2

)
+ u(a+ a†)− iΩ

2
σx(a

† − a)
)
|ψ〉 .

The Hamiltonians are therefore given by:

H0 = ωeg
2
σz + ωc

(
a†a+ 1

2

)
− iΩ

2
σx(a

† − a), H1 = a+ a†.

By computing the commutators, show that the Lie algebra Lie{iH0, iH1} contains all skew
Hermitian operators of the form iσξX

nPm with integer n,m ≥ 0 and ξ = x, y, z. This fact
tends to indicate that the Jaynes-Cummings model may be controllable (at least approxi-
matively in an appropriate functional space).

3.1.5 Ensemble controllability and robustness issues

Let us finish by an interesting robustness notion encountered in magnetic resonance: en-
semble controllability as stated in [45] when we face a continuum of parameter values. We
just consider here an example. For the system

i
d

dt
|ψ〉 =

(
∆

2
σz +

u

2
σ− +

u∗

2
σ+

)
|ψ〉

depending on the parameter ∆, the problem reads as follows: find a unique open-loop
control [0, T ] 3 t 7→ u(t) ∈ C ensuring the (approximated) transfer of |ψ〉∆0 = |g〉 towards

|ψ〉∆T = |e〉 where |ψ〉∆t is the solution corresponding to the parameter ∆:

i
d

dt
|ψ〉∆ =

(
∆

2
σz +

u

2
σ− +

u∗

2
σ+

)
|ψ〉∆ .

The difficulty comes from the fact that ∆ takes any value in the interval [∆0,∆1] (∆0 < ∆1

are given) whereas u(t) is independent of ∆. The goal is to control via the same input an
infinite number (a continuum) of similar systems differing only by the value of ∆. This is a
special controllability problem of an infinite dimensional system with a continuous spectra:
for u = 0, the spectrum is on the imaginary axis,

[−i∆1

2
, −i∆0

2

]
∪
[
i∆0

2
, i∆1

2

]
. This infinite

dimensional system is particularly interesting to better understand the controllability issue
in the presence of a continuous part in the spectrum. For a first set of mathematical results
on ensemble controllability of this system see [46, 11]. For approximate controllability
results in the presence of a continuous part in the spectrum of H0 see [49].

3.2 Linearized systems around stationary states

We sketch here basic results with a single control u when i d
dt
|ψ〉 = (H0 + uH1) |ψ〉 is

linearized around an eigenstate
∣∣ψ̄〉 of H0. Up to a shift on H0 and a global phase change
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we can always assume that H0

∣∣ψ̄〉 = 0. Denote by |1〉 =
∣∣ψ̄〉 and by |2〉, . . . , |n〉 the

remaining eigen-states of H0: H0 |k〉 = ωk with ωk ∈ R (ω1 = 0). We can always assume
that (|1〉 , |2〉 , . . . , |n〉) is an ortho-normal frame.

Set |ψ〉 =
∑n

k=1 ψk |k〉 with ψk ∈ C and
∑n

k=1 |ψk|2 = 1. The first variation of |ψ〉
around |1〉, δ |ψ〉, reads:

δ |ψ〉 =
n∑
k=1

δψk |k〉 with δψ1 + δψ∗1 = 0

where each δψk is a small complex number, |δψk| � 1. Then, up to second order terms in
δ |ψ〉 and u, i d

dt
|ψ〉 = (H0 + uH1) |ψ〉, reads

i
d

dt
δψk = ωkδψk + bku, k = 1, . . . , n

with bk = 〈1|H1|k〉.
Let us look at δψ1: the constraint δψ1+δψ∗1 = 0 is satisfied by the dynamics i d

dt
δψ1 = b1u

since b1 and u are real. Thus we have only to consider =(δψ1) that obeys to d
dt
=(δψ1) =

−b1u. The linearized dynamics are described by one scalar differential equation and n− 1
complex differential equations:

d

dt
=(δψ1) = −b1u, i

d

dt
δψk = ωkδψk + bku, k = 2, . . . , n. (3.6)

We have the following theorem

Theorem 3.2.1. The linear time-invariant system (3.6) is controllable if, and only if, for
all k ∈ {1, . . . , n}, bk 6= 0 and for all k1, k2 ∈ {1, . . . , n} such that k1 6= k2, |ωk1| 6= |ωk2|
(ω1 = 0).

Proof. The proof given here is not the simplest one (on can for example use the Kalman
criterion, see, e.g., [38]). Nevertheless, for any T > 0, it is constructive and provides
open-loop controls [0, T ] 3 t 7→ u(t) ∈ R, steering between the initial state

(=(δψ0
1), δψ0

2, . . . , δψ
0
n) = (=(δψ1), δψ2, . . . , δψn)t=0

to the final state

(=(δψT1 ), δψT2 , . . . , δψ
T
n ) = (=(δψ1), δψ2, . . . , δψn)t=T .

The construction of such feedforward controls is directly inspired from flatness based mo-
tion planing [60, 44].

If one of the bk’s is zero, then trivially the system is not controllable (the associated
dynamics for δψk is independent from the control u). Now, let us assume that all bk’s are
non-zero and set

x = −=(δψ1)

b1

, zk =
δψk
bk

k = 2, . . . , n.
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Then (3.6) reads
d

dt
x = u, i

d

dt
zk = ωkzk + u k = 2, . . . , n. (3.7)

If for some k1, k2 ∈ {1, . . . , n} with k1 < k2, ωk1 = ±ωk2 , then

• for k1 = 0, ωk2 = 0 and the variable ξ = izk2 − x satisfies d
dt
ξ = 0;

• for k1 > 0 and ωk1 = ωk2 , the variable ξ = zk1 − zk2 satisfies i d
dt
ξ = ωk1ξ;

• for k1 > 0 and ωk1 = −ωk2 ,the variable ξ = zk1 + z∗k2
satisfies i d

dt
ξ = ωk1ξ.

Thus in any of these 3 cases, |ξ| is independent of t and the system is not controllable. We
have proved that bk 6= 0 and |ωk1| 6= |ωk2 | are necessary controllability conditions.

Let us prove now that these conditions are sufficient. Denote by (x0, z0
1 , . . . , z

0
n) and

(xT , zT1 , . . . , z
T
n ) the initial and final states. The general solution of the under-determined

system (3.7) reads

u = d
dt

(
d2

dt2
+ ω2

2

)
. . .
(
d2

dt2
+ ω2

n

)
y

x =
(
d2

dt2
+ ω2

2

)
. . .
(
d2

dt2
+ ω2

n

)
y

z2 = − d
dt

(
d2

dt2
+ ω2

3

)
. . .
(
d2

dt2
+ ω2

n

) (
ω2y + i d

dt
y
)

...

zk = − d
dt

(
d2

dt2
+ ω2

2

)
. . .
(
d2

dt2
+ ω2

k−1

)(
d2

dt2
+ ω2

k+1

)
. . .
(
d2

dt2
+ ω2

n

) (
ωky + i d

dt
y
)

...

zn = − d
dt

(
d2

dt2
+ ω2

2

)
. . .
(
d2

dt2
+ ω2

n−1

) (
ωny + i d

dt
y
)

where t 7→ y(t) ∈ R is an arbitrary KC2n−1 function1. Since ω2
k1
6= ω2

k2
as soon as k1 6= k2,

the above linear relationship relying (x, z2, . . . , zn) to (y, dy
dt
, . . . , d2ny

dt2n−2 ) is invertible. Thus
y and all its derivative up to order 2n− 2 are also linear combinations of (x, z2, . . . , zn): y
is called the flat or Brunovsky output of (3.7). The initial and final states set the values
of y and its derivatives up to order 2n− 2 at t = 0 and t = T . For t ∈]0, T [, the values of y
and its derivatives are free, the only constraint being the fact that y is KC2n−1. Trivailly,
one can find many KC2n−1 functions y(t) with prescribed values of derivatives up to order
2n− 2 at t = 0 and t = T . Take for example a polynomial of degree 4n− 1 for y(t). Then
a (polynomial) control steering from the initial to the final states is given by

u = d
dt

(
d2

dt2
+ ω2

2

)
. . .
(
d2

dt2
+ ω2

n

)
y.

1A KCm function f is a function that is continuously differentiable up to order m− 1, its derivatives
of order m− 1, f (m−1], is piecewise differentiable and f (m) is piecewise continuous.
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Adaptations of the formula used in the proof to b1 = 0 are possible as shown by the
exercise below

Exercice 3.2.2. Take (3.6) with n = 3, b1 = 0, b2 = b3 = 1 and 0 < ω2 < ω3.

1. Assume that δψ2(t), δψ3(t) and u(t) are defined by

δψ2 = −
(
d2

dt2
+ ω2

3

) (
ω2y + i d

dt
y
)

δψ3 = −
(
d2

dt2
+ ω2

2

) (
ω3y + i d

dt
y
)

u =
(
d2

dt2
+ ω2

2

)(
d2

dt2
+ ω2

3

)
y

with y a KC4 time function. Prove that they automatically satisfy

i
d

dt
δψ2 = ω2δψ2 + u, i

d

dt
δψ3 = ω3δψ3 + u.

2. Express y and d2y
dt2

as linear combinations of <(δψ2) and <(δψ3),

3. Express dy
dt

and d3y
dt3

as linear combinations of =(δψ2) and =(δψ3).

4. Take T > 0 and an initial state (δψ2, δψ3)t=0 = α ∈ C2. Construct for any final state
(δψ2, δψ3)t=T = β ∈ C2 an open-loop steering control [0, T ] 3 t 7→ u(t) ∈ R (hint:
use for example a polynomial of degree 7 for y).

Exercice 3.2.3. Take T > 0, α, β ∈ Cn and consider the linearized system

i
d

dt
δψk = ωkδψk + bku, k = 1, . . . , n

1. Prove that it is controllable if, and only if, bk 6= 0 and |ωk1|2 6= |ωk2 |2 for k1 6= k2.

2. Prove that the problem

min
i d
dt
δψk = ωkδψk + bku, k ∈ {1, . . . , n}, t ∈ [0, T ]

(δψ1, . . . , δψn)t=0 = α, (δψ1, . . . , δψn)t=T = β
u ∈ L2([0, T ],R)

∫ T

0

u2(t)dt

admits a unique solution u(t) = uT,α,β(t) that admits the following resonant form:

uT,a,b(t) =
n∑
k=2

Ck(T, α, β) cos(ωkt) + Sk(T, α, β) sin(ωkt)

where Ck and Sk are smooth functions of their arguments.

3. Show that Ck and Sk admit the following asymptotic expansion for T large:

Ck + iSk =
βke

iωkT − αk
2ibkT

+ o( 1
T

).

Deduce that limT 7→+∞
∫ T

0
(uT,a,b(t))

2dt = 0.
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3.3 Resonant control, rotating wave approximation

3.3.1 Multi-frequency averaging

Let us consider the finite dimensional system (3.1) with only one control m = 1 and the
skew-Hermitian matrices Ak = −iHk, k = 0, 1. Assume that the single scalar control is of
small amplitude and admits an almost periodic time-dependence

u(t) = ε

(
r∑
j=1

uje
iωjt + u∗je

−iωjt

)
(3.8)

where ε > 0 is a small parameter, εuj is the constant complex amplitude associated to
the pulsation ωj ≥ 0 and r stands for the number of independent pulsations (ωj 6= ωk for
j 6= k). We are interested in approximations, for ε tending to 0+, of trajectories t 7→ |ψε〉t
of (3.1). Such approximations should be explicit and valid on time intervals of length O(1

ε
)

(first order approximation) or O( 1
ε2

) (second order approximation). The wave function |ψε〉
obeys the following linear time-varying differential equation

d

dt
|ψε〉 =

(
A0 + ε

(
r∑
j=1

uje
iωjt + u∗je

−iωjt

)
A1

)
|ψε〉 . (3.9)

Consider the following change of variables

|ψε〉t = eA0t |φε〉t (3.10)

where |ψε〉 is replaced by |φε〉. Through this change of variables, we put the system in the
so-called “interaction frame”:

d

dt
|φε〉 = εB(t) |φε〉 (3.11)

where B(t) is a skew-Hermitian operator whose time-dependence is almost periodic2:

B(t) =
r∑
j=1

uje
iωjte−A0tA1e

A0t + u∗je
−iωjte−A0tA1e

A0t.

More precisely each entry of B is a linear combination of oscillating terms of the form eiω
′t

with ω′ ≥ 0. This results from the spectral decomposition of A0 to compute eA0t. Thus
one can always decompose B(t) into a constant skew-Hermitian operator B̄ and the time

derivative of a bounded and almost periodic skew-Hermitian operator B̃(t) whose entries
are linear combinations of eiω

′t with ω′ > 0:

B(t) = B̄ +
d

dt
B̃(t). (3.12)

2An almost periodic time function f is equal by definition to F ($1t, . . . ,$pt) where the function F is
a 2π-periodic function of each of its p arguments and the $j ’s form a set of p different pulsations.
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Notice that we can always set B̃(t) = d
dt
C̃(t) where C̃ is also an almost periodic skew-

Hermitian operator. Then (3.11) reads d
dt
|φε〉 =

(
εB̄ + ε d

dt
B̃
)
|φε〉 and suggests the follow-

ing almost periodic change of variables

|χε〉 = (1− εB̃(t)) |φε〉 (3.13)

well defined for ε small enough and then close to identity. In the |χε〉 frame, the dynamics
reads

d

dt
|χε〉 = ε

(
B̄ − εB̃B̄ − εB̃ d

dt
B̃

)(
1− εB̃

)−1

|χε〉 .

Since B̃(t) is almost periodic and
(
1− εB̃

)−1

= 1+εB̃+O(ε2), the dynamics of |χε〉 reads

d

dt
|χε〉 =

(
εB̄ + ε2[B̄, B̃(t)]− ε2B̃(t)

d

dt
B̃(t) + ε3E(ε, t)

)
|χε〉

where the operator E(ε, t) is still almost periodic versus t but now its entries are no more

linear combinations of time exponentials. The operator B̃(t) d
dt
B̃(t) is an almost periodic

operator whose entries are linear combinations of oscillating time exponentials. Thus we
have

B̃(t)
d

dt
B̃(t) = D̄ +

d

dt
D̃(t)

where D̃(t) is almost periodic. With these notations we have

d

dt
|χε〉 =

(
εB̄ − ε2D̄ + ε2

d

dt

(
[B̄, C̃(t)]− D̃(t)

)
+ ε3E(ε, t)

)
|χε〉 (3.14)

where the skew-Hermitian operators B̄ and D̄ are constants and the other ones C̃, D̃, and
E are almost periodic.

The first order approximation of |φε〉 is given by the solution
∣∣φ1st

ε

〉
of

d

dt

∣∣∣φ1st

ε

〉
= εB̄

∣∣∣φ1st

ε

〉
(3.15)

where B̄ can be interpreted as the averaged value of B(t):

B̄ = lim
T 7→∞

1
T

∫ T

0

B(t) dt = lim
T 7→∞

1
T

∫ T

0

(
r∑
j=1

uje
iωjte−A0tA1e

A0t + u∗je
−iωjte−A0tA1e

A0t

)
dt.

Approximating B(t) by B̄ in (3.11) is called the Rotating Wave Approximation (RWA).
The second order approximation reads then

d

dt

∣∣∣φ2nd

ε

〉
= (εB̄ − ε2D̄)

∣∣∣φ2nd

ε

〉
. (3.16)
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In (3.15) and (3.16), the operators εB̄ and εB̄ − ε2D̄ are skew-Hermitian: these approxi-
mate dynamics remain of Schrödinger type and are thus characterized by the approximate
Hamiltonians

H̄1st

= iεB̄ and H̄2nd

= i(εB̄ − ε2D̄).

A precise justification of the rotating wave approximation is given by the following
lemma.

Lemma 3.3.1 (First order approximation). Consider the solution of (3.11) with initial
condition |φε〉0 = |φa〉 and denote by

∣∣φ1st

ε

〉
the solution of (3.15) with the same initial

condition,
∣∣φ1st

ε

〉
0

= |φa〉. Then, there exist M > 0 and η > 0 such that for all ε ∈]0, η[ we
have

max
t∈
[
0,

1
ε

]
∥∥∥|φε〉t − ∣∣∣φ1st

ε

〉
t

∥∥∥ ≤Mε

Proof. Denote by |χε〉 the solution of (3.14) with |χε〉0 = (1 − εB̃(0)) |φa〉. According
to (3.13), there exist M1 > 0 and η1 > 0, such that for all ε ∈]0, η1] and t > 0 we have
‖|χε〉t − |φε〉t‖ ≤ M1ε. But (3.14) admits the following form d

dt
|χε〉 =

(
εB̄ + ε2F (t)

)
|χε〉

where the operator F (t) is uniformly bounded versus t. Thus, exist M2 > 0 and η2 > 0

such that the solution
∣∣ϕ1st

ε

〉
of (3.16) with initial condition (1 − εB̃(0)) |φa〉 satisfies, for

all ε ∈]0, η2],

max
t∈
[
0,

1
ε

]
∥∥∥∣∣∣ϕ1st

ε

〉
t
− |χε〉t

∥∥∥ ≤M2ε.

The propagator of (3.15) is unitary and thus∥∥∥∣∣∣ϕ1st

ε

〉
t
−
∣∣∣φ1st

ε

〉
t

∥∥∥ =
∥∥∥∣∣∣ϕ1st

ε

〉
0
−
∣∣∣φ1st

ε

〉
0

∥∥∥ = ε
∥∥∥B̃(0) |φa〉

∥∥∥ .
We conclude with the triangular inequality∥∥∥|φε〉t − ∣∣∣φ1st

ε

〉
t

∥∥∥ ≤ ‖|φε〉t − |χε〉t‖+
∥∥∥|χε〉t − ∣∣∣ϕ1st

ε

〉
t

∥∥∥+
∥∥∥∣∣∣ϕ1st

ε

〉
t
−
∣∣∣φ1st

ε

〉
t

∥∥∥ .

The following lemma underlies the second order approximation:

Lemma 3.3.2 (Second order approximation). Consider the solution of (3.11) with initial

condition |φε〉0 = |φa〉 and denote by
∣∣∣φ2nd

ε

〉
the solution of (3.16) with the same initial

condition,
∣∣∣φ2nd

ε

〉
0

= |φa〉. Then, there exist M > 0 and η > 0 such that for all ε ∈]0, η[ we

have

max
t∈
[
0,

1
ε2

]
∥∥∥|φε〉 − ∣∣∣φ2nd

ε

〉∥∥∥2

≤Mε
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Proof. As for the proof of lemma 3.3.1, we introduce |χε〉,
∣∣∣ϕ2nd

ε

〉
solution of (3.16) starting

from
∣∣∣ϕ2nd

ε

〉
0

= (1− εB̃(0)) |φa〉. Using similar arguments, it is then enough to prove that

exit M3, η3 > 0 such that, for all ε ∈]0, η3[, max
t∈
[
0,

1
ε

] ∥∥∥∣∣∣ϕ2nd

ε

〉
t
− |χε〉t

∥∥∥ ≤ M3ε. This

estimate is a direct consequence of the almost periodic change of variables

|ξε〉 =
(
1− ε2

(
[B̄, C̃(t)]− D̃(t)

))
|χε〉

that transforms (3.14) into

d

dt
|ξε〉 =

(
εB̄ − ε2D̄ + ε3F (ε, t)

)
|ξε〉

where F is almost periodic. This cancels the oscillating operator ε2 d
dt

(
[B̄, C̃(t)]− D̃(t)

)
appearing in (3.14): the equation satisfied by |ξε〉 and the second order approximation (3.16)
differ only by third order almost periodic operator ε3F (ε, t).

Exercice 3.3.3. The goal is to prove that, even if the amplitudes uj are slowly varying,
i.e., uj = uj(εt) where τ 7→ uj(τ) is continuously differentiable, the first and second order
approximations remain valid. We have then two time-dependancies for

B(t, τ) =
r∑
j=1

uj(τ)eiωjte−A0tA1e
A0t + u∗j(τ)e−iωjte−A0tA1e

A0t

with τ = εt. Then d
dt
B = ∂B

∂t
+ ε∂B

∂τ
.

1. Extend the decomposition (3.12) to

B(t, τ) = B̄(τ) +
∂B̃

∂t
(t, τ)

where B̃(t, τ) is t-almost periodic with zero mean in t (τ is fixed here).

2. Show that the approximation lemma 3.3.1 is still valid where (3.15) is replaced by

d

dt

∣∣∣φ1st

ε

〉
= εB̄(εt)

∣∣∣φ1st

ε

〉
3. Show that the approximation lemma 3.3.2 is still valid where (3.16) is replaced by

d

dt

∣∣∣φ2nd

ε

〉
= (εB̄(εt)− ε2D̄(εt))

∣∣∣φ2nd

ε

〉
and where B̃(t, τ)∂B̃

∂t
(t, τ) = D̄(τ)+ ∂D̃

∂t
(t, τ) with D̃(t, τ) almost periodic versus t and

with zero t-mean.

4. Extend the above approximation lemma when τ 7→ uj(τ) is piecewise continuous and,
on each interval where it remains continuous, it is also continuously differentiable
(τ 7→ uj(τ) is made by the concatenation of continuously differentiable functions).
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3.3.2 The approximation recipes

Such first order and second order approximations extend without any difficulties to the
case of m scalar oscillating controls in (3.1). They can be summarized as follows (without
introducing the small parameter ε and the skew-Hermitian operators Ak). Consider the
controlled Hamiltonian associated to |ψ〉

H = H0 +
m∑
k=1

ukHk (3.17)

with m oscillating real controls

uk(t) =
r∑
j=1

uk,je
ωjt + u∗k,je

−ωjt

where uk,j is the slowly varying complex amplitude associated to control number k and
pulsation ωj. In the sequel, all the computations are done assuming uk,j constant. Nev-
ertheless, the obtained approximate Hamiltionians given in (3.19) are also valid for slowly
time-varying amplitudes.3

The interaction Hamiltonian

Hint(t) =
∑
k,j

(
uk,je

ωjt + u∗k,je
−ωjt

)
eiH0tHke

−iH0t (3.18)

is associated to the interaction frame via the unitary transformation |φ〉 = eiH0t |ψ〉. It
admits the decomposition

Hint(t) = H1st

rwa +
d

dt
Iosc(t)

where H1st

rwa is the averaged Hamiltonian corresponding to the non-oscillating part of Hint

(secular part) and Iosc is the time integral of the oscillating part. Iosc is an almost periodic
Hermitian operator whose entries are linear combinations of oscillating time-exponentials.
The Rotating Wave Approximation consists in approximating the time-varying Hamilto-
nian Hint(t) by H1st

rwa. This approximation is valid when the amplitudes uk,j are small. It is
of first order. The second order approximation is then obtained by adding to H1st

rwa a second
order correction made by the averaged part Jrwa of the almost periodic Hamiltonian

i

(
d

dt
Iosc(t)

)
Iosc(t) = Jrwa +

d

dt
Josc(t)

with Josc almost periodic. Notice Jrwa is also Hermitian since d
dt
I2

osc = d
dt
IoscIosc + Iosc

d
dt
Iosc.

We can summarize these approximations as the following recipes:

H1st

rwa = Hint, H2nd

rwa = H1st

rwa − i
(
Hint −Hint

)(∫
t

(Hint −Hint)

)
(3.19)

where the over-line means taking the average.

3More precisely and according to exercise 3.3.3, we can assume that each uk,j is of small magnitude,
admits a finite number of discontinuities and, between two successive discontinuities, is a slowly time
varying function that is continuously differentiable.
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3.3.3 2-level systems and Rabi oscillations

Let us consider the controlled 2-level system described by (2.1):

i
d

dt
|ψ〉 =

(
ωeg
2
σz + u(t)

2
σx

)
|ψ〉

and assume that u(t) = ueiωrt+u∗e−iωrt with the complex amplitude u such that |u| � ωeg
and with pulsation ωr close to ωeg, i.e., |ωeg − ωr| � ωeg. Denote by ∆r = ωeg − ωr the
detuning between the control and the system then we get the standard form (3.17) with

m = 2, H0 = ωr
2
σz, u1H1 = ∆r

2
σz and u2H2 = ueiωrt+u∗e−iωrt

2
σx with ‖H0‖ much larger

than ‖u1H1 +u2H2‖. A direct computation yields to the following interaction Hamiltonian
defined by (3.18):

Hint =
∆r

2
σz + ueiωrt+u∗e−iωrt

2
e
iωrt

2
σzσxe

− iωrt
2
σz .

With the identities eiθσz = cos θ + i sin θσz and σzσx = iσy we get the formula

eiθσzσxe
−iθσzσx = e2iθσ+ + e−2iθσ−

where σ+ = |e〉 〈g| = σx+iσy
2

and σ− = |g〉 〈e| = σx−iσy
2

. Thus we have

Hint = ∆r

2
σz + ue2iωrt+u∗

2
σ+ + u∗e−2iωrt+u

2
σ−

The decomposition of Hint = H1st

rwa + d
dt
Iosc reads:

Hint = ∆r

2
σz + u∗

2
σ+ + u

2
σ−︸ ︷︷ ︸

H1st
rwa

+ ue2iωrt

2
σ+ + u∗e−2iωrt

2
σ−︸ ︷︷ ︸

d
dt
Iosc

.

Thus the first order approximation of any solution |ψ〉 of

i
d

dt
|ψ〉 =

(
ωr+∆r

2
σz + ueiωrt+u∗e−iωrt

2
σx

)
|ψ〉

is given by e−i
ωrt
2
σz |φ〉 where |φ〉 is solution of the linear time-invariant equation

i
d

dt
|φ〉 =

(
∆r

2
σz + u∗

2
σ+ + u

2
σ−
)
|φ〉 , |φ〉0 = |ψ〉0 . (3.20)

According to (3.19) the second order approximation requires the computation of the

secular term in Iosc
d
dt
Iosc. Since Iosc = ue2iωrt

4iωr
σ+ − u∗e−2iωrt

4iωr
σ−, we have

Iosc

d

dt
Iosc = |u|2

8iωr
σz

where we have also applied σ2
+ = σ2

− = 0 and σz = σ+σ− − σ−σ+. The second order
approximation resulting from (3.19) reads:

i
d

dt
|φ〉 =

((
∆r

2
+ |u|2

8ωr

)
σz + u∗

2
σ+ + u

2
σ−

)
|φ〉 , |φ〉0 = |ψ〉0 . (3.21)
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We observe that (3.20) and (3.21) differ only by a correction of |u|
2

4ωr
added to the detuning

∆r. This correction is called the Bloch-Siegert shift.

Set u = Ωre
iθ and ∆′r = ∆r + Ω2

r

4ωr
with Ωr > 0 and θ real and constant. Then((

∆r

2
+ |u|2

8ωr

)
σz + u∗

2
σ+ + u

2
σ−

)
=

Ωr

2
(cos θσx + sin θσy) +

∆′r
2
σz. (3.22)

Set

Ω′r =

√(
∆r + Ω2

r

4ωr

)2

+ Ω2
r, σr =

Ωr (cos θσx + sin θσy) + ∆′rσz
Ω′r

.

Then σ2
r = 1 and thus the solution of (3.21),

|φ〉t = e−i
Ω′rt

2
σr |φ〉0 = cos

(
Ω′rt
2

)
|φ〉0 − i sin

(
Ω′rt
2

)
σr |φ〉0 ,

oscillates between |φ〉0 and −iσr |φ〉0 with the Rabi pulsation Ω′r
2

.
For ∆r = 0 and neglecting second order terms in Ωr, we have Ω′r ≈ Ωr, ∆′r ≈ 0 and

σr ≈ cos θσx + sin θσy. When |φ〉0 = |g〉 we see that, up-to second order terms, |φ〉t
oscillates between |g〉 and e−i(θ+

π
2

) |e〉. With θ = −π
2
, we have

|χ〉t = cos
(

Ωrt
2

)
|g〉+ sin

(
Ωrt
2

)
|e〉 ,

and we see that, with a constant amplitude u = Ωre
iη for t ∈ [0, T ], we have the following

transition, depending on the pulse-length T > 0:

• if ΩrT = π then |φ〉T = |e〉 and we have a transition between the ground state to the
excited one, together with stimulated absorption of a photon of energy ωeg. If we
measure the energy in the final state we always find Ee. This is a π-pulse in reference
to the Bloch sphere interpretation of (3.21) (see sub-section 2.1.2).

• if ΩrT = π
2

then |φ〉T = (|g〉+ |e〉)/
√

2 and the final state is a coherent superposition
of |g〉 and |e〉. A measure of the energy of the final state yields either Eg or Ee with
a probability of 1/2 for both Eg and Ee. This is a π

2
-pulse.

Since |ψ〉 = e−
iωrt

2
σz |φ〉, we see that a π-pulse transfers |ψ〉 from |g〉 at t = 0 to eiα |e〉

at t = T = π
Ωr

where the phase α ≈ ωr
Ωr
π is very large since Ωr � ωr. Similarly, a π

2
-

pulse, transfers |ψ〉 from |g〉 at t = 0 to e−iα|g〉+eiα|e〉√
2

at t = T = π
2Ωr

with a very large
relative half-phase α ≈ ωr

2Ωr
π. Thus, this kind of pulses is well adapted when the initial

state, |ψ〉0, and final state, |ψ〉T , are characterized by |〈ψ|g〉|2 and |〈ψ|e〉|2 where these
large phases disappear. One speak then of populations since |〈ψ|g〉|2 (resp. |〈ψ|e〉|2) is
the probability to find Eg (resp. Ee) when we measure the energy of the isolated system
H0 = Eg |g〉 〈g|+ Ee |e〉 〈e|.

Exercice 3.3.4. Take the first order approximation (3.20) with ∆r = 0 and u ∈ C as
control.



3.3. RESONANT CONTROL, ROTATING WAVE APPROXIMATION 47

g

e

f

Figure 3.1: Raman transition for a Λ-level system (δr < 0 and ∆r > 0 on the figure).

1. Set Θr = Ωr
2
T . Show that the solution at T of the propagator Ut ∈ SU(2), i d

dt
U =

Ωr(cos θσx+sin θσy)

2
U , U0 = 1 is given by

UT = cos Θr1− i sin Θr (cos θσx + sin θσy) ,

2. Take a wave function
∣∣φ̄〉. Show that exist Ωr and θ such that UT |g〉 = eiα

∣∣φ̄〉, where
α is some global phase.

3. Prove that for any given two wave functions |φa〉 and |φb〉 exists a piece-wise constant
control [0, 2T ] 3 t 7→ u(t) ∈ C such that the solution of (3.20) with |φ〉0 = |φa〉 and
∆r = 0 satisfies |φ〉T = eiβ |ψb〉 for some global phase β.

4. Generalize the above question when |φ〉 obeys the second order approximation (3.21)
with ∆r as additional control.

3.3.4 Λ-systems and Raman transition

This transition strategy is used for Λ-systems (see section 2.5) where the additional sate
|f〉 admits an energy Ef much greater than Eg and Ee. However, we will see that the
averaged Hamiltonian is very similar to the one describing Rabi oscillations and the state
|f〉 can be ignored. The transition from |g〉 to |e〉 is no more performed via a quasi-resonant
control with a single frequency close to ωeg = Ee − Eg, but with a control based on two
frequencies ωrg and ωre, in a neighborhood of ωfg = Ef − Eg and ωfe = Ef − Ee, with
ωrg−ωre close to ωeg. Such transitions result from a nonlinear phenomena and second order
perturbations. The main practical advantage comes from the fact that ωre and ωrg are in
many examples optical frequencies (around 1015 rad/s) whereas ωeg is a radio frequency
(around 1010 rad/s). The wave length of the laser generating u is around 1 µm and thus
spacial resolution is much better with optical waves than with radio-frequency ones.
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Take the 3-level system (|g〉, |e〉 and |f〉 of energy Eg, Ee and Ef ) of figure 3.1. The
atomic pulsations are denoted as follows:

ωfg = Ef − Eg, ωfe = Ef − Ee, ωeg = Ee − Eg.

We assume a Hamiltonian of the form

H = Eg |g〉 〈g|+ Ee |e〉 〈e|+ Ef |f〉 〈f |+ u
2

(
µg(|g〉 〈f |+ |f〉 〈g|) + µe(|e〉 〈f |+ |f〉 〈e|)

)
where µg and µe are coupling coefficients with the electromagnetic field described by u(t),
a quasi-resonant control defined by the constant complex amplitudes ug and ue,

u = uge
iωrgt + u∗ge

−iωrgt + uee
iωret + u∗ee

−iωret

and where the pulsation ωrg and ωre are close to ωfg and ωfe. According to Figure 3.1 set

ωfg = ωrg + ∆r − δr
2
, ωfe = ωre + ∆r + δr

2
,

and assume that

(max(|µg|, |µe|) max(|ug|, |ue|)) and |δr|
� min (ωrg, ωre, ωfg, ωfe, |∆r|, |ωre − ωrg + ∆r|, |ωre − ωrg −∆r|) .

In the interaction frame (passage from |ψ〉 where i d
dt
|ψ〉 = H(t) |ψ〉 to |φ〉),

|ψ〉 =
(
e−i(Eg+ δr

2 )t |g〉 〈g|+ e−i(Ee−
δr
2 )t |e〉 〈e|+ e−iEf t |f〉 〈f |

)
|φ〉

the Hamiltonian becomes (i d
dt
|φ〉 = Hint(t) |φ〉):

Hint = δr
2

(|e〉 〈e| − |g〉 〈g|)
+ µg

(
uge

iωrgt + uee
iωret + u∗ge

−iωrgt + u∗ee
−iωret

) (
ei(ωrg+∆r)t |g〉 〈f |+ e−i(ωrg+∆r)t |f〉 〈g|

)
+ µe

(
uge

iωrgt + uee
iωret + u∗ge

−iωrgt + u∗ee
−iωret

) (
ei(ωre+∆r)t |e〉 〈f |+ e−i(ωre+∆r)t |f〉 〈e|

)
.

It is clear from (3.19), that H1st

rwa = δr
2

(|e〉 〈e| − |g〉 〈g|) and thus second order terms should

be considered and H2nd

rwa has to be computed for a meaning full approximation. Simple but
tedious computations show that

∫
(Hint −H1st

rwa) (the time primitive of zero mean) is given
by

µg
2

(
uge

i(2ωrg+∆r)t

i(2ωrg+∆r)
+ uee

i(ωrg+ωre+∆r)t

i(ωrg+ωre+∆r)
+

u∗ge
i∆rt

i∆r
+ u∗ee

i(ωrg−ωre+∆r)t

i(ωrg−ωre+∆r)

)
|g〉 〈f |

+ µe
2

(
uge

i(ωrg+ωre+∆r)t

i(ωrg+ωre+∆r)
+ ueei(2ωre+∆r)t

i(2ωre+∆r)
+

u∗ge
i(ωre−ωrg+∆r)t

i(ωre−ωrg+∆r)
+ u∗ee

i∆rt

i∆r

)
|e〉 〈f |

− µg
2

(
u∗ge
−i(2ωrg+∆r)t

i(2ωrg+∆r)
+ u∗ee

−i(ωrg+ωre+∆r)t

i(ωrg+ωre+∆r)
+ uge−i∆rt

i∆r
+ uee

−i(ωrg−ωre+∆r)t

i(ωrg−ωre+∆r)

)
|f〉 〈g|

− µe
2

(
u∗ge
−i(ωrg+ωre+∆r)t

i(ωrg+ωre+∆r)
+ u∗ee

−i(2ωre+∆r)t

i(2ωre+∆r)
+ uge

−i(ωre−ωrg+∆r)t

i(ωre−ωrg+∆r)
+ uee−i∆rt

i∆r

)
|f〉 〈e| .
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The non oscillating terms of i
(∫

t

(
Hint −H1st

rwa

)) (
Hint −H1st

rwa

)
are then given by simple but

tedious computations:

H2nd

rwa = µgµe
4

(
1

ωrg+ωre+∆r
+ 1

∆r

) (
u∗gue |g〉 〈e|+ ugu

∗
e |e〉 〈g|

)
+ δr

2
(|e〉 〈e| − |g〉 〈g|)

+
µ2
g

4

(
|ug |2

2ωrg+∆r
+ |ug |2

∆r
+ |ue|2

ωrg−ωre+∆r

)
|g〉 〈g|+ µ2

e

4

(
|ue|2

2ωre+∆r
+ |ue|2

∆r
+ |ug |2

ωre−ωrg+∆r

)
|e〉 〈e|

−1
4

(
µ2
g |ug |2

2ωrg+∆r
+ µ2

e|ue|2
2ωre+∆r

+
µ2
g |ug |2+µ2

e|ue|2

ωrg+ωre+∆r
+

µ2
g |ug |2+µ2

e|ue|2

∆r
+

µ2
g |ug |2

ωre−ωrg+∆r
+ µ2

e|ue|2
ωrg−ωre+∆r

)
|f〉 〈f | .

(3.23)

This expression simplfies if we assume additionnally that

|∆r|, |ωre − ωrg + ∆r|, |ωre − ωrg −∆r| � ωrg, ωre, ωfg, ωfe.

With these additional assumptions we have 3 time-scales:

1. The slow one associated to δr, µg|ug|, µg|ue|, µe|ug| and µe|ue|

2. The intermediate one attached to ∆r, |ωre − ωrg + ∆r| and |ωre − ωrg −∆r|

3. The fast one related to ωrg, ωre, ωfg and ωfe.

We have then the following approximation of the average Hamiltonian

H2nd

rwa ≈
µgµeu∗gue

4∆r
|g〉 〈e|+ µgµeugu∗e

4∆r
|e〉 〈g|+ δr

2
(|e〉 〈e| − |g〉 〈g|)

+
µ2
g

4

(
|ug |2
∆r

+ |ue|2
ωrg−ωre+∆r

)
|g〉 〈g|+ µ2

e

4

(
|ue|2
∆r

+ |ug |2
ωre−ωrg+∆r

)
|e〉 〈e|

− 1
4

(
µ2
g |ug |2+µ2

e|ue|2

∆r
+

µ2
g |ug |2

ωre−ωrg+∆r
+ µ2

e|ue|2
ωrg−ωre+∆r

)
|f〉 〈f | .

If 〈φ|f〉0 = 0 then 〈φ|f〉t = 0 up to third order terms: the space span{|g〉 , |e〉} and

span{|f〉} are invariant space of H2nd

rwa . Thus, if the initial state belongs to span{|g〉 , |e〉}, we
can forget the |f〉 〈f | term in H2nd

rwa (restriction of the dynamics to this invariant sub-space)
and we get a 2-level Hamiltonian, called Raman Hamiltonian, that lives on span{|g〉 , |e〉}:

HRaman =
µgµeu∗gue

4∆r
|g〉 〈e|+ µgµeugu∗e

4∆r
|e〉 〈g|+ δr

2
(|e〉 〈e| − |g〉 〈g|)

+
µ2
g

4

(
|ug |2
∆r

+ |ue|2
ωrg−ωre+∆r

)
|g〉 〈g|+ µ2

e

4

(
|ue|2
∆r

+ |ug |2
ωre−ωrg+∆r

)
|e〉 〈e| . (3.24)

that is similar (up to a global phase shift) to the average Hamiltonian underlying Rabi
oscillations (3.22) with

∆′r = δr + µ2
e

4

(
|ue|2
∆r

+ |ug |2
ωre−ωrg+∆r

)
− µ2

g

4

(
|ug |2
∆r

+ |ue|2
ωrg−ωre+∆r

)
Ωre

iθ =
µgµeu∗gue

2∆r
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During such Raman pulses, the intermediate state |f〉 remains almost empty (i.e.
〈ψ|f〉 ≈ 0) and thus, as physicists say, the life time of |f〉 does not require to be long.
This point should be studied in more details: in parallel to the three existing time-scales,
we have to consider Γ, the inverse of the life time of |f〉; it seems, but we do not find any
precise justification, that, if Γ and ∆r are of same magnitude order, the approximations
remain valid and there is no need to consider the instability of |f〉. This could also be true
even if |∆r| � Γ� ωfg, ωfe.

To tackle such questions, one has to consider non-conservative dynamics for |ψ〉 and
to take into account decoherence effects due to the coupling of |f〉 with the environment,
coupling leading to a finite life-time. The incorporation into the |ψ〉-dynamics of such
irreversible effects, is analogue to the incorporation of friction and viscous effects in classical
Hamiltonian dynamics. In the second part we presents such models to described open
quantum systems (see also chapter 4 of [33] for a tutorial exposure and [17, 4] for more
mathematical presentations).

3.3.5 Jaynes-Cummings model

Consider the Jaynes-Cummings Hamiltonian defined in (2.12) that governes the dynamics
of |ψ〉,

i
d

dt
|ψ〉 =

(
ωeg
2
σz + ωc

(
a†a+ 1

2

)
+ u(a+ a†) + iΩ

2
σx(a

† − a)
)
|ψ〉 .

Assume that u(t) = ueiωrt + u∗e−iωrt where the complex amplitude u is constant. Define
the following detunings

∆c = ωc − ωr, ∆eg = ωeg − ωr
and assume that

|∆c|, |∆eg|, |Ω|, |u| � ωeg, ωc, ωr.

Then HJC = H0 + εH1 where ε is a small parameter and

H0 = ωr
2
σz + ωr

(
a†a+ 1

2

)
εH1 =

(
∆eg

2
σz + ∆c

(
a†a+ 1

2

)
+ (ueiωrt + u∗e−iωrt)(a+ a†) + iΩ

2
σx(a

† − a)
)
.

Even if we the system is infinite dimensional, we apply here heuristically the rotating wave
approximation summarized in Subsection 3.3.2. First we have to compute the Hamiltonian
in the interaction frame via the following change of variables |ψ〉 7→ |φ〉:

|ψ〉 = e−iωrt(a
†a+ 1

2)e
−iωrt

2
σz |φ〉

We get the following interaction Hamiltonian (σ+ = |e〉 〈g|, σ− = |g〉 〈e|)

Hint = ∆eg

2
σz + ∆c

(
a†a+ 1

2

)
+
(
ueiωrt + u∗e−iωrt

)
(e−iωrta+ eiωrta†)

+ iΩ
2
(e−iωrtσ− + eiωrtσ+)(eiωrta† − e−iωrta)
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where we have applied the following identities (see sections 2.1.1 and 2.2):

e
iθ
2
σz σxe

− iθ
2
σz = e−iθσ− + eiθtσ+, eiθ(a

†a+ 1
2) a e−iθ(a

†a+ 1
2) = e−iθa

The secular part of Hint is given by

H1st

rwa = ∆eg

2
σz + ∆c

(
a†a+ 1

2

)
+ ua+ u∗a† + iΩ

2
(σ−a

† − σ+a) (3.25)

and its oscillating part by

Hint −H1st

rwa = ue2iωrta† + u∗e−2iωrta+ iΩ
2
(e2iωrtσ+a

† − e−2iωrtσ−a).

Then we have∫
t

(Hint −H1st

rwa) = 1
2iωr

(
ue2iωrta† − u∗e−2iωrta+ iΩ

2
(e2iωrtσ+a

† + e−2iωrtσ−a)
)

and, following (3.19), the second order approximation reads

H2nd

rwa =
∆eg+

Ω2

8ωr
2

σz + ∆c

(
a†a+ 1

2

)
+ ua+ u∗a† + iΩ

2
(σ−a

† − σ+a)

+ i Ω
4ωr

(uσ− − u∗σ+) + Ω2

8ωr
σza

†a− Ω2

16ωr
− |u|2

2ωr
(3.26)

(use [a, a†] = 1, σ+σ− = |e〉 〈e| and σ−σ+ = |g〉 〈g|).
Consider now that the average Hamiltonian H1st

rwa defined by (3.25) with u ∈ C as
control. It splits into H0 + v1H1 + v2H2 where u = 1

2
(v1 + iv2) with v1, v2 ∈ R and

H0 = ∆eq

2
σz+∆c(X

2+P 2)−Ω

2
(Xσy+Pσx), H1 = a+a†

2
= X, H2 = a−a†

2i
= P. (3.27)

With the commutation rules for the Pauli matrices σx,y,z and the Heisenberg commutation
relation [X,P ] = i

2
, the Lie algebra spanned by iH0, iH1 and iH2 is of infinite dimension.

Thus, it is natural to wish, according to a heuristic use of Theorem 3.1.9, that this system is
controllable. To fix the problem, it is useful to translate it into the partial differential equa-
tions language where powerful tools exist for studying linear and nonlinear controllability
(see, e.g., the recent book [25]). The controlled system i d

dt
|φ〉 = (H0+v1H1+v2H2) |φ〉 reads

as a system of two partial differential equations affine in the two scalar controls u1 =
√

2v1

and u2 =
√

2v2. The quantum state |φ〉 is described by two elements of L2(R,C), φg and
φe, whose time evolution is given by

i
∂φg
∂t

= −∆c

2

∂2φg
∂x2

+

(
∆cx

2 −∆eg

2

)
φg +

(
u1x+ iu2

∂

∂x

)
φg − i Ω

2
√

2

(
x+

∂

∂x

)
φe

i
∂φe
∂t

= −∆c

2

∂2φe
∂x2

+

(
∆cx

2 + ∆eg

2

)
φe +

(
u1x+ iu2

∂

∂x

)
φe − i Ω

2
√

2

(
x+

∂

∂x

)
φg

(3.28)

since X stands for x√
2

and P for − i√
2
∂
∂x

. An open question is the controllability on the set

of functions (φg, φe) defined up to a global phase and such that ‖φg‖L2 + ‖φe‖L2 = 1. In a
first step, one can take ∆c = 0 (which is not a limitation in fact) and ∆eg = 0 (which is a
strict sub-case).
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Exercice 3.3.5. Consider i d
dt
|ψ〉 = H0 +v1H1 +v2H1 with H0, H1 and H2 given by (3.27)

with ∆eg = ∆c = 0, Ω > 0 and (v1, v2) as control. The system is therefore given by

i
d

dt
|ψ〉 =

(
iΩ

2
(σ−a

† − σ+a) + ua† + u∗a
)
|ψ〉

with u = v1+iv2

2
.

1. Set v ∈ C solution of d
dt

v = −iu and consider the following change of frame |φ〉 =

D−v |ψ〉 with the displacement operator D−v = e−va
†+v∗a. Show that, up to a global

phase change, we have

i
d

dt
|φ〉 =

(
iΩ
2

(
σ−a

† − σ+a) + (ũσ+ + ũ∗σ−)
)
|φ〉

with ũ = iΩ
2
v.

2. Take the orthonormal basis {|g, n〉 , |e, n〉} with n ∈ N being the photon number
and where for instance |g, n〉 stands for the tensor product |g〉 ⊗ |n〉. Set |φ〉 =∑

n φg,n |g, n〉+φe,n |e, n〉 with φg,n, φe,n ∈ C depending on t and
∑

n |φg,n|2 + |φe,n|2 =
1. Show that, for n ≥ 0

i
d

dt
φg,n+1 = i

Ω

2

√
n+ 1φe,n + ũ∗φe,n+1, i

d

dt
φe,n = −iΩ

2

√
n+ 1φg,n+1 + ũφg,n

and i d
dt
φg,0 = ũ∗φe,0.

3. Assume that |φ〉0 = |g, 0〉. Construct an open-loop control [0, T ] 3 t 7→ ũ(t) such that
|φ〉T = |g, 1〉 (hint: take u = ūδ(t) and adjust the constants ū and T > 0, δ(t) Dirac
distribution at 0).

4. Generalize the above open-loop control when the goal state |φ〉T is |g, n〉 with any
arbitrary photon number n.

3.3.6 A single trapped ion and the Law-Eberly method

It is a composite system with a quantum state similar to the previous subsection: |ψ〉
belongs to C2 ⊗ L2(R,C) and the Hamiltonian reads

ω
(
a†a+ 1

2

)
+
ωeg
2
σz +

(
uei(ωlt−η(a+a†)) + u∗e−i(ωlt−η(a+a†))

)
σx

where η is called the Lamb-Dicke parameter and is of small magnitude in general. Fur-
thermore, the control is an electromagnetic wave of complex amplitude u and with a phase
ωl(t − x/c) depending on the spatial coordinate x. Such x-dependence ensures the im-
pulsion conservation: when the ion absorbs a photon, its energy changes (increase of ~ωl)
but also its impulsion captures the photon impulsion ~k = ~ωl

c
. Such impulsion exchanges



3.3. RESONANT CONTROL, ROTATING WAVE APPROXIMATION 53

excite the vibration mode inside the trap described here as a simple harmonic oscillator.
The ion vibration are quantized, each quantum being called a phonon. The scales are as
follows:

|ωl − ωeg| � ωeg, ω � ωeg, |u| � ωeg,

∣∣∣∣ ddtu
∣∣∣∣� ωeg|u|.

In the ”laser frame”, |ψ〉 = e−
iωlt

2
σz |φ〉, the Hamiltonian becomes:

ω
(
a†a+ 1

2

)
+
ωeg − ωl

2
σz +

(
ue2iωlte−iη(a+a†) + u∗eiη(a+a†)

)
|e〉 〈g|

+
(
ue−iη(a+a†) + u∗e−2iωlteiη(a+a†)

)
|g〉 〈e|

Even if the system is infinite dimensional, we apply here heuristically the rotating wave
approximation summarized in subsection 3.3.2. This just consists in neglecting highly
oscillating terms due to e±2iωlt . It yields the following average Hamiltonian (corresponding
to the first order approximation H1st

rwa defined in (3.19))

H1st

rwa = ω
(
a†a+ 1

2

)
+ ∆

2
σz + ue−iη(a+a†) |g〉 〈e|+ u∗eiη(a+a†) |e〉 〈g| (3.29)

with ∆ = ωeg − ωl the laser/atom detuning. The Schrödinger equation i d
dt
|ψ〉 = H1st

rwa |ψ〉
is a partial differential system on the two components (ψg, ψe):

i
∂ψg
∂t

= ω
2

(
x2 − ∂2

∂x2

)
ψg − ∆

2
ψg + ue−i

√
2ηxψe

i
∂ψe
∂t

= u∗ei
√

2ηxψg + ω
2

(
x2 − ∂2

∂x2

)
ψe + ∆

2
ψe.

(3.30)

Here u ∈ C is the control input. In [30] this system is proved to be approximately con-
trollable for (ψg, ψe) on the unit sphere of (L2)2. The proof proposed in [30] relies on the
Law-Eberly proof of spectral controllability for a secular approximation when u is a su-
perposition of three mono-chromatic plane waves: pulsation ωeg (ion electronic transition)
and amplitude u; pulsation ωeg − ω (red shift by a vibration quantum) and amplitude ur;
pulsation ωeg + ω (blue shift by a vibration quantum) and amplitude ub.

With this control, the Hamiltonian reads

H =ω
(
a†a+ 1

2

)
+
ωeg
2
σz +

(
uei(ωegt−η(a+a†)) + u∗e−i(ωegt−η(a+a†))

)
σx

+
(
ube

i((ωeg+ω)t−ηb(a+a†)) + u∗be
−i((ωeg+ω)t−ηb(a+a†))

)
σx

+
(
ure

i((ωeg−ω)t−ηr(a+a†)) + u∗re
−i((ωeg−ω)t−ηr(a+a†))

)
σx.

We still have ω � ωeg. The Lamb-Dicke parameters |η|, |ηb|, |ηr| � 1 are almost identical.
The amplitudes vary very slowly:∣∣∣∣ ddtu

∣∣∣∣� ω|u|,
∣∣∣∣ ddtur

∣∣∣∣� ω|ur|,
∣∣∣∣ ddtub

∣∣∣∣� ω|ub|.
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In the interaction frame, |ψ〉 is replaced by |φ〉 according to

|ψ〉 = e−iωt(a
†a+ 1

2)e
−iωegt

2
σz |φ〉 .

The Hamiltonian becomes

eiωt(a
†a)
(
ueiωegte−iη(a+a†) + u∗e−iωegteiη(a+a†)

)
e−iωt(a

†a) (eiωegt |e〉 〈g|+ e−iωegt |g〉 〈e|
)

+ eiωt(a
†a)
(
ube

i(ωeg+ω)te−iηb(a+a†) + u∗be
−i(ωeg+ω)teiηb(a+a†)

)
e−iωt(a

†a) (eiωegt |e〉 〈g|+ e−iωegt |g〉 〈e|
)

+ eiωt(a
†a)
(
ure

i(ωeg−ω)te−iηr(a+a†) + u∗re
−i(ωeg−ω)teiηr(a+a†)

)
e−iωt(a

†a) (eiωegt |e〉 〈g|+ e−iωegt |g〉 〈e|
)

With the approximation eiε(a+a†) ≈ 1 + iε(a + a†) for ε = ±η, ηb, ηr, the Hamiltonian
becomes (up to second order terms in ε),(

ueiωegt(1− iη(e−iωta+ eiωta†)) + u∗e−iωegt(1 + iη(e−iωta+ eiωta†))
)

(
eiωegt |e〉 〈g|+ e−iωegt |g〉 〈e|

)
+
(
ube

i(ωeg+ω)t(1− iηb(e−iωta+ eiωta†)) + u∗be
−i(ωeg+ω)t(1 + iηb(e

−iωta+ eiωta†))
)

(
eiωegt |e〉 〈g|+ e−iωegt |g〉 〈e|

)
+
(
ure

i(ωeg−ω)t(1− iηr(e−iωta+ eiωta†)) + u∗re
−i(ωeg−ω)t(1 + iηr(e

−iωta+ eiωta†))
)

(
eiωegt |e〉 〈g|+ e−iωegt |g〉 〈e|

)
The oscillating terms (with pulsations 2ωeg, 2ωeg ± ω, 2(ωeg ± ω) and ±ω) have a zero

average. The mean Hamiltonian, illustrated on Figure 3.2, reads

H̄ = u |g〉 〈e|+ u∗ |e〉 〈g|+ uba |g〉 〈e|+ u∗ba
† |e〉 〈g|+ ura

† |g〉 〈e|+ u∗ra |e〉 〈g|

where we have set ub = −iηbub and ur = −iηrur. The above Hamiltonian is ”valid” as
soon as |η|, |ηb|, |ηr| � 1 and

|u|, |ub|, |ur| � ω,

∣∣∣∣ ddtu
∣∣∣∣� ω|u|,

∣∣∣∣ ddtub
∣∣∣∣� ω|ub|,

∣∣∣∣ ddtur
∣∣∣∣� ω|ur|.

To interpret the structure of the different operators building this average Hamiltonian,
physicists have a nice mnemonic trick based on energy conservation. Take for example
a |g〉 〈e| attached to the control ub, i.e. to the blue shifted photon of pulsation ωeg + ω.
The operator |g〉 〈e| corresponds to the quantum jump from |e〉 to |g〉 whereas the operator
a is the destruction of one phonon. Thus a |g〉 〈e| is the simultaneous jump from |e〉 to |g〉
(energy change of ωeg) with destruction of one phonon (energy change of ω). The emitted



3.3. RESONANT CONTROL, ROTATING WAVE APPROXIMATION 55

g0

e0

g1

e1

g2

e2

g3

e3

u
ru

ub

Figure 3.2: a trapped ion submitted to three mono-chromatic plane waves of pulsations
ωeg, ωeg − ω and ωeg + ω.

photon has to take away the total energy lost by the system, i.e. ωeg + ω. Its pulsation
is then ωeg + ω and corresponds thus to ub. We understand why a† |g〉 〈e| is associated to
ur: the system loses ωeg during the jump from |e〉 to |g〉; at the same time, it wins ω, the
phonon energy; the emitted photon takes away ωeg − ω and thus corresponds to ur. This
point is illustrated on figure 3.2 describing the different first order transitions between the
different states of definite energy.

The dynamics i d
dt
|φ〉 = H̄ |φ〉 depends linearly on 6 scalar controls: it is a drift-less

system of infinite dimension (non-holonomic system of infinite dimension). The two un-
derlying partial differential equations are

i
∂φg
∂t

=

(
u +

ub√
2

(
x+

∂

∂x

)
+

ur√
2

(
x− ∂

∂x

))
φe

i
∂φe
∂t

=

(
u∗ +

u∗b√
2

(
x− ∂

∂x

)
+

u∗r√
2

(
x+

∂

∂x

))
φg

We write the above dynamics in the eigenbasis, {|g, n〉 , |e, n〉}n∈N, of the operator
ω
(
a†a+ 1

2

)
+ ωeg

2
σz, which is the tensor product of the eigenbasis of the harmonic os-

cillator, (|n〉)n∈N, and that of the 2-level system, (|g〉 , |e〉). In this basis, the dynamics can
be written as

i
d

dt
φg,n = uφe,n + ur

√
nφe,n−1 + ub

√
n+ 1φe,n+1

i
d

dt
φe,n = u∗φg,n + u∗r

√
n+ 1φg,n+1 + u∗b

√
nφg,n−1

with |φ〉 =
∑+∞

n=0 φg,n |g, n〉+ φe,n |e, n〉 and
∑+∞

n=0 |φg,n|2 + |φe,n|2 = 1.
Law and Eberly [43] have proved that it is always possible (and in any arbitrary time

T > 0) to steer |ψ〉 from any finite linear superposition of {|g, n〉 , |e, n〉}n∈N at t = 0, to any
other finite linear superposition at time t = T (spectral controllability). They need only
two controls u and ub (resp. u and ur): ur (resp. ub) remains zero and the supports of u
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and ub (resp. u and ur) do not overlap. This spectral controllability implies approximate
controllability.

Let us detail now the main idea behind the Law-Eberly method to prove spectral
controllability. Take n > 0 and denote by Hn the truncation to n-phonon space:

Hn = span {|g, 0〉 , |e, 0〉 , . . . , |g, n〉 , |e, n〉}

Take n > 0, an initial condition |φ〉0 ∈ Hn and T > 0. Then for t ∈ [0, T
2
] the control

ur(t) = ub(t) = 0, u(t) = 2i
T

arctan
∣∣∣φe,n(0)

φg,n(0)

∣∣∣ ei arg(φg,n(0)φ∗e,n(0))

ensures that φe,n(T/2) = 0. For t ∈ [T
2
, T ], the control

ub(t) = u(t) = 0, ur(t) = 2i
T
√
n

arctan

∣∣∣∣ φg,n(
T
2

)

φe,n−1(
T
2

)

∣∣∣∣ ei arg

(
φg,n(

T
2

)φ∗e,n−1(
T
2

)

)

ensures that φe,n(t) ≡ 0 and that φg,n(T ) = 0. Thus with this two-pulse control the first
one on u, the second one on ur we have |φ〉T ∈ Hn−1.

After n iterations of this two-pulse process |φ〉nT belongs to H0 and then for t ∈
[nT, (n+ 1

2
)T ] the control

ur(t) = ub(t) = 0, u(t) = 2i
T

arctan
∣∣∣φe,0(nT )

φg,0(nT )

∣∣∣ ei arg(φg,0(nT )φ∗e,0(nT ))

guaranties that |φ〉
(n+

1
2

)T
= eiθ |g, 0〉.

Up to a global phase, we can steer, in any arbitrary time and with a piecewise constant
control, any element of Hn to |g, 0〉. Since the system is driftless (t 7→ −t and (u,ub,ur) 7→
−(u,ub,ur) leave the system unchanged) we can easily reverse the time and thus can also
steer |g, 0〉 to any element of Hn. To steer |φ〉 form any initial state in Hn to any final
state also in Hn, it is enough to steer the initial state to |g, 0〉 and then to steer |g, 0〉 to
the final state. To summarize: on can always steer, with piecewise constant controls and
in an arbitrary short time, any finite linear superposition of (|g, ν〉 , |e, ν〉)ν≥0 to any other
one.

3.3.7 Two trapped ions

Let us consider two ions catched in the same trap and coupled to one of the two vibration
modes, the center of mass mode of frequency ω (see [33, chapitre 8] for detailed explanations
and modeling assumptions). Considerations similar to the ones developed in the previous
subsection yield the following average Hamiltonian

(u1 + u1ba+ u1ra
†) (|g〉 〈e|)1 + (u∗1 + u∗1ba

† + u∗1ra) (|e〉 〈g|)1

+ (u2 + u2ba+ u2ra
†) (|g〉 〈e|)2 + (u∗2 + u∗2ba

† + u∗2ra) (|e〉 〈g|)2
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where the indices 1 and 2 are relative to ion number 1 and ion number 2, each of them having
its own control, u1 and u2 that are superpositions of three mono-chromatic plane waves:
pulsation ωeg with amplitudes u1 and u2; pulsation ωeg + ω with amplitudes proportional
to u1b and u2b; pulsation ωeg − ω with amplitudes proportional to u1r and u2r.

The quantum state |φ〉 is described by 4 elements of L2(R,C), (ψgg, ψge, ψeg, ψee). They
satisfy the following partial differential equations:

i
∂

∂t
φgg =

(
u1 +

u1r√
2

(
x− ∂

∂x

)
+

u1b√
2

(
x+

∂

∂x

))
φeg

+

(
u2 +

u2r√
2

(
x− ∂

∂x

)
+

u2b√
2

(
x+

∂

∂x

))
φge

i
∂

∂t
φeg =

(
u∗1 +

u∗1r√
2

(
x+

∂

∂x

)
+

u∗1b√
2

(
x− ∂

∂x

))
φgg

+

(
u2 +

u2r√
2

(
x− ∂

∂x

)
+

u2b√
2

(
x+

∂

∂x

))
φee

i
∂

∂t
φge =

(
u1 +

u1r√
2

(
x− ∂

∂x

)
+

u1b√
2

(
x+

∂

∂x

))
φee

+

(
u∗2 +

u∗2r√
2

(
x+

∂

∂x

)
+

u∗2b√
2

(
x− ∂

∂x

))
φgg

i
∂

∂t
φee =

(
u∗1 +

u∗1r√
2

(
x+

∂

∂x

)
+

u∗1b√
2

(
x− ∂

∂x

))
φge

+

(
u∗2 +

u∗2r√
2

(
x+

∂

∂x

)
+

u∗2b√
2

(
x− ∂

∂x

))
φeg

We conjecture that this system is controllable (at least spectrally controllable and thus
approximately controllable).

We recall here a 4-pulse sequence (see also [33]) that steers in finite time |ψ〉 from
|gg, 0〉 at t = 0, ions in ground states and 0 phonon, to the entangled state (Bell state) at
t = 4T ,

|gg, 0〉+ |ee, 0〉√
2

,

a coherent superposition of |gg, 0〉 and |ee, 0〉 (ions in excited states with 0 phonon). One
proceeds in 4 successive pulses of duration T > 0 and where only one of the 6 controls is
different form zero:

1. π/2-pulse on ub1: only ub1 differs from 0 and is equal to −i π
T

; the Hamiltonian (with
this particular control) leaves invariant the sub-space spanned by |gg, 0〉 and |eg, 1〉;
since the initial state is |gg, 0〉, we have thus a simple π/2-pulse of Rabi type; it ends

with |ψ〉 = |gg,0〉+|eg,1〉√
2

, exactly.

2. π-pulse on u2: we apply u2 = −i2π
T

and start with |ψ〉 = |gg,0〉+|eg,1〉√
2

; we finish the

pulse with |ψ〉 = |ge,0〉+|ee,1〉√
2
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3. π-pulse on ub2: set ub2 = −i2π
T

; |ψ〉 is steered from |ge,0〉+|ee,1〉√
2

to |ge,0〉−|eg,0〉√
2

since the

state |ge, 0〉 is not touched by the control ub2.

4. π-pulse on u1: we apply u1 = −i2π
T

; |ψ〉 is steered from |ge,0〉−|eg,0〉√
2

to |ee,0〉+|gg,0〉√
2

, the
target Bell state.

These kinds of open-loop controls have been tested experimentally to generate entangled
quantum states and also quantum gates. They are made through a succession of pulses
where only a single control is non-zero.

3.4 Adiabatic control

3.4.1 Time-adiabatic approximation without gap conditions

We first recall the quantum version of adiabatic invariance. We restrict here the exposure to
finite dimension and without the exponentially precise estimations. However we give here
the simplest version of a time-adiabatic approximation result without any gap conditions.
All the details can be found in the recent book of Teufel [66] with extension to infinite
dimensional case.

Theorem 3.4.1. Take m + 1 Hermitian matrices n × n: H0, . . . , Hm. For u ∈ Rm set
H(u) := H0 +

∑m
k=1 uk Hk. Assume that u is a slowly varying time-function: u = u(s)

with s = εt ∈ [0, 1] and ε a small positive parameter. Consider a solution
[
0, 1

ε

]
3 t 7→ |ψ〉εt

of

i
d

dt
|ψ〉εt = H(u(εt)) |ψ〉εt .

Take [0, s] 3 s 7→ P (s) a family of orthogonal projectors such that for each s ∈ [0, 1],
H(u(s))P (s) = E(s)P (s) where E(s) is an eigenvalue of H(u(s)). Assume that [0, s] 3
s 7→ H(u(s)) is C2, [0, s] 3 s 7→ P (s) is C2 and that, for almost all s ∈ [0, 1], P (s) is the
orthogonal projector on the eigen-space associated to the eigen-value E(s). Then

lim
ε7→0+

 sup
t∈[0,

1
ε

]

|‖P (εt) |ψ〉εt ‖2 − ‖P (0) |ψ〉ε0 ‖2|
 = 0.

This theorem is a finite dimensional version of Theorem 6.2, page 175 in [66] where, for
simplicity sake, we have removed the so-called adiabatic Hamiltonian and adiabatic prop-
agator that intertwines the spectral subspace of the slowly time-dependent Hamiltonian
H(u(εt)).

This theorem implies that the solution of i d
dt
|ψ〉 = H

(
u( t

T
)
)
|ψ〉 follows the spectral

decomposition of H
(
u( t

T
)
)

as soon as T is large enough and when H
(
u( t

T
)
)

does not admit
multiple eigenvalues (non-degenerate spectrum): apply the above theorem with P = Pk
where Pk is the orthogonal projection on the k’th eigenstate of H to conclude that the
population on state |k〉 is approximatively constant. If, for instance, |ψ〉 starts at t = 0
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in the ground state and if u(0) = u(1) then |ψ〉 returns at t = T , up to a global phase
(related to the Berry phase [62]), to the same ground state.

Whenever, for some value of s, the spectrum of H(u(s)) becomes degenerate the above
theorem says that the populations follow the smooth decomposition versus s of H(u(s)).
For example, assume that the spectrum of H is not degenerate except at s̄ where only two
eigenvalues become identical: for all s we assume that the n eigenvalues of H(u(s)) are
labeled according to their order

E1(s) < E2(s) < . . . < Ek̄(s) ≤ Ek̄+1(s) < Ek+2(s) < . . . < En(s)

and Ek̄(s) = Ek̄+1(s) only when s = s̄ for some k̄ ∈ {1, . . . , n}. Since s 7→ H(u(s))
is smooth, exists always a spectral decomposition of H(u(s)) that is smooth versus s
(this comes from the fact that the spectral decomposition of a Hermitian matrix depends
smoothly on its entries). Thus we have only two cases:

1. the non-crossing case where s 7→ Ek̄(s) and s 7→ Ek̄+1(s) are smooth functions

2. the crossing case where

s 7→
{
Ek̄(s), for s ≤ s̄;
Ek̄+1(s), for s ≥ s̄.

and s 7→
{
Ek̄+1(s), for s ≤ s̄;
Ek̄(s), for s ≥ s̄.

are smooth functions.

In the non-crossing case the projectors that satisfy the theorem’s assumption are the or-
thogonal projectors Pk(s) on the k’th eigen-direction associated to Ek(s). In the crossing
case, the projectors on the eigenspaces associated to Ek̄ and Ek̄+1 have to be exchanged
when s passes through s̄ to guaranty at least the continuity of Pk̄(s) and Pk̄+1(s): for
s < s̄, Pk̄ (resp. Pk̄+1 is the projector of the eigenspace associated to Ek̄ (resp. Ek̄+1); for
s > s̄, Pk̄ (resp. Pk̄+1) is the projector of the eigenspace associated to Ek̄+1 (resp. Ek̄); for
s = s̄, Pk̄ and Pk̄+1 are extended by continuity and correspond to orthogonal projectors
on two orthogonal eigen-directions that span the eigenspace of dimension two associated
to Ek̄(s̄) = Ek̄+1(s̄).

3.4.2 Adiabatic motion on the Bloch sphere

Let us take a 2-level system. Since we do not care for global phase, we will use the Bloch
vector of Subsection 2.1.2:

d

dt
~M = (u~i+ v~+ w~k)× ~M

where we assume that ~B = (u~i + v~ + w~k), a vector in R3, is the control (in magnetic

resonance, ~B is the magnetic field). We set ω ∈ R and ~B = ω~b where ~b is a unitary vector
in R3. Thus we have

d

dt
~M = ω~b× ~M, with, as control input, ω ∈ R,~b ∈ S2.
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Assume now that ~B varies slowly: we take T > 0 large (i.e., ωT � 1), and set ω(t) = $
(
t
T

)
,

~b(t) = ~β
(
t
T

)
where $ and ~β depend regularly on s = t

T
∈ [0, 1]. Assume that, at t = 0,

~M0 = ~β(0). If, for any s ∈ [0, 1], $(s) > 0, then the trajectory of ~M with the above control
~B verifies: ~M(t) ≈ ~β

(
t
T

)
, i.e. ~M follows adiabatically the direction of ~B. If ~b(T ) = ~b(0),

i.e., if the control ~B makes a loop between 0 and T (β(0) = β(1)) then ~M follows the same
loop (in direction).

To justify this point, it suffices to consider |ψ〉 that obeys the Schrödinger equation
i d
dt
|ψ〉 =

(
u
2
σx + v

2
σy + w

2
σz
)
|ψ〉 and to apply the adiabatic theorem of the previous sub-

section. The absence of spectrum degeneracy results from the fact that $ never vanishes
and remains always strictly positive. The initial condition ~M0 = ~β(0) corresponds to |ψ〉0
in the ground state of u(0)

2
σx + v(0)

2
σy + w(0)

2
σz. Thus |ψ〉t follows the ground state of

u(t)
2
σx + v(t)

2
σy + w(t)

2
σz, i.e., ~M(t) follows ~β

(
t
T

)
.

The assumption concerning the non degeneracy of the spectrum is important. If it
is not satisfied, |ψ〉t can jump smoothly from one branch to another branch when some
eigenvalues cross. In order to understand this phenomenon (analogue to monodromy),
assume that $(s) vanishes only once at s̄ ∈]0, 1[ with $(s) > 0 (resp. < 0) for s ∈ [0, s̄[
(resp. s ∈]s̄, 1]). Then, around t = s̄T , |ψ〉t changes smoothly from the ground state to
the excited state of H(t), since their energies coincide for t = s̄T . With such a choice for

$, ~B performs a loop if, additionally ~b(0) = −~b(1) and $(0) = −$(1), whereas |ψ〉t does
not. It starts from the ground state at t = 0 and ends on the excited state at t = T . In
fact, ~M(t) follows adiabatically the direction of ~B(t) for t ∈ [0, s̄T ] and then the direction

of − ~B(t) for t ∈ [s̄T, T ]. Such quasi-static motion planing method is particularly robust
and widely used in practice. We refer to [72, 2] for related control theoretic results. In the
following subsections we detail some important examples.

3.4.3 Stimulated Raman Adiabatic Passage (STIRAP)

Consider the Λ-system of Figure 2.2. Its control Hamiltonian reads

H = ωg |g〉 〈g|+ ωe |e〉 〈e|+ ωf |f〉 〈f |+ uµgf (|g〉 〈f |+ |f〉 〈g|) + uµef (|e〉 〈f |+ |f〉 〈e|).

Assume ωgf = ωf − ωg > ωef = ωf − ωe > 0 and an oscillatory and small control involving
perfect resonances with transitions g ↔ f and e↔ f :

u = ugf cos(ωgf t) + uef cos(ωef t)

with slowly varying small real amplitudes ugf and uef . Put the system in the interaction
frame via the unitary transformation e−it(ωg |g〉〈g|+ωe|e〉〈e|+ωf |f〉〈f |). Use the rotating wave
approximation (order 1 in (3.19)) to get the average Hamiltonian

Hrwa =
Ωgf

2
(|g〉 〈f |+ |f〉 〈g|) +

Ωef
2

(|e〉 〈f |+ |f〉 〈e|)

with slowly varying Rabi pulsations Ωgf = µgfugf and Ωef = µefuef .
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Let us now analyze the dependence of the spectral decomposition of Hrwa versus the
two parameters Ωgf and Ωef . When Ω2

gf + Ω2
ef 6= 0, spectrum of Hrwa admits three distinct

eigne-values:

Ω− = −
√

Ω2
gf+Ω2

ef

2
, Ω0 = 0, Ω+ =

√
Ω2
gf+Ω2

ef

2

associated to the following eigen-vectors :

|−〉 =
Ωgf√

2(Ω2
gf+Ω2

ef )
|g〉+

Ωef√
2(Ω2

gf+Ω2
ef )
|e〉 − 1√

2
|f〉

|0〉 =
−Ωef√

Ω2
gf+Ω2

ef

|g〉+
Ωgf√

Ω2
gf+Ω2

ef

|e〉

|+〉 =
Ωgf√

2(Ω2
gf+Ω2

ef )
|g〉+

Ωef√
2(Ω2

gf+Ω2
ef )
|e〉+ 1√

2
|f〉 .

Assume now that the Rabi pulsation depends on s ∈ [0, 3π
2

] according to the following
formula

Ωgf (s) =

{
Ω̄g cos2 s, for s ∈ [π

2
, 3π

2
];

0, elsewhere.
, Ωef (s) =

{
Ω̄e sin2 s, for s ∈ [0, π];
0, elsewhere.

with Ω̄g > 0 and Ω̄e > 0 constant parameter. With such s dependence, we have three
analytic branches of the spectral decomposition:

• for s ∈]0, π
2
[ we have

Ω−(s) = −Ω̄e sin s with |−〉s = |e〉−|f〉√
2
.

Ω0 = 0 with |0〉s = − |g〉
Ω+(s) = Ω̄e sin s with |+〉s = |e〉+|f〉√

2
..

• for s ∈]π
2
, π[ we have

Ω−(s) = −
√

Ω̄2
g cos4 s+ Ω̄2

e sin4 s with |−〉s = Ω̄g cos2s|g〉+Ω̄e sin2s|e〉√
2(Ω̄2

g cos4 s+Ω̄2
e sin4 s)

− 1√
2
|f〉

Ω0 = 0 with |0〉s = −Ω̄e sin2s|g〉+Ω̄g cos2s|e〉√
Ω̄2
g cos4 s+Ω̄2

e sin4 s

Ω+(s) =
√

Ω̄2
g cos4 s+ Ω̄2

e sin4 s with |+〉s = Ω̄g cos2s|g〉+Ω̄e sin2s|e〉√
2(Ω̄2

g cos4 s+Ω̄2
e sin4 s)

+ 1√
2
|f〉 .

• for s ∈]π, 3π
2

[ we have

Ω−(s) = −Ω̄g| cos s| with |−〉s = |g〉−|f〉√
2
.

Ω0 = 0 with |0〉s = |e〉
Ω+(s) = Ω̄g| cos s| with |+〉s = |g〉+|f〉√

2
..
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Let us consider the eigenvalue Ω0: it is associated to the projector P0(s) on |0〉s that
depends smoothly on s ∈ [0, 3π

2
] as shown by the concatenation of the above formula on

the three intervals ]0, π
2
[, ]π

2
, π[ and ]π, 3π

2
[. Thus assume that |ψ〉0 = |g〉 then adiabatic

Theorem 3.4.1 shows that, for ε > 0 small enough, the solution of i d
dt
|ψ〉 = Hrwa |ψ〉 with

the time-varying control amplitudes

[0, 3π
2ε

] 3 t 7→ (ufg, uef ) =
(

Ωgf (εt)

µgf
,

Ωef (εt)

µef

)
is given approximatively by

|ψ〉t ≈ eiθt |0〉εt = eiθt


− |g〉 , for t ∈ [0, π

2ε
];

−Ω̄e sin2(εt)|g〉+Ω̄g cos2(εt)|e〉√
Ω̄2
g cos4(εt)+Ω̄2

e sin4(εt)
, for t ∈ [ π

2ε
, π
ε
];

|e〉 , for t ∈ [π
ε
, 3π

2ε
];

where θt is a time-varying global phase. Thus at the final time t = 3π
2ε

, |ψ〉 coincides, up to
a global phase to |e〉. It is surprising that during this adiabatic passage from |g〉 to |e〉 the
control uef driving the transition e↔ f is turned on first whereas the control ugf driving
transition g ↔ f is turned on later. It is also very interesting that the precise knowledge
of the coupling parameter µgf and µef is not necessary. However the precise knowledge
of the transition frequencies ωgf and ωef is required. Such adiabatic control strategies are
widely used (see, e.g., the recent review [40]).

Exercice 3.4.2. Design an adiabatic passage s 7→ (Ωgf (s),Ωef (s)) from |g〉 to −|g〉+|e〉√
2

, up
to a global phase.

3.4.4 Chirped pulse for a 2-level system

Let us start with H = ωeg
2
σz + u

2
σx considered in Section 2.1 and the quasi-resonant control

(|ωr − ωeg| � ωeg)
u(t) = v

(
ei(ωrt+θ) + e−i(ωrt+θ)

)
where v, θ ∈ R, |v| and |dθ

dt
| are small and slowly varying

|v|,
∣∣dθ
dt

∣∣� ωeg,
∣∣dv
dt

∣∣� ωeg|v|,
∣∣∣d2θ
dt2

∣∣∣� ωeg
∣∣dθ
dt

∣∣ .
Following similar computations to those of Subsection 3.3.3, consider the following change

of frame |ψ〉 = e−i
ωrt+θ

2
σz |φ〉. Then i d

dt
ψ = H |ψ〉 becomes

i
d

dt
|φ〉 =

(
ωeg−ωr− d

dt
θ

2
σz + ve2i(ωrt+θ)+v

2
σ+ + ve−2i(ωrt−θ)+v

2
σ−

)
|φ〉 .

With ∆r = ωeg − ωr and w = − d
dt
θ and using the first order approximation (see (3.19)

with H1st

rwa) we get the following averaged control Hamiltonian

Hchirp = ∆r+w
2

σz + v
2
σx
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where (v, w) are two real control inputs. Take three constant parameters a > |∆r|, b > 0,
0 < ε� a, b. Set

w = a cos(εt), v = b sin2(εt).

Set s = εt varying in [0, π]. These explicit expressions are not essential. Only the shape
of s 7→ w(s) and of s 7→ v(s) are important here: w decreases regularly from a to −a; v
is a bump function that remains strictly positive for s ∈]0, π[ and that vanishes with its
derivatives at s = 0 and s = π.

The spectral decomposition of Hchirp for s ∈]0, π[ is standard with two distinct and
opposite eigenvalues.

Ω− = −
√

(∆r+w)2+v2

2
with |−〉 =

cosα |g〉 − (1− sinα) |e〉√
2(1− sinα)

Ω+ =

√
(∆r+w)2+v2

2
with |+〉 =

(1− sinα) |g〉+ cosα |e〉√
2(1− sinα)

where α ∈]−π
2
, π

2
[ is defined by tanα = ∆r+w

v
. Since lims 7→0+ α = π

2
and lims 7→π− α = −π

2

lim
s 7→0+

|−〉s = |g〉 , lim
s7→0+

|+〉s = |e〉 , lim
s 7→π−

|−〉s = − |e〉 , lim
s 7→π−

|+〉s = |g〉 .

Consequently the adiabatic approximation of Theorem 3.4.1 implies that the solution
|φ〉 of

i
d

dt
|φ〉 =

(
∆r+a cos(εt)

2
σz + b sin2(εt)

2
σx

)
|φ〉 , |φ〉t=0 = |g〉

is given approximatively, for ε small and t ∈ [0, π
ε
], by

|φ〉t = eiϑt |−〉s=εt

with ϑt a time-varying global phase. Thus for t = π
ε
, |ψ〉 coincides with |e〉 up to a global

phase. Notice the remarkable robustness of such adiabatic control strategy. We do not
need to know precisely neither the detuning ∆r nor the chirp and control amplitudes a and
b. This means in particular that such adiabatic chirp control from g to e is insensitive to
all parameters appearing in a 2-level system.

Such adiabatic chirp passage can be extended to any ladder configuration that is slightly
an-harmonic.

3.5 Optimal control

Take the n-level system i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉, initial and final states |ψa〉

and |ψb〉 and a transition time T > 0 (〈ψa|ψa〉 = 〈ψb|ψb〉 = 1). Assume that this
system is controllable, i.e. according to Theorem 3.1.9, the Lie algebra generated by
{iH0, iH1, . . . , iHk} contains su(n). We are looking for optimal controls [0, T ] 3 t 7→ u(t)
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minimizing
∫ T

0
(
∑m

k=1 u
2
k) and steering |ψ〉 from |ψa〉 at t = 0 to |ψb〉 at t = T . Thus we are

considering the following problem

min
uk ∈ L2([0, T ],R), k = 1, . . . ,m

i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

|ψ〉t=0 = |ψa〉 , |〈ψb|ψ〉|2t=T = 1

1
2

∫ T

0

(
m∑
k=1

u2
k(t)

)
dt (3.31)

for given T , |ψa〉 and |ψb〉 (〈ψa|ψa〉 = 〈ψb|ψb〉 = 1). Notice that |〈ψb|ψ〉|2 = 1 means that
|ψ〉T = eiθ |ψb〉 where θ ∈ R is an arbitrary global phase.

Since the initial and final constraints are difficult to satisfy simultaneously from a
numerical point of view, we will consider also the second problem where the final constraint
is relaxed

min
uk ∈ L2([0, T ],R), k = 1, . . . ,m

i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

|ψ〉t=0 = |ψa〉

1
2

∫ T

0

(
m∑
k=1

u2
k(t)

)
dt+ α

2
(1− |〈ψb|ψ〉|2T )

(3.32)
with the positive penalization coefficient α > 0. Notice that for α large this problem tends
to the original one (3.31).

3.5.1 First order stationary condition

The first order conditions recalled in Appendix G yield to the following set of necessary
conditions. Notice that the adjoint state can be seen as a Ket, denoted by |p〉 ∈ Cn

(of constant length but different of one in general) since it satisfies the same Schrödinger
equations as |ψ〉.

For problem (3.31), the first order stationary conditions read:
i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

i d
dt
|p〉 = (H0 +

∑m
k=1 ukHk) |p〉 , t ∈ (0, T )

uk = −=
(
〈p|Hk|ψ〉

)
, k = 1, . . . ,m, t ∈ (0, T )

|ψ〉t=0 = |ψa〉 , |〈ψb|ψ〉|2t=T = 1

(3.33)

For the relaxed problem (3.32), the first order stationary conditions read:
i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

i d
dt
|p〉 = (H0 +

∑m
k=1 ukHk) |p〉 , t ∈ (0, T )

uk = −=
(
〈p|Hk|ψ〉

)
, k = 1, . . . ,m, t ∈ (0, T )

|ψ〉t=0 = |ψa〉 , |p〉t=T = −α〈ψb|ψ〉t=T |ψb〉 .

(3.34)
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These optimality conditions differ only by the boundary conditions at t = 0 and t = T :
the common part

i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

i d
dt
|p〉 = (H0 +

∑m
k=1 ukHk) |p〉 , t ∈ (0, T )

uk = −= (〈p|Hk|ψ〉) , k = 1, . . . ,m, t ∈ (0, T )

is a Hamiltonian system with |ψ〉 and |p〉 being the conjugate variables. The underlying
Hamiltonian function is given by : H(|ψ〉 , |p〉) = minu∈Rm H(|ψ〉 , |p〉 , u) where

H(|ψ〉 , |p〉 , u) = 1
2

(
m∑
k=1

u2
k

)
+ =

(〈
p

∣∣∣∣∣H0 +
m∑
k=1

ukHk

∣∣∣∣∣ψ
〉)

. (3.35)

Thus for any solutions (|ψ〉 , |p〉 , u) of (3.33) or (3.34), H(|ψ〉 , |p〉 , u) is independent of t.
Notice that

H(|ψ〉 , |p〉) = = (〈p |H0|ψ〉)− 1
2

(
m∑
k=1

=
(
〈p|Hk|ψ〉

)2
)
.

3.5.2 Monotone numerical scheme

For the relaxed problem (3.32) a general monotone iteration scheme exists. Defining the
cost function

J(u) = 1
2

∫ T

0

(
m∑
k=1

u2
k(t)

)
dt+ α

2
(1− |〈ψb|ψu〉|2T )

where |ψu〉 denotes the solution of i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 starting from |ψa〉,

and starting from an initial guess u0 ∈ L2([0, T ],Rm), this scheme generates a sequence of
controls uν ∈ L2([0, T ],Rm), ν = 1, 2, . . ., such that the cost J(uν) is decreasing, J(uν+1) ≤
J(uν)

This scheme does not guaranty in general the convergence to an optimal solution.
But applied on several example with a correct tuning of the penalization coefficient α,
it produces interesting controls with |ψ〉T close to |ψb〉. Such monotonic schemes have
been proposed for quantum systems in [65] for the first time (see also [73] for a slightly
different version). We follow here the presentation of [9] which also provides an extension
to infinite dimensional case. See also [19] for much earlier results on optimal control in
infinite dimensional cases.

Take u, v ∈ L2([0, T ],Rm), denote by P = |ψb〉 〈ψb| the orthogonal projector on |ψb〉,
then

J(u)− J(v) = −
α

(
〈ψu − ψv|P |ψu − ψv〉T + 〈ψu − ψv|P |ψv〉T + 〈ψv|P |ψu − ψv〉T

)
2

+

∫ T

0

∑m
k=1(uk − vk)(uk + vk)

2
.
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Denote by |pv〉 the adjoint associated to v, i.e. the solution of the backward systems

i
d

dt
|pv〉 =

(
H0 +

m∑
k=1

vkHk

)
|pv〉 , |pv〉T = −αP |ψv〉T .

We have

i
d

dt
(|ψu〉 − |ψv〉) =

(
H0 +

m∑
k=1

vkHk

)
(|ψu〉 − |ψv〉) +

(
m∑
k=1

(uk − vk)Hk

)
|ψu〉 .

We consider the Hermitian product of this relation with the adjoint state |pv〉:〈
pv

∣∣∣d(ψu−ψv)
dt

〉
=
〈
pv

∣∣∣H0+
∑m
k=1 vkHk
i

∣∣∣ψu − ψv〉+
〈
pv

∣∣∣∑m
k=1(uk−vk)Hk

i

∣∣∣ψu〉.
An integration by parts yields∫ T

0

〈
pv

∣∣∣d(ψu−ψv)
dt

〉
= 〈pv|ψu − ψv〉T − 〈pv|ψu − ψv〉0 −

∫ T

0

〈
dpv
dt

∣∣ψu − ψv〉
= −α〈ψv|P |ψu − ψv〉T +

∫ T

0

〈
pv

∣∣∣H0+
∑m
k=1 vkHk
i

∣∣∣ψu − ψv〉
since |ψv〉0 = |ψu〉0, |pv〉T = −αP |ψv〉T and d

dt
〈pv| = −〈pv|

(
H0+

∑m
k=1 vkHk
i

)
. We get:

−α〈ψv|P |ψu − ψv〉T =

∫ T

0

〈
pv

∣∣∣∑m
k=1(uk−vk)Hk

i

∣∣∣ψu〉.
Thus α< (〈ψv|P |ψu − ψv〉T ) = −

∫ T
0
= (〈pv |

∑m
k=1(uk − vk)Hk|ψu〉). Finally we have

J(u)− J(v) = −α
2

(〈ψu − ψv|P |ψu − ψv〉)T

+ 1
2

m∑
k=1

(∫ T

0

(uk − vk) (uk + vk + 2= (〈pv |Hk|ψu〉)) dt

)
.

If each uk satisfies uk = −= (〈pv |Hk|ψu〉) for all t ∈ [0, T ) we have

J(u)− J(v) = −α
2

(〈ψu − ψv|P |ψu − ψv〉)T − 1
2

m∑
k=1

(∫ T

0

(uk − vk)2

)
and thus J(u) ≤ J(v).

These computations suggest the following iteration scheme. Assume that, at step ν, we
have computed the control uν , the associated quantum state |ψν〉 = |ψuν 〉 and its adjoint
|pν〉 = |puν 〉. We get their new time values uν+1, |ψν+1〉 and |pν+1〉 in two steps:
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1. Imposing uν+1
k = −= (〈pν |Hk|ψν+1〉) is just a feedback; one get uν+1 just by a forward

integration of the nonlinear Schrödinger equation,

i
d

dt
|ψ〉 =

(
H0 −

m∑
k=1

= (〈puν |Hk|ψ〉)Hk

)
|ψ〉 , |ψ〉0 = |ψa〉 ,

that provides [0, T ] 3 t 7→ |ψν+1〉 and the m new controls uν+1
k .

2. Backward integration from t = T to t = 0 of

i
d

dt
|p〉 =

(
H0 +

m∑
k=1

uν+1
k (t)Hk

)
|p〉 , |p〉T = −α

〈
ψb|ψν+1

〉
T
|ψb〉

yields to the new adjoint trajectory [0, T ] 3 t 7→ |pν+1〉.

3.5.3 Optimality and resonance

This section is strongly inspired from [16] where the results presented in this subsection
have been published. We will consider here the special class of driftless systems with n
energy levels |1〉, . . . |n〉 forming an orthonormal frame of Cn. Denote by I a subset of
{1, . . . , n}2 such that if (k, l) ∈ I, then (l, k) ∈ I (symmetric) and l 6= k (no diagonal).
The controlled Schrödinger equation admits the following form:

i
d

dt
|ψ〉 =

 ∑
(k,l)∈I

µklukl |k〉 〈l|

 |ψ〉
where the complex ukl = u∗lk are the controls and µkl = µlk are real strictly positive param-
eters. As shown in Section 3.3 (see, e.g., the trapped ions models), these driftless structures
are obtained after the application of a rotating wave approximation and assuming perfect
resonance (negligible detuning) and slowly varying complex amplitudes ukl ((k, l) ∈ I).
We consider here population transfer: the initial and final states are only characterized by
the positive real numbers |〈k|ψ〉|2. This problem reads

min
uk,l ∈ L2([0, T ],C), (k, l) ∈ I

i d
dt
|ψ〉 =

(∑
(k,l)∈I µklukl |k〉 〈l|

)
|ψ〉 , t ∈ (0, T )

|〈k|ψ〉|2t=0 = a2
k, |〈k|ψ〉|2t=T = b2

k, k = 1, . . . , n

1
2

∫ T

0

 ∑
(k,l)∈I

|ukl|2(t)

 dt (3.36)

for given T , ak ≥ 0 and bk ≥ 0 (
∑n

k=1 a
2
k =

∑n
k=1 b

2
k = 1).
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We will prove here below that this problem admits the same minimal cost as the
following reduced problem

min
vk,l ∈ L2([0, T ],R), vkl = −vl,k, (k, l) ∈ I

d
dt
|φ〉 =

(∑
(k,l)∈I µklvkl |k〉 〈l|

)
|φ〉 , t ∈ (0, T )

〈k|φ〉|t=0 = ak, 〈k|φ〉t=T = bk, k = 1, . . . , n

1
2

∫ T

0

 ∑
(k,l)∈I

|vkl|2(t)

 dt (3.37)

where the components of |ψ〉 = |φ〉 remain real, the ukl’s are purely imaginary, ukl = ivkl
(vkl ∈ R with vkl = −vlk), the initial and final values of |φ〉 are given. Thus an optimal
solution ukl of (3.36) is provided by an optimal solution vkl of (3.37) via ukl = ivkl, i.e. all
the ukl’s have the same common phase (modulo π). When we go back to resulting physical
control,

ukl(t) = ukl(t)e
i(ωk−ωl)t + u∗kl(t)e

−i(ωk−ωl)t = −2vkl(t) sin ((ωk − ωl)t) ,
it is in resonance with the frequency transition between |k〉 and |l〉. It contains only
amplitude modulations (up to a π phase-shift since vkl can pass through zero). For such
driftless quantum systems, optimal population transfer is achieved by resonant controls.

Denote by θ, the n-uple of angles (θ1, θ2, . . . , θn) where each angle θk is defined modulo
2π. Associated to any θ = (θ1, θ2, . . . , θn) consider the following transformations on |ψ〉
and ukl defined by

|ψ〉 7→
∣∣ψθ〉 =

(
n∑
k=1

eiθk |k〉 〈k|
)
|ψ〉

ukl 7→ uθkl = ei(θk−θl)ukl.

Simple computations show that these transformations leave the cost and the constraints
of (3.36) unchanged (invariance versus phase choices for each |k〉).

Take ukl ∈ L2([0, T ],C) and [0, T ] 3 t 7→ |ψ〉 ∈ Cn satisfying the constraints of (3.36).
Choose θ = (θ1, . . . , θn) such that

〈
k|ψθ

〉
t=0

= ak for k = 1, . . . , n. Then
∣∣ψθ〉 and uθkl

satisfy

i
d

dt

∣∣ψθ〉 =

 ∑
(k,l)∈I

µklu
θ
kl |k〉 〈l|

∣∣ψθ〉 , t ∈ (0, T )

〈
k|ψθ

〉
t=0

= ak, |
〈
k|ψθ

〉
|2t=T = b2

k, k = 1, . . . , n.

Since|ukl| = |uθkl| the cost 1
2

∫ T
0

(∑
(k,l)∈I |ukl|2(t)

)
dt is unchanged. In the sequel, we

remove the superscript θ and assume that |ψ〉 and ukl satisfy

i
d

dt
|ψ〉 =

 ∑
(k,l)∈I

µklukl |k〉 〈l|

 |ψ〉 , 〈k|ψ〉t=0 = ak, |〈k|ψ〉|2t=T = b2
k.



3.5. OPTIMAL CONTROL 69

Set ψk = 〈k|ψ〉. The evolution of population k, |ψk|2, is given by

d

dt
(|ψk|2) =

∑
l | (k,l)∈I

µkl
uklz

∗
kl − u∗klzkl
i

where we have set zkl = ψkψ
∗
l ∈ C. The evolution of the direction of ψk in the complex

plane is governed by

ψ∗k
d

dt
ψk − ψk

d

dt
ψ∗k =

∑
l | (k,l)∈I

µkl
uklz

∗
kl + u∗klzkl
i

.

When zkl 6= 0, we can decompose ukl as a real superposition of zkl
|zkl|

and i zkl
|zkl|

:

ukl =
(

uklz
∗
kl+u∗klzkl
2|zkl|

) zkl
|zkl|

+
(

uklz
∗
kl−u

∗
klzkl

2i|zkl|

) izkl
|zkl|

.

For (k, l) ∈ I consider the real value function vkl defined by

vkl(t) =

{
0, if zkl(t) = 0;
ukl(t)z

∗
kl(t)−u

∗
kl(t)zkl(t)

2i|zkl(t)|
, if zkl(t) 6= 0;.

We have vkl = −vlk since u∗kl = ulk and z∗kl = zlk. When zkl 6= 0, vkl is the component of
ukl along i zkl

|zkl|
, consequently |vkl| ≤ |ukl| (the later is true even if zkl = 0). Thus each vkl

belongs to L2([0, T ],R). Consider now the solution |φ〉 of the initial value problem

d

dt
φk =

∑
l | (k,l)∈I

µklvklφl, φk(0) = ak, k = 1, . . . , n.

Since the |ψk|’s satisfy the same differential system with the same initial condition, we
have φk = |ψk|. Then |φ〉 =

∑n
k=1 φk |k〉 satisfies the final condition 〈k|φ〉 = bk of (3.37).

To summarize: starting from complex controls ukl ∈ L2([0, T ],C) satisfying the con-
straints of problem (3.36), we have constructed real controls vkl ∈ L2([0, T ],C) satisfying
the constraints of the reduced problem (3.37); the cost associated to ukl is larger than the
cost associated to vkl since |vkl| ≤ |ukl|. Moreover for all k, |〈k|ψ〉| = 〈k|φ〉 and thus the
components of |φ〉 remain always positive.

The first order stationary conditions of the full problem (3.36) are:

i d
dt
|ψ〉 =

(∑
(k,l)∈I µklukl |k〉 〈l|

)
|ψ〉 , t ∈ (0, T )

i d
dt
|p〉 =

(∑
(k,l)∈I µklukl |k〉 〈l|

)
|p〉 , t ∈ (0, T )

ukl = iµkl (〈p|l〉〈k|ψ〉 − 〈ψ|l〉〈k|p〉) , t ∈ (0, T ), (k, l) ∈ I
|〈k|ψ〉|2t=0 = a2

k, |〈k|ψ〉|2t=T = b2
k, k = 1, . . . , n

(3.38)
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The first order stationary conditions of the reduced problem (3.37) are:

d
dt
|φ〉 =

(∑
(k,l)∈I µklvkl |k〉 〈l|

)
|φ〉 , t ∈ (0, T )

d
dt
|p〉 =

(∑
(k,l)∈I µklvkl |k〉 〈l|

)
|p〉 , t ∈ (0, T )

vkl = µkl (〈p|l〉〈k|φ〉 − 〈φ|l〉〈k|p〉) , t ∈ (0, T ), (k, l) ∈ I
〈k|φ〉t=0 = ak, 〈k|φ〉t=T = bk, k = 1, . . . , n

(3.39)

where |φ〉, |p〉 belong to Rn and the vkl’s to R. For n = 2 and n = 3, problem (3.37) has
been completely solved in [15]. For n = 4, no general solution has been proposed, up to
now. The following exercise considers two simple cases for n = 2, 3.

Exercice 3.5.1. Consider the reduced problem (3.37) and its stationary conditions (3.39)

1. Show that the Hamiltonian H and the minimized Hamiltonian H read:

H(|φ〉 , |p〉 , v) =
∑

(k,l)∈I

1
2
v2
kl + µklvkl〈k|p〉〈l|φ〉

H(|φ〉 , |p〉) = −
∑

(k,l)∈I

µ2
kl

2

(
〈p|l〉〈k|φ〉 − 〈φ|l〉〈k|p〉

)2

(hint: remember that vkl = −vlk).

2. For n = 2, µ12 = µ > 0, (a1, a2) = (cosα, sinα) with α ∈ [0, π
2
] and (b1, b2) =

(cos β, sin β) with β ∈ [0, π
2
], solve (3.39).

3. For n = 3, µ12 = µ23 = µ31 = µ > 0, solve (3.39).

3.5.4 Cheap control and quantum control landscapes

For the quantum system i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 with initial condition |ψa〉 ∈ Rn,

we are here interested in finding an open-loop control [0, T ] 37→ u(t) ∈ Rm (T > 0 is given)
that maximizes the expectation value 〈ψ|O|ψ〉T of an observable O at the final time T .
This question can be seen as a cheap control problem since it is associated to the following
problem:

max
uk ∈ L2([0, T ],R), k = 1, . . . ,m

i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

|ψ〉t=0 = |ψa〉

〈ψ|O|ψ〉T (3.40)

where O is a Hermitian operator.
It is shown in [35] how to find experimentally u that maximizes 〈ψ|O|ψ〉T without

knowing H0 nor the Hk’s . The procedure is simple when we have at our disposal an
experimental setup that provides 〈ψ|O|ψ〉T once you have prescribed the open-loop control
[0, T ] 7→ u(t). It consists in parameterizing the function u(t) through the parameters s ∈
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Rns , ns > 0, and then to maximize an appropriate J(s), via an external loop manipulating
s between each experiment and based on past experimental values of 〈ψ|O|ψ〉T . The cost
function s 7→ J(s) is given by J(s) = 〈ψs|O|ψs〉T where |ψs〉T is the solution at time T
associated to the control u defined by s.

It is noticed in [35] (see also [58] for more recent results) that the mapping s 7→ J(s)
does not admit, in general, local maxima that are not global ones: the landscape (s, J(s))
is monotone. Optimization algorithms cannot get trapped and should produce control
parameters s̄ for which J reaches it maximum J̄ = J(s̄). The absence of local and non-
global maxima is related to controllability and can be explained as follows.

Assume i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 is operator controllable (see Definition 3.1.6

and Theorem 3.1.9). Denote by |ψu〉 the solution of

i
d

dt
|ψ〉 = (H0 +

m∑
k=1

ukHk) |ψ〉 , |ψ〉0 = |ψa〉

and by δψ the state of the first variation around |ψu〉 due to a variation δu of u:

i
d

dt
δψ = (H0 +

m∑
k=1

ukHk)δψ +
m∑
k=1

δukHk |ψu〉 , δψ0 = 0.

Controllability ensures that, for almost all controls [0, T ] 3 t 7→ u(t), this first order system
is controllable: this means that the linear mapping δu 7→ δψT is onto (see, e.g., [24]) and
thus its image contains the orthogonal space of |ψ〉T . Assume that such u is parameterized
by s. Associated to a variation δs of s is attached a variation δu of u and we can consider
the following linear mapping

Rns 3 δs 7→ δψT .

When ns > 2n− 1 and for a generic parameterization, this mapping still remains onto and
thus its image contains |ψ〉⊥.

Since the critical points of the mapping |ψ〉 7→ 〈ψ|O|ψ〉 from the unit sphere of Cn to
R are either global minima (smallest eigenvalue of O), global maxima (largest eigenvalue
of O) or saddle points (intermediate eigenvalues of O), we conclude that for a generic
parameterization s with ns ≥ 2n − 1, the critical points of s 7→

〈
ψu

s|O|ψus
〉
t

are either
global minima, global maxima or saddle points. The above arguments are heuristic. They
can be made rigorous and are valid for any controllable system d

dt
x = f(x, u) where the

maxima of J(x) are all global ones (see, e.g., [59] for a more rigorous exposure in the
context of open quantum systems). Note that, in the above analysis we have assumed no
constraint on the control law and therefore the L2-norm of the control can explode when
we try to solve the optimization problem. As soon as we add a penalization on the control’s
norm, we lose the above property and local minima might appear.

3.6 Lyapunov Control

Take i d
dt
|ψ〉 = (H0 +

∑m
k=1 ukHk) |ψ〉 with m scalar control(s) and |ψ〉 on the unit sphere

of Cn. Since |ψ〉 and eiθ(t) |ψ〉 describe the same physical state for any global phase t 7→
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θ(t) ∈ R, the two states |ψ1〉 and |ψ2〉 are identified when there exists θ ∈ R such that
|ψ1〉 = exp(iθ) |ψ2〉. To take into account such non trivial geometry, we add an additional
control ω corresponding to d

dt
θ. Thus we consider the following control system

i
d

dt
|ψ〉 =

(
H0 + ω1 +

m∑
k=1

ukHk

)
|ψ〉 (3.41)

where ω ∈ R is a new control playing the role of a gauge degree of freedom. We can
choose it arbitrarily without changing the physical quantities attached to |ψ〉. With such
additional fictitious control ω, we will assume in the sequel that the state space is the
unit sphere of Cn and the dynamics given by (3.41) admit m+ 1 independent real controls
(u1, . . . , um) and ω.

Assume that we have at our disposal a static feedback law, i.e., m + 1 real functions
(fk(|ψ〉))0≤k≤m, such that the closed-loop system

i
d

dt
|ψ〉 =

(
H0 + f0(|ψ〉)1 +

m∑
k=1

fk(|ψ〉)Hk

)
|ψ〉

converges asymptotically towards an eigen-state
∣∣ψ̄〉 of H0. These feedback laws can not

be used in real-time on the physical system: we need to measure |ψ〉 at each time and
any measurement process has a back-action for the quantum system; this back-action is
not taken into account with such Schrödinger type models (see Chapter 4). Nevertheless,
we can exploit such convergence to get open-loop controls [0, T ] 3 t 7→ u(t) steering the
system from |ψa〉 at t = 0 to an arbitrary small neighborhood of

∣∣ψ̄〉 at t = T : if |ψa〉
belongs to the attraction region of

∣∣ψ̄〉, then the numerical integration over [0, T ] of the
above non-linear Schrödinger equation, provides t 7→ uk(t) = fk(|ψ〉t) such that, for T
large enough, |ψ〉T is close to

∣∣ψ̄〉. It is then sufficient to store the control trajectories
[0, T ] ∈ t 7→ uk(t) as approximately steering open-loop controls from |ψa〉 to

∣∣ψ̄〉.
The goal of this section is to propose a systematic method to construct such feedback

laws (i.e., the functions f0 and fk) based on control Lyapunov techniques that goes back to
the seminal paper [36] and that has been studied for quantum systems in [56, 55, 10, 63].

3.6.1 Tracking and state preparation

Consider a reference trajectory t 7→ (|ψr〉 (t), ωr(t), ur1(t), . . . , urm(t)), i.e., a smooth solution
of (3.41) i d

dt
|ψr〉 = (H0 +

∑
k u

r
kHk +ωr) |ψr〉. Take the following real function L(|ψr〉 , |ψ〉)

(< stands for real part):
L(|ψr〉 , |ψ〉) = 1−<(〈ψr|ψ〉) (3.42)

L is positive for all |ψr〉 , |ψ〉 ∈ Cn of length 1. It vanishes only when |ψr〉 = |ψ〉. Thus L
measures a distance between |ψ〉 and the reference |ψr〉. Simple computations show that
L is a control Lyapunov function when |ψ〉 satisfies (3.41) (= stands for imaginary part)

d

dt
L = −

m∑
k=1

(uk − urk)=(〈ψr|Hk|ψ〉)− (ω − ωr)=(〈ψr|ψ〉).
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With the following static time-varying feedback

uk = urk + ak=(〈ψr|Hk|ψ〉) for k = 1, . . . ,m, ω = ωr + b=(〈ψr|ψ〉) (3.43)

(ak > 0 and b > 0 real parameters), we ensure that d
dt
L ≤ 0.

Let us detail the important case where the reference trajectory corresponds to an equi-
librium: urk = 0, ωr = −ω̄ and |ψr〉 =

∣∣ψ̄〉 where
∣∣ψ̄〉 is an eigenstate of H0 associated to

the eigenvalue ω̄: H0

∣∣ψ̄〉 = ω̄
∣∣ψ̄〉. Then (3.43) becomes a static-state feedback:

uk = ak=(
〈
ψ̄|Hk|ψ

〉
) for k = 1, . . . ,m, ω = −ω̄ + b=(

〈
ψ̄|ψ

〉
). (3.44)

The following result is proved in [55] :

Theorem 3.6.1. Consider the control Schrödinger equation (3.41) with m = 1 and
∣∣ψ̄〉 an

eigenstate of H0 of energy ω̄. Take the static state feedback (3.44) with parameters a1 and b
strictly positive. If the linearized system around the steady-state |ψ〉 =

∣∣ψ̄〉 and stationary
controls ω = −ω̄ and uk = 0 is controllable, then for all initial conditions |ψ〉0 on the
unit sphere of Cn except −

∣∣ψ̄〉, the solution of the closed-loop system (3.41) with (3.44)
converges asymptotically towards

∣∣ψ̄〉. Moreover the closed-loop system admits only two
equilibria:

∣∣ψ̄〉 which is exponentially stable and −
∣∣ψ̄〉 which is exponentially unstable.

It is reasonable to guess that the same result is true for m arbitrary. For the tracking
feedback, it seems also reasonable (following the original idea of [36]) that local controlla-
bility around the reference trajectory implies the convergence of (3.41) with (3.43) towards
the reference trajectory (see, e.g., [63] for related results).

When the linearization around the steady-state
∣∣ψ̄〉 is not controllable, application of

Lasalle’s invariance principle (see Appendix E and also [55]) indicates a strong lack of
convergence. In this case it is still possible to overcome this convergence deficiency with
implicit Lyapunov function as shown in [10] and to recover asymptotic convergence.

One can also think of other possibilities to overcome this lack of controllability for the
linearized system. For instance, one can think of applying the tracking controller (3.43)
around a time-periodic reference trajectory passing through the goal steady-state

∣∣ψ̄〉.
Roughly speaking, when the linearization around this periodic reference trajectory is con-
trollable, we should recover asymptotic convergence of the tracking error towards zero.
Then the open-loop steering control is obtained by stopping the closed-loop simulation
at some discrete times of the form NTr + t̄ where Tr is the period of |ψr〉, t̄ ∈ [0, Tr[ is
such that |ψr〉t̄ =

∣∣ψ̄〉 and N is an integer large enough to have |ψ〉NT+t̄ close enough to

|ψr〉NT+t̄ =
∣∣ψ̄〉.

When H0 = 0, it is very simple to generate periodic trajectories passing through any
goal state

∣∣ψ̄〉: take ωr = 0 and t 7→ urk(t) odd and Tr-periodic. Then any solution
of i d

dt
|ψ〉 = (

∑m
k=1 uk(t)Hk) |ψ〉 is Tr periodic (use the time reversal symmetry implied

by odd reference controls urk(t)). Take for |ψr〉 the solution starting at
∣∣ψ̄〉. Moreover

if the Lie algebra spanned by {iH1, . . . , iHm} contain su(n), then there exists a lot of
odd and Tr-periodic functions urk(t) such that the linearization around |ψr〉 is controllable
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(see [24, 25]). Therefore the tracking controller should ensure convergence towards the
reference trajectory.

Notice finally that the tracking feedback formulae (3.43) extend directly to infinite
dimensional systems for which convergence based on Lasalle’s invariance principle is much
harder to obtain. We refer to [49, 12] for such stabilization results.

3.6.2 Tracking and quantum gate design

Let us consider the propagator Ut ∈ U(n) associated to (3.41):

i
d

dt
U =

(
H0 + ω1 +

m∑
k=1

ukHk

)
U. (3.45)

Notice the invariance of (3.45) versus right translation in U(n) (the unitary group over
Cn): if Ut is solution of (3.45), then for any V ∈ U(n), UtV is also a solution of (3.45)
with the same controls ω and u.

Consider a reference trajectory t 7→ (U r
t , ω

r(t), ur1(t), . . . , urm(t)) satisfying (3.45). The
operator counterpart of the control Lyapunov function for |ψ〉 becomes now

L(U,U r) = n−<
(
Tr
(
U †U r

))
. (3.46)

It is invariant versus right translation (L(U,U r) = L(UV, U rV ) for any V ∈ U(n)) and we
have

d

dt
L =

m∑
k=1

(uk − urk)=
(
Tr
(
U †HkU

r
))

+ (ω − ωr)=
(
Tr
(
U †U r

))
.

We deduce the following tracking feedback:

uk = urk − ak=
(
Tr
(
U †HkU

r
))

for k = 1, . . . ,m, ω = ωr − b=
(
Tr
(
U †U r

))
(3.47)

(ak > 0 and b > 0 parameters).
Consider now the driftless case where H0 = 0 and assume that we are looking for an

open-loop control [0, T ] 3 t 7→ (ω, u1, . . . , um) steering U from 1 to Ū , where Ū is some
target unitary transformation of U(n) describing a quantum gate. As proposed in [63],
reference trajectories associated to reference controls ωr and urk that are simultaneously
periodic and odd functions of times yield automatically to time-periodic reference operator
trajectories U r just by integration of i d

dt
U r = (ωr1 +

∑m
k=1 u

r
k(t)Hk)U

r. Take then the
solution starting from Ū and compute the steering control by numerical integration of the
closed-loop system (3.45) with the tracking feedback (3.47). As soon as the Lie algebra
generated by the iHk’s contains su(n), a generic choice for ωr and urk yields to a reference
trajectory around which the linearized system is controllable and then, as shown in [63],
the tracking controller is asymptotically stable if the initial tracking error Lt=0 is strictly
less than 2.

The above formulation does not directly extend to infinite dimensional case: the for-
mula (3.46) defining the control Lyapunov function is indefinite for n =∞. Nevertheless we
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can consider a finite dimensional truncation by considering the following control Lyapunov
function

L(U r, U) = nP −<
(
Tr
(
PU †U rP

))
where P is an orthogonal projector on a finite dimensional subspace of dimension nP . Since

d

dt
L =

m∑
k=1

(uk − urk)=
(
Tr
(
PU †HkU

r
))

+ (ω − ωr)=
(
Tr
(
PU †U rP

))
,

the tracking feedback reads:

uk = urk − ak=
(
Tr
(
PU †HkU

rP
))

for k = 1, . . . ,m, ω = ωr − b=
(
Tr
(
PU †U rP

))
.

It will be interesting to test such Lyapunov strategy for the generation of a C-not gate
on the two trapped ions system described in Subsection 3.3.7 and to compare it with
the sequence of pulses described in [33][Chapter 8, Subsection 8.4.3] corresponding to the
Cirac-Zoller gate. To apply this tracking feedback, it suffices to choose

• P as the orthogonal projector on the ”computational space” of dimension nP = 4
and spanned by |gg, 0〉, |ge, 0〉, |eg, 0〉 and |ee, 0〉 (0-phonon subspace),

P = |gg, 0〉 〈gg, 0|+ |ge, 0〉 〈ge, 0|+ |eg, 0〉 〈eg, 0|+ |ee, 0〉 〈ee, 0| ;

• Ū such that its restriction to the computational space, PŪP , coincides with the
C-not gate; take for example

Ū = |gg, 0〉 〈gg, 0|+ |ge, 0〉 〈ge, 0|+ |eg, 0〉 〈ee, 0|+ |ee, 0〉 〈eg, 0|+ 1− P ;

• U r as a periodic trajectory passing through Ū and associated to odd and periodic
references for the complex amplitudes u1, u1b, u1r, u2, u2b and u2r.

When L vanishes PU †U rP = P and, whenever U r passes through Ū , the restriction of U
to the computational space coincides with the C-not gate PUP = PŪP .
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Chapter 4

Models of Open Systems

4.1 Quantum measurement

Whenever talking about the quantum state of a system, we refer to an observer’s knowledge
about a system. More precisely, it is the knowledge of the observer about the outcome of
the future measurements on the system.

Such information theoretical definition of the state of a physical system may appear
unfamiliar and uncomfortable as for instance, the observers with different knowledge may
assign different states, simultaneously, to a single system. The most natural way to talk
about the consistency of these assigned states is to define a common state of maximal
knowledge as a common pure state. Indeed, considering the collection {ρj} of different
density matrices assigned by different observers to a same physical system, we call the
common state of maximal knowledge a pure state defined by a wave function |ψ〉 such that
there exists an ε > 0 for which, ρj − ε |ψ〉 〈ψ| is a positive operator, i.e. ρj is the mixture
of |ψ〉 with some other states. From a system theoretical point of view, we can think of
this common state of maximal knowledge as the actual state of the system and the density
matrix ρj is the filtering state encoding the information gained by an observer j.

Another consequence of such definition of the quantum state is that any measurement
of the system, which leads to obtaining information on the system, necessarily changes the
state of the system. This is known as the projection postulate. Through this section, we
provide a brief overview of important measurement paradigms for quantum systems and
the two next sections are devoted to some concrete examples. This chapter is strongly
inspired from [33], [71] and [64].

4.1.1 Projective measurement

The projective measurement is the traditional description of measurement in quantum
mechanics. Indeed, assume the measurement of a physical quantity O to which we can
assign a Hermitian operator (observable) O defined on H the Hilbert space of the system.

77
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We start by diagonalizing the operator as

O =
∑
ν

λνPν ,

where λν ’s are the eigenvalues of O, which are all real and different, and Pν is the projection
operator over the associated eigenspace. Note that, in general, the spectrum of the operator
O can be degenerate and therefore the projection operator Pν is not necessarily a rank-1
operator.

When we measure O, the result will be necessarily one of the eigenvalues λν . Moreover,
an outcome λν of the measurement implies an instantaneous projection of the state of our
knowledge through the associated projection operator. We also talk of the conditional
state of the system as it is conditioned on the measurement outcome. Indeed, assuming
that our state of knowledge at time t is given by the density matrix1 ρ , measurement of
the physical observable O at time t can be formulated as below:

1. The probability of obtaining the value λν is given by pν = Tr (ρPν); note that
∑

ν pν =
1 as

∑
ν Pν = 1H (1H represents the identity operator of H).

2. After the measurement, the conditional (a posteriori) state of the system given the
outcome λν is

ρ+ =
Pν ρ Pν
pν

.

Here, ρ+ denotes the state of the system just after the measurement. Furthermore, we
have assumed that the evolution, from other causes, of the system during the measurement
process is not significant and can be neglected.

A particular feature of the projective measurement is that, if the same measurement
is immediately repeated, then the same result is guaranteed. Indeed, the probability of
obtaining the same result λν for the second measurement of the observable O is given by

Tr (Pνρ+) = Tr (Pν ρ Pν)/pν = 1,

where we have applied the fact that PνPν = Pν .
For pure states (encoding the common state of maximal knowledge), ρ = |ψ〉 〈ψ|, the

projective measurement can be more simply expressed as

pν = 〈ψ|Pν |ψ〉 ,

ψ+ =
Pνψ√
pν
.

Finally, the particular case of a projective measurement where the eigenvalues {λν} are
non-degenerate, and therefore the eigenprojections Pν are rank-1 operators, is called a von
Neumann measurement.

1ρ is an operator on H, Hermitian, positive and of trace 1. Thus Tr
(
ρ2
)
≤ 1 with equality only when

ρ is an orthogonal projector on some pure quantum state |ψ〉, i.e., ρ = |ψ〉 〈ψ|.
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4.1.2 Positive Operator Valued Measure (POVM)

The projective measurements are, generally, inadequate for describing real measurements,
as the experimenter never directly measures the system of interest. In fact, the system
of interest (for instance an atom or a quantized electromagnetic field) interacts with its
environment (electromagnetic field or a probe atom), and the experimenter observes the
effect of the system on the environment (the radiated field or the probe atom).

In order to formulate such measurement paradigm, we need to consider the quantum
state in a larger Hilbert space consisting of the system and the measurement apparatus
(also called the meter). Indeed, we consider a total initial state (before the measurement
process) for the system together with the meter, which is given by a separable wavefunction

|Ψ〉 = |ψS〉 ⊗ |θM〉

living on the total Hilbert space HS⊗HM . The measurement process consists in a unitary
evolution of the whole state (leading to a non-separable–entangled– state) followed by a
projective von Neumann measurement of the measurement apparatus. Let us denote by
US,M the unitary evolution entangling the state of the system to that of the meter, and
by OM = 1S ⊗

(∑
ν λνPν

)
the measured observable for the meter. Here, the projection

operator Pν is a rank-1 projection in HM over the eigenstate |λν〉 ∈ HM : Pν = |λν〉 〈λν |.
The measurement procedure can be formulated as below (see section A.3 for an introduction
to tensor product)

1. The probability of obtaining the value λν is given by pν = 〈ψS|M†
νMν |ψS〉 where

Mν is an operator defined on HS, the Hilbert space of the system, by(
Mν |ψS〉

)
⊗ |λν〉 =

(
1S ⊗ Pν

)
US,M

(
|ψS〉 ⊗ |θM〉

)
.

Thus we have

US,M
(
|ψS〉 ⊗ |θM〉

)
=
∑
ν

(
Mν |ψS〉

)
⊗ |λν〉 .

Note that
∑

ν pν = 1 as

∑
ν

〈ψS |M†νMν |ψS〉 =
(
|ψS〉 ⊗ |θM 〉

)†
U †S,M

(∑
ν

1H ⊗ Pν
)
US,M

(
|ψS〉 ⊗ |θM 〉

)
= 1,

(4.1)

where we have used
∑

ν |λν〉 〈λν | = 1M and U †S,MUS,M = 1SM .

2. After the measurement, the conditional (a posteriori) state of the system given the
outcome λν is

|ψS〉+ =
Mν |ψS〉√

pν
.
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The operators Mν are called the measurement operators (see appendix B).
This can also be extended to the case of a mixed state where the probability of obtaining

the value λν is simply given by pν = Tr
(
MνρM†

ν

)
and the conditional state given the

outcome λν is

ρ+ = Mν(ρ) :=
MνρM†

ν

Tr
(
MνρM†

ν

) , (4.2)

with Mν a nonlinear super-operator (it sends an operator to an operator) on HS. Indeed,
through the computations of (4.1),

∑
νM†

νMν = 1S and this, together with the positive-
ness of the operatorsM†

νMν , are the only conditions for the set {Mν} to define a Positive
Operator Valued Measure (POVM).

Also, one can define the Generalized POVM as the case where the initial state of
the meter is not a pure state or that the projective measurement of the meter is not
a von Neumann measurement (see [71, chapter 1] for a tutorial exposure of quantum
measurement).

4.1.3 Quantum Non-Demolition (QND) measurement

Before anything, we need that the measurement of the meter observable OM after the
interaction between the system and the meter encodes some information on the system S
itself. This imposes some constraints on unitary transformation US,M considered in the
previous subsection:

US,M |Ψ〉 = US,M
(
|ψS〉 ⊗ |θM〉

)
.

Assume that such unitary transformation US,M results from a Hamiltonian H = HS+HM+
HSM where HS and HM describe, respectively, the evolutions of the system and the meter
and HSM denotes the system-meter interaction Hamiltonian. Then US,M is the propagator
generated by H during the interaction interval of length τ between S and M (for time-
invariant H, we have US,M = e−iτH). It is clear that a necessary condition for the influence
of S on OM just after the interaction is that [H,OM ] 6= 0. Otherwise OMUS,M = US,MOM .
Using the spectral decomposition OM =

∑
ν λν1S⊗|λν〉 (see previous subsection), we have

for any ν,

OMUS,M
(
|ψS〉 ⊗ |λν〉

)
= US,MOM

(
|ψS〉 ⊗ |λν〉

)
= λνUS,M

(
|ψS〉 ⊗ |θM〉

)
.

Thus, necessarily US,M
(
|ψS〉⊗ |λν〉

)
=
(
Uν |ψS〉

)
⊗ |λν〉 where Uν is a unitary transforma-

tion on HS only. With |θM〉 =
∑

ν θν |λν〉, we get, for any |ψS〉,

US,M
(
|ψS〉 ⊗ |θM〉

)
=
∑
ν

θν
(
Uν |ψS〉

)
⊗ |λν〉

Then measurement operators Mν are equal to θνUν . The probability to get measurement
outcome ν,

〈
ψS|M†

νMν |ψS
〉

= |θν |2, is completely independent of systems state |ψS〉. This
means that the measurement statistics for the meter observable OM does not encode any
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information on the system S and therefore [H,OM ] must not vanish. When HM = 0, this
necessary condition reads [HSM ,OM ] 6= 0.

Let us consider the measurement of a physical observable OS defined for the system
S, through its coupling with a meter M with a von Neumann measurements of an observ-
able OM on the meter. The essential condition for a measurement process of OS to be
quantum non-demolition (abbreviated as QND) is that the measurement should not affect
the eigenstates of OS when OS admits a non degenerate spectrum (other-wise we have to
consider the eigenspace instead of the eigenstate). A sufficient but not necessary condition
for this is

[H,OS] = 0

Under this condition OS and US,M commute. For eigenstate |µ〉 of OS associated to eigen-
value µ, we have

OSUS,M
(
|µ〉 ⊗ |θM〉

)
= US,MOS

(
|µ〉 ⊗ |θM〉

)
= µUS,M

(
|µ〉 ⊗ |θM〉

)
.

Exercice 4.1.1. Prove that the above formula implies US,M
(
|µ〉⊗|θM〉

)
= |µ〉⊗

(
Uµ |θM〉

)
where Uµ is a unitary operator on HM only: US,M does not entangle eigenstates of OS with
the meter.

With the measurement operators Mν , we also have

US,M
(
|µ〉 ⊗ |θM〉

)
=
∑
ν

Mν |µ〉 ⊗ |λν〉 .

Thus necessarily, using exercise 4.1.1 eachMν |µ〉 is colinear to |µ〉. Whatever the measure-
ment outcome ν is, the conditional state provided by (4.2) remains unchanged: ρ+ = Mν(ρ)
when ρ = |µ〉 〈µ|. When the spectrum of OS is degenerate and Pµ is the projector on
the eigenspace associated to the eigenvalue µ of OS, this invariance reads: for all ν,
MνPµ = PµMν . Any eigenspace of OS is invariant with respect to all the Mν ’s.

4.1.4 Stochastic process attached to a POVM

To any POVM defined by a set of measurement operators (Mν) on HS, is attached a
stochastic process. This process admits the set {ρ} of density operators on HS as state
space. It is defined by the transition rules:

ρ+ =
MνρM†

ν

Tr
(
MνρM†

ν

) with probability pν = Tr
(
MνρM†

ν

)
. (4.3)

For any observable A on HS, its conditional expectation value after the transition
knowing the state ρ just before the transition is given by

E (Tr (Aρ+)/ρ) = Tr (AKρ) (4.4)

where the linear map Kρ =
∑

νMνρM†
ν is a Kraus map (see appendix B).
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Assume that this POVM provides a QND measurement of an observable OS on HS.
Then the orthogonal projector POS on any eigenspace of OS, yields to a martingale
Tr (ρPOS):

E (Tr (POSρ+)/ρ) = Tr (POSρ)

since POS is a stationary point of the dual Kraus map K∗: K∗POS =
∑

νM†
νPOSMν = POS .

Moreover, if POS is of rank one, then it corresponds to a stationary state ρ̄ = POS of the
Markov process (4.3): for all ν, Mν ρ̄M†

ν = Tr
(
Mν ρ̄M†

ν

)
ρ̄.

Exercice 4.1.2. Prove that for a QND measurement of a system observable OS, the ran-
dom process Tr (ρOS) is also a martingale.

4.2 A discrete-time system: the photon-box

This section is devoted to the case study of a photon box consisting of a cavity quan-
tum electrodynamic setup developed within Laboratoire Kastler-Brossel (LKB) at École
Normale Supérieure.

Figure 4.1: the ENS photon box; atoms get out box B one by one, undergo then a first
Rabi pulse in Ramsey zone R1, become entangled with electromagnetic field trapped in C,
undergo a second Rabi pulse in Ramsey zone R2 and finally are measured in the detector
D.
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4.2.1 The Markov chain model

Here S corresponds to a quantized trapped mode inside the cavity. It is described by a
wave function |ψ〉 in the Hilbert space HS (see section 2.2)

HS =

{
∞∑
n=0

ψn |n〉 | (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n photons inside the cavity and
l2(C) is the space of square summable sequences in C (

∑∞
n=0 |ψn|2 = 1). The meter M is

associated to atoms : HM = C2, each atom admits two-level and is described by a wave
function cg |g〉+ ce |e〉 with |cg|2 + |ce|2 = 1.

Let us follow an atom leaving B where it is prepared in state |g〉. It is symbolized by
a small horizontal and blue torus in figure 4.2. When atom comes out B, the state of the
composite system atom/field is separable and is denoted by |Ψ〉B ∈ HM ⊗HS

|Ψ〉B = |g〉 ⊗ |ψ〉 . (4.5)

When atom comes out the first Ramsey zone R1 (red torus between R1 and C), the state
remains separable but has changed to

|Ψ〉R1
= (UR1 ⊗ 1) |Ψ〉B = (UR1 |g〉)⊗ |ψ〉 (4.6)

where the unitary transformation performed in R1 only affects the atom:

UR1 = e−i
θ1
2

(x1σx+y1σy+z1σz) = cos( θ1
2

)− i sin( θ1
2

)(x1σx + y1σy + z1σz) (4.7)

corresponds, in the Bloch sphere representation, to a rotation of angle θ1 around the
oriented axis defined by the unit-length vector x1~ı + y1~ + z1

~k (x2
1 + y2

1 + z2
1 = 1), see

section 2.1.2.
When atom comes out cavity C, the state does not remain separable: atom and field

becomes entangled and the state is described by

|Ψ〉C = UC |Ψ〉R1
(4.8)

where the unitary transformation UC on HM ⊗ HS is associated to a Jaynes-Cumming
Hamiltonian for describing the atom/field inter-action:

HC = ∆
2
σz + iΩ

2
(σ−a

† − σ+a) (4.9)

is the Jaynes-Cumming Hamiltonian after the RWA approximation (∆ = ωeg−ωc de-tuning
between atom and cavity field, Ω the vacuum Rabi pulsation, see section 3.3.5 and (3.25)
with u = 0, ωr = ωc and ∆c = 0 and ∆eg = ∆). The precise form of UC is given in next
sub-section for resonant and dispersive cases.
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When atom comes out second Ramsey zone R2, the state becomes

|Ψ〉R2
= (UR2 ⊗ 1) |Ψ〉C

where UR2 is similar to UR1 but with different parameters θ2, x2, y2, z2,

UR2 = e−i
θ2
2

(x2σx+y2σy+z2σz) = cos( θ2
2

)− i sin( θ2
2

)(x2σx + y2σy + z2σz). (4.10)

This means that, just before the measurement in D, the state is given by

|Ψ〉R2
= U |g〉 ⊗ |ψ〉 = |g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 (4.11)

where U = UR2UCUR1 is the total unitary transformation defining the linear measurement
operators Mg and Me on HS.

Denote by s ∈ {g, e} the measurement outcome in detector D: with probability
ps =

〈
ψ|M†

sMs|ψ
〉

we get s. Just after the measurement outcome s, the state becomes
separable. It has partially collapsed to

|Ψ〉D = 1√
ps
|s〉 ⊗ (Ms |ψ〉) =

|s〉 ⊗ (Ms |ψ〉)√〈
ψ|M†

sMs|ψ
〉 .

We have in front of a Markov process: after the complete passage of an atom, the cavity
state initially equal to |ψ〉 undergoes an irreversible and stochastic jump to |ψ〉+ driven by
Mg and Me defined by unitary operator U = UR2UCUR1 and (4.11):

|ψ〉+ =


Mg |ψ〉√
〈ψ|M†gMg |ψ〉 , with probability pg =

〈
ψ|M†

gMg|ψ
〉
;

Me|ψ〉√
〈ψ|M†eMe|ψ〉 , with probability pe =

〈
ψ|M†

eMe|ψ
〉
.

(4.12)

For the density matrix formulation we have thus

ρ+ =

 Mg(ρ) = MgρMg

Tr(MgρM†g)
, with probability pg = Tr

(
MgρM†

g

)
;

Me(ρ) = MeρMe

Tr(MeρM†e)
, with probability pe = Tr

(
MeρM†

e

)
.

(4.13)

Exercice 4.2.1. Consider that Mg and Me defined by (4.11). Show that, for any density
matrix ρ the operator (defining a Kraus map, see appendix B)

MgρM†
g +MeρM†

e

does not depend on (θ2, x2, y2, z2), the parameters of the second Ramsey pulse UR2.



4.2. A DISCRETE-TIME SYSTEM: THE PHOTON-BOX 85

4.2.2 The Jaynes-Cumming propagator

In the resonant case, ∆ = 0. The atom/cavity propagator UC based on Jaynes-Cumming
Hamiltonian (4.9) admits the following form (see [33] for the detailed derivations including
Gaussian radial dependence of the quantized mode and atom velocity):

UC = |g〉 〈g| cos
(

Θ
2

√
N
)

+ |e〉 〈e| cos
(

Θ
2

√
N + 1

)
+ |g〉 〈e|

(
sin

(
Θ
2

√
N

)
√
N

)
a† − |e〉 〈g| a

(
sin

(
Θ
2

√
N

)
√
N

)
(4.14)

where N = a†a is the photon number operator, the adjustable parameter Θ being the Rabi
angle with zero photon.

In the dispersive case, |∆| � |Ω|, UC based on Jaynes-Cumming Hamiltonian (4.9)
admits the following form (see [33] for the detailed derivations based on adiabatic invari-
ance):

UC = |g〉 〈g| e−iφ(N) + |e〉 〈e| eiφ(N+1) (4.15)

where the dephasing φ(N) depends on the photon number and can be approximated by a
linear real function: φ(N) = ϑ0 + ϑN , the phases ϑ0 and ϑ being adjustable parameters.

The exercise below can be seen as a simplified derivation of the above formulae for UC .

Exercice 4.2.2. Let us assume that the Jaynes-Cumming propagator UC admits the fol-
lowing form

UC = e

−iτ

∆
(
|e〉〈e|−|g〉〈g|

)
2

+i
Ω
(
|g〉〈e|a†−|e〉〈g|a

)
2



where τ is an interaction time.

1. Show by recurrence on integer k that

(
∆
(
|e〉 〈e| − |g〉 〈g|

)
+ iΩ

(
|g〉 〈e| a† − |e〉 〈g| a

))2k

=

|e〉 〈e|
(
∆2 + (N + 1)Ω2

)k
+ |g〉 〈g|

(
∆2 +NΩ2

)k
and that(

∆
(
|e〉 〈e| − |g〉 〈g|

)
+ iΩ

(
|g〉 〈e| a† − |e〉 〈g| a

))2k+1

=

|e〉 〈e|∆
(
∆2 + (N + 1)Ω2

)k − |g〉 〈g|∆ (∆2 +NΩ2
)k

+ iΩ
(
|g〉 〈e|

(
∆2 +NΩ2

)k
a† − |e〉 〈g| a

(
∆2 +NΩ2

)k )
.
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2. Deduce that

UC = |g〉 〈g|

cos
(
τ
√

∆2+NΩ2

2

)
+ i

∆ sin
(
τ
√

∆2+NΩ2

2

)
√

∆2 +NΩ2



+ |e〉 〈e|

cos

(
τ
√

∆2+(N+1)Ω2

2

)
− i

∆ sin

(
τ
√

∆2+(N+1)Ω2

2

)
√

∆2 + (N + 1)Ω2


+ |g〉 〈e|

Ω sin
(
τ
√

∆2+NΩ2

2

)
√

∆2 +NΩ2

 a† − |e〉 〈g| a

Ω sin
(
τ
√

∆2+NΩ2

2

)
√

∆2 +NΩ2

 (4.16)

where N = a†a the photon-number operator (a is the photon annihilator operator).

3. In the resonant case, ∆ = 0, express the vacuum Rabi angle Θ appearing in (4.14)
with respect to Ω and τ .

4. In the dispersive case, |∆| � |Ω|, and when the interaction time τ is large, ∆τ ∼(
∆
Ω

)2
, show that, up to first order terms in Ω/∆, we get

e

−iτ

∆
(
|e〉〈e|−|g〉〈g|

)
2

+i
Ω
(
|g〉〈e|a†−|e〉〈g|a

)
2


= |g〉 〈g| ei

(
∆τ
2

+
Ω2τ
4∆

N

)
+|e〉 〈e| e−i

(
∆τ
2

+
Ω2τ
4∆

(N+1)

)
.

Express the phases ϑ0 and ϑ appearing in (4.15) with respect to τ , ∆ and Ω.

4.2.3 The resonant case

Let us detail the operators Mg and Me defined in (4.11) when UC is given by (4.14),

UR1 = e−i
θ1
2
σy and UR2 = 1. Since UR1 = cos

(
θ1
2

)
+ sin

(
θ1
2

) (
|g〉 〈e| − |e〉 〈g|

)
, |Ψ〉R1

given
by (4.6) reads:

|Ψ〉R1
=
(

cos
(
θ1
2

)
|g〉 − sin

(
θ1
2

)
|e〉
)
⊗ |ψ〉 .
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Then |Ψ〉C given by (4.8) becomes

|Ψ〉C = cos
(
θ1
2

)(
|g〉 ⊗ cos

(
Θ
2

√
N
)
|ψ〉 − |e〉 ⊗ a

(
sin

(
Θ
2

√
N

)
√
N

)
|ψ〉
)

− sin
(
θ1
2

)(
|e〉 ⊗ cos

(
Θ
2

√
N + 1

)
|ψ〉+ |g〉 ⊗

(
sin

(
Θ
2

√
N

)
√
N

)
a† |ψ〉

)

= |g〉 ⊗
(

cos
(
θ1
2

)
cos
(

Θ
2

√
N
)
− sin

(
θ1
2

)( sin

(
Θ
2

√
N

)
√
N

)
a†

)
|ψ〉

− |e〉 ⊗
(

sin
(
θ1
2

)
cos
(

Θ
2

√
N + 1

)
+ cos

(
θ1
2

)
a

(
sin

(
Θ
2

√
N

)
√
N

))
|ψ〉 .

Since UR2 = 1, |Ψ〉C = |Ψ〉R2
. The measurement operators are thus given by

Mg = cos
(
θ1
2

)
cos
(

Θ
2

√
N
)
− sin

(
θ1
2

)( sin

(
Θ
2

√
N

)
√
N

)
a†

Me = − sin
(
θ1
2

)
cos
(

Θ
2

√
N + 1

)
− cos

(
θ1
2

)
a

(
sin

(
Θ
2

√
N

)
√
N

) (4.17)

Exercice 4.2.3. Verify that the operators (measurement operators) given by (4.17) satisfy
M†

gMg +M†
eMe = 1 (hint: use, N = a†a, a f(N) = f(N + 1) a and a†f(N) = f(N −

1) a†).

4.2.4 The dispersive case

Let us detailed the measurement operatorsMg andMe defined in (4.11) when UC is given

by (4.15), UR1 = e−i
π
4
σy and UR2 = e−i

π
4

(− sin ησx+cos ησy) (with angle η chosen below). Since

UR1 = |g〉〈e|−|e〉〈g|√
2

, |Ψ〉R1
given by (4.6) reads:

|Ψ〉R1
=
|g〉 − |e〉√

2
⊗ |ψ〉 .

Then |Ψ〉C given by (4.8) becomes

|Ψ〉C = 1√
2
|g〉 ⊗ e−iφ(N) |ψ〉 − 1√

2
|e〉 ⊗ eiφ(N+1) |ψ〉 .

Since UR2 = 1√
2

(1 + eiη |g〉 〈e| − e−iη |e〉 〈g|), we have

2 |Ψ〉R2
=
(
|g〉 − e−iη |e〉

)
⊗ e−iφ(N) |ψ〉 −

(
eiη |g〉+ |e〉

)
⊗ eiφ(N+1) |ψ〉

= |g〉 ⊗
(
e−iφ(N) − ei(η+φ(N+1))

)
|ψ〉 − |e〉 ⊗

(
e−i(η+φ(N)) + eiφ(N+1)

)
|ψ〉
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where φ(N) = ϑ0 +Nϑ. Take ϕ0 an arbitrary phase and set η = 2(ϕ0−ϑ0)−ϑ− π. Then
the measurement operators are given by the simple formulae

Mg = cos(ϕ0 +Nϑ), Me = sin(ϕ0 +Nϑ) (4.18)

where we have removed the irrelevant global phase factors ei(ϕ0−ϑ0) forMg and ei(ϑ0−ϕ0+π/2)

forMe. In the Fock basis {|n〉}∞0 ), the operatorMg (resp. Me) is diagonal with diagonal
elements cos(nϑ+ϕ0) (resp. sin(nϑ+ϕ0). We note in particular thatM†

gMg+M†
eMe = 1.

Exercice 4.2.4. Take Mg and Me defined by (4.11) with UC given by (4.15) with φ an
arbitrary real value function.

1. Show that any Fock state |n〉 is an eigenvector of Mg and Me, whatever UR1 and
UR2 are.

2. Deduce from preceding question that, for any density operator ρ, any integer n and
any Ramsey pulses UR1 and UR2, we have〈

n|MgρM†
g|n
〉

+
〈
n|MeρM†

e|n
〉

= 〈n|ρ|n〉.

3. What does-it mean for the Markov chain associated to such Mg and Me and defined
by (4.13).

4.2.5 Measurement uncertainties and a Bayesian filter

This sub-section is directly inspired from [28]. Let us consider now the situation where the
atom passes through the cavity but we do not detect it after the second Ramsey zone. To
describe the cavity state we have to use mixed states and thus density matrix ρ and the
operator Mg and Me defined in (4.2). Having no knowledge on whether the atom ends up
in the state |g〉 or |e〉, the best we can say about the cavity state (our knowledge of the
system) after the passage of the atom is its expectation value:

ρ+ = pgMgρ+ peMeρ =MgρM†
g +MeρM†

e. (4.19)

The above map, sending ρ to ρ+, defines the Kraus representation for a linear quantum
operation (see the Appendix B for a definition and properties of linear quantum operations).

Now consider the case where we realize the atom detection but we are uncertain about
its result. Indeed, in practice, the detection process is not perfect and we need to take into
account at least three kinds of uncertainties:

• the atom preparation process is itself a random process following a Poisson law;
indeed the pulses carrying the atoms that pass through the setup might be empty of
atoms; we note the occupancy rate of the pulses by ηa ∈]0, 1] (ηa is about 0.4 for the
LKB experimental setup);
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• the atom detector is imperfect and can miss a certain percentage of the atoms; we
denote the detector’s efficiency by ηd ∈]0, 1] (ηd is about 0.8 for the LKB experimental
setup);

• the atom detector is not fault-free and the result of the measurement (atom in the
state |g〉 or |e〉) can be interchanged; we denote the fault rate by ηf ∈ [0, 1/2] (ηf is
about 0.1 for the LKB experimental setup).

Whenever realizing the atom detection, we can achieve three results: 1- the atom is in |g〉,
2- the atom in |e〉, 3-the detector does not detect any atom. For each situation we may
have various possibilities:

Atom in |g〉: Either the atom is actually in the state |e〉 and the detector has made a
mistake by detecting it in |g〉 (this happens with a probability pfg to be determined)
or the atom is really in the state |g〉 (this happens with probability 1− pfg ). Indeed,
the conditional probability of having the atom in |e〉 while the detection result has
been |g〉 may be computed through the Bayesian formula and is given by:

pfg =
ηfpe

ηfpe + (1− ηf )pg
,

where pg = Tr
(
MgρM†

g

)
and pe = Tr

(
MeρM†

e

)
.

Also, the conditional evolution of the density matrix (as our knowledge on the cavity
state conditioned on the measurement result) is given as follows:

ρ+ = pfgMeρ+ (1− pfg )Mgρ

=
ηf

ηfpe + (1− ηf )pg
MeρM†

e +
1− ηf

ηfpe + (1− ηf )pg
MgρM†

g.

Atom in |e〉: Exactly in the same way, the conditional evolution of the density matrix is
given as follows:

ρ+ =
ηf

ηfpg + (1− ηf )pe
MgρM†

g +
1− ηf

ηfpg + (1− ηf )pe
MeρM†

e.

No atom detected: Either the pulse has been empty (this happens with a probability
pna to be determined) or there has been an atom which has not been detected by
the detector (this happens with the probability 1 − pna). Indeed, the conditional
probability of having an empty pulse while no atom has been detected by the detector
can be computed through the Bayes rule and is given by:

pna =
1− ηa

ηa(1− ηd) + (1− ηa)
=

1− ηa
1− ηaηd

.

In such case the density matrix remains untouched. The complementary situation
corresponding to an undetected atom leads to an evolution of the density matrix
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through the Kraus representation (4.19). Finally, the conditional evolution of the
density matrix (conditioned on the result of the measurement indicating no detected
atoms) is given as follows:

ρ+ = pna ρ+ (1− pna)(MgρM†
g +MeρM†

e)

=
1− ηa

1− ηaηd
ρ+

ηa(1− ηd)
1− ηaηd

(MgρM†
g +MeρM†

e).

Here, still, we have a Kraus representation for a linear quantum operation.

4.2.6 Relaxation as an unread measurement

Additionally to the above uncertainties in the measurement process, one needs to consider
the relaxation of the system due to its coupling to the environment to obtain a complete
model for the open system. Two main sources of relaxation can be considered here. A first
source concerns the photon loss phenomenon caused by their absorption by the environment
(the mirrors in particular). The second source concerns the photon gain phenomenon due
to the coupling of the field with a reservoir of non-zero temperature (T ≈ 0.8K). Denoting
by κ− and by κ+, respectively the photon loss and the photon gain rate, and assuming
that the environment is in thermal equilibrium at temperature T , we have (kb denoting
the Boltzmann constant and ωc the cavity’s resonance frequency),

κ+ = κ−e
− ~ωc
kbT .

We refer to [33, Chapter 4, Page 187] for more details. By defining nth as the average
number of thermal photons per mode at frequency ωc, given by Planck’s law:

nth =
1

e
~ωc
kbT − 1

,

we can express both κ− and κ+ in term of unique cavity rate κ:

κ− = κ(1 + nth), κ+ = κnth.

Note that, here the dominant phenomenon is the photon loss as we work in low temperature
regime and therefore nth � 1 (nth ≈ 0.05 for the LKB experiment). We start therefore by
investigating the relaxation caused by the photon loss, which can be modeled through a
measurement operator Mloss, proportional to the photon annihilation operator a. Indeed,
considering τa the duration of a pulse (time interval between the passage of the two atoms),
this measurement operatorMloss can be written as

√
κ−τaa so that the probability of losing

a photon during the current pulse is given by (we neglect the possibility of losing many
photons at a same pulse as it admits a very small probability)

Ploss = Tr
(
M†

lossMlossρ
)

= κ−τaTr
(
a†aρ

)
= κ−τaTr (Nρ).
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This natural expression indicates that the probability of the photon loss is proportional
to the duration of the pulse and to the mean number of photons in the cavity. Here,
we assume moreover that the pulse duration is much smaller than the cavity decay time
Tcav = 1/κ (τa � Tcav). For the LKB experimental setup, the pulse duration τa is about
85e−06 seconds and Tcav is about 13e−02 seconds and therefore this assumption is clearly
satisfied.

Let us assume now that we dispose of an instrument allowing us to the detect this
photon loss when it happens. As soon as we detect a photon loss, the cavity density
matrix ρ evolves drastically as follows:

ρ+ =
MlossρM†

loss

Tr
(
MlossρM†

loss

) =
aρa†

Tr (Nρ)
,

recalling that this loss happens with a small probability of Tr (Nρ)(1 + nth)τa/τcav. Now,
let us consider the situation where we do not detect any photon loss. A first impression
would be that the density matrix should not change. This is not correct and the fact
that we do not detect any photon, actually, updates our information on the system as it
privileges the probability of having a fewer number of photons in the cavity. In order to
have a more clear idea of the situation, let us assume that, similarly to the photon loss
case, we associate a measurement operator Mno-loss to the phenomenon of not detecting a
photon loss. Let us now find this jump operator.

In order to have a well-defined POVM measurement, we need to have

M†
lossMloss +M†

no-lossMno-loss = 1. (4.20)

This, in particular, forbids the possibility of having Mno-loss = 1. Indeed, a possible
solution, up to the first order in τa/Tcav, is given by:

Mno-loss = 1− (1 + nth)τa
τa

2Tcav

a†a.

Noting now that, we actually de not dispose of a measurement instrument indicating the
loss of the photons, the evolution of the density matrix is given by the following Kraus
representation:

ρ+ =MlossρM†
loss +Mno-lossρM†

no-loss = ρ+ (1 + nth)
τa
Tcav

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
,

where we have still neglected the second order terms in τa/Tcav.
The photon gain phenomenon can be treated exactly in the same way and through the

measurement operator Mgain =
√
κ+τaa

† proportional to the photon creation operator.
The total evolution can be therefore written as follows:

ρ+ − ρ
τa

= −κ(1 + nth)

2

(
a†aρ+ ρa†a− 2aρa†

)
− κnth

2

(
aa†ρ+ ρaa† − 2a†ρa

)
.
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4.3 Continuous-time models

Through this section, we consider a quantum system for which the quantum jumps happen
continuously in time. As a simple prototype, we will start by considering a two-level atom
interacting with a quasi-resonant external optical field. In practice, the atom can also
interact with the vacuum modes of the free radiation field. This leads to spontaneous
jumps of the atom from its excited state |e〉 to the ground state |g〉 together with the
emission of a photon in a random direction (see Figure 4.2). Such spontaneous emission
might happen at any random time and therefore we deal with a time-continuous random
process. Through the next Subsection, we assume that we dispose of photo-detectors
allowing us to detect all the spontaneously emitted photons. We propose then a time-
continuous stochastic model for the evolution of the systems density matrix living in the
2-dimensional Hilbert space spanned by |g〉 and |e〉.

Figure 4.2: A single atom within a Paul trap is addressed by an external optical field and
the spontaneously emitted photons are detected by surrounding photodetectors.

4.3.1 Spontaneous emission, quantum Monte Carlo trajectories
and Lindblad equation

In order to model the evolution of the 2-level atom (state described by 2×2 density matrix
ρ) in presence of the spontaneous emission, we start by dividing the time into small slices
of duration dt as in a numerical scheme. During the time interval [t, t + dt[, either we
detect an emitted photon or none. Indeed, the probability of detecting a photon must be
proportional to the population of the excited state Tr (ρ |e〉 〈e|) = 〈e|ρ|e〉 as well as the
length of the time interval:

Pjump = Γ〈e|ρ|e〉dt.
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Here Γ is the decay rate of the system which is equivalent to the inverse of the atomic
lifetime of the excited state |e〉. The measurement operator corresponding to the jump
phenomenon is, actually, given by

Mjump =
√

Γdt σ−,

where σ− = |g〉 〈e|. This indicates the natural fact that, as soon as we detect a photon, the
density matrix collapses into the ground state |g〉 〈g|. Now, let us consider the situation
where the photodetectors do not detect any photon. As in Section 4.2.6, a first impression
would be that the only evolution of the density matrix should be its unitary evolution
due to the Hamiltonian terms. However, this impression is not correct as the fact of
not detecting any photon, actually, updates our information on the system as it implies
a smaller probability for the atom to be in the excited state. Indeed, if we denote by
Mno-jump the measurement operator corresponding to the phenomenon of not detecting a
photon, then in order to have a well-posed POVM, we need to have

M†
jumpMjump +M†

no-jumpMno-jump = 1. (4.21)

AsM†
jumpMjump is of order Γdt, the measurement operatorMno-jump is necessarily of order

1 with respect to Γdt. Indeed, we can write the following generic expression for Mno-jump:

Mno-jump = 1− ΓdtA− iΓdtB

where A and B are Hermitian matrices in C2. Replacing this inside (4.21) and neglecting
the second order terms in Γdt, we have

A =
1

2
σ+σ−,

where σ+ = σ†− = |e〉 〈g|. Therefore, whenever no jump is detected the density matrix
follows the following dynamics (we neglect the second order terms in dt):

ρ(t+ dt) =
Mno-jumpρM†

no-jump

Tr
(
Mno-jumpρ(t)M†

no-jump

)
= ρ(t)− dtΓ

2
(σ+σ−ρ(t) + ρ(t)σ+σ−) + dtΓTr (σ−ρ(t)σ+)ρ(t)− i dt Γ[B, ρ(t)],

where [B, ρ(t)] denotes the commutator between B and ρ(t). This can be written as

ρ(t+ dt)− ρ(t)

dt
= −Γ

2
(σ+σ−ρ(t) + ρ(t)σ+σ−) + ΓTr (σ−ρ(t)σ+)ρ(t)− i Γ[B, ρ(t)].

We note here that the above generic computation does not allow us to give an explicit
formulation of B. However, as it is a Hermitian matrix, the second part of the dynam-
ics corresponds to a unitary evolution. Indeed, the operator ΓB can be added to the



94 CHAPTER 4. MODELS OF OPEN SYSTEMS

Hamiltonian of the system (that we have not considered through the above dynamics) as
a perturbative Hamiltonian due to the coupling to the vacuum modes of the free radiation
field. This perturbation implies a relaxation-induced shift in the energy levels of the atom
which is known as the Lamb shifts of the atomic levels. In order to summarize, the stochas-
tic evolution of the atom’s density matrix is modeled through the following trajectories,
known as quantum Monte Carlo trajectories:

ρ(t+ dt) =


σ−ρ(t)σ+

Tr (σ−ρ(t)σ+)
= |g〉 〈g| with probability dtΓTr (σ−ρ(t)σ+),

ρ(t)− i dt Γ[H(t), ρ(t)]− dtΓ
2

(σ+σ−ρ(t) + ρ(t)σ+σ−) + dtΓTr (σ−ρ(t)σ+)ρ(t)

with probability 1− dtΓTr (σ−ρ(t)σ+),

where H(t) includes all the Hamiltonian terms. We can combine these two possibilities by
applying a Poisson process: in any given time interval [t, t+ dt[, we define dNt such that it
is unity with probability ΓTr (σ−ρ(t)σ+)dt and zero otherwise. In particular, we have for
the conditional average over all possible photo-detection histories

E (dNt) = ΓTr (σ−ρ(t)σ+)dt. (4.22)

Very formally, the above dynamics can be represented through the following Ito stochastic
master equation:

dρ = −i[H(t), ρ]dt− Γ

2
(σ+σ−ρ+ ρσ+σ−)dt+ ΓTr (σ−ρσ+)ρdt+

(
σ−ρσ+

Tr (σ−ρσ+)
− ρ
)
dNt.

(4.23)
Now, we can think of the situation where we dispose of a statistical ensemble of identical
two-level atoms with no mutual interactions. Assuming that anyone of these two-level
atoms obeys the above jump dynamics, we can consider the dynamics of the ensemble
average. Noting the statistical independence of dNt and ρ(t), together with the expres-
sion (4.22) for E (dNt), we get the following average dynamics:

dρ

dt
= −i[H(t), ρ] +

Γ

2

(
σ−ρσ+ −

1

2
σ+σ−ρ−

1

2
ρσ+σ−

)
, (4.24)

where (by an abuse of notations) ρ actually stands for the expectation value of ρ in the
above jump dynamics. The equation (4.24) is called the Lindblad master equation modeling
the average dynamics.

4.3.2 Λ-system

We consider here another quantum system consisting of an atom with three energy levels:
an excited state |e〉 and two ground states |g1〉 and |g2〉. The excited state |e〉 is assumed to
be highly unstable (very short atomic lifetime) and jumps towards one of the two ground
states (assumed to be metastable) by emitting spontaneously a photon (of relevant energy)
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Figure 4.3: Relevant energy levels, transitions and decoherence rates for the Λ-system.

in a random direction. Considering the energy structure of Figure 4.3, the stochastic
master equation modeling the quantum Monte-Carlo trajectories of the Λ-system is given
as follows:

dρ =− i[H0 + u(t)H1, ρ]dt

− 1

2
(Q†1Q1ρ+ ρQ†1Q1)dt+ Tr

(
Q1ρQ

†
1

)
ρdt+

 Q1ρQ
†
1

Tr
(
Q1ρQ

†
1

) − ρ
 dN1

t

− 1

2
(Q†2Q2ρ+ ρQ†2Q2)dt+ Tr

(
Q2ρQ

†
2

)
ρdt+

 Q2ρQ
†
2

Tr
(
Q2ρQ

†
2

) − ρ
 dN2

t , (4.25)

where

H0 = Ee |e〉 〈e|+ Eg1 |g1〉 〈g1|+ Eg2 |g2〉 〈g2| ,
H1 = µ1(|g1〉 〈e|+ |e〉 〈g1|) + µ2(|g2〉 〈e|+ |e〉 〈g2|),
Q1 =

√
Γ1 |g1〉 〈e| , Q2 =

√
Γ2 |g2〉 〈e| ,

and where dN1
t and dN2

t are independent Poisson increments with averages

E
(
dN1

t

)
= Tr

(
Q1ρQ

†
1

)
dt, E

(
dN2

t

)
= Tr

(
Q2ρQ

†
2

)
dt.

The control field u(t) is quasi-resonant with the transition frequencies and is given by

u(t) = u1e
i(ω1−∆e)t + u∗1e

−i(ω1−∆e)t + u2e
i(ω2−∆e−∆)t + u∗2e

−i(ω2−∆e−∆)t, (4.26)
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where ω1 = Ee−Eg1 and ω2 = Ee−Eg2, u1 and u2 are slowly varying complex amplitudes
and ∆e and ∆ are small detuning terms. We have three time scales here:

• the very fast time-scale associated to the optical frequencies ω1 and ω2;

• the fast time-scale associated to the lifetimes of the excited state’s transitions, Γ1

and Γ2;

• the slow time-scale associated to the laser amplitudes |µ1u1| and |µ2u2|.
We are interested here by the slow time-scale of system (4.25) where the control u(t) is
given by (4.26) with the following time-scales separation:

|µkuk| � Γk′ � ωk′′ and

∣∣∣∣ ddtuk
∣∣∣∣� Γk′ |uk|, k, k′, k′′ ∈ {1, 2}.

Through this section, we are going to perform the elimination of the fast time-scales for the
averaged Lindblad master equation and next, we derive the associated quantum Monte-
Carlo trajectories from the reduced Lindblad master equation. The Lindblad equation
modeling the average dynamics of the stochastic master equation (4.25) is given by

dρ

dt
= −i[H0 + u(t)H1, ρ] +

1

2

2∑
k=1

(
2QkρQ

†
k −Q†kQkρ− ρQ†kQk

)
. (4.27)

Elimination of the fastest time-scales is standard. It corresponds to the rotating wave
approximation and can be justified by averaging techniques. Indeed, by passing to the
rotating frame by considering the change of variables

ρ(t)→ eiH0tρ(t)e−iH0t

and removing the highly oscillating terms of frequencies 2ω1 and 2ω2, we obtain the Lind-
blad equation:

d

dt
ρ = −i[H̃, ρ] +

1

2

2∑
k=1

(2QkρQ
†
k −Q†kQkρ− ρQ†kQk). (4.28)

Elimination of the highly oscillating part in ueiH0tH1e
−iH0t, yields to the averaged Hamil-

tonian H̃

H̃ =
∆

2
(|g2〉 〈g2| − |g1〉 〈g1|) +

(
∆e +

∆

2

)
(|g1〉 〈g1|+ |g2〉 〈g2|)

+ Ω1 |g1〉 〈e|+ Ω∗1 |e〉 〈g1|+ Ω2 |g2〉 〈e|+ Ω∗2 |e〉 〈g2| . (4.29)

where Ωk = µkuk are the slowly varying complex Rabi amplitudes. Now, we have the
time-scales separation:

|∆e|, |∆|, |Ωk| � Γk′ and

∣∣∣∣ ddtΩk

∣∣∣∣� Γk′|Ωk|, k, k′ ∈ {1, 2}.

The slow/fast reduction of the next subsection, based on singular perturbation techniques,
allows us to remove the other fast dynamics.
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4.3.3 Slow/fast dynamics and model reduction

This sub-section is directly inspired from [54]. We take Γk = Γk/ε where ε is a small
positive parameter and Γk’s are of the same order as H̃ . Thus we have a master equation
with the following structure:

d

dt
ρ = −i[H̃, ρ] +

2∑
k=1

Γk
2ε

(2σkρσ
†
k − σ†kσkρ− ρσ†kσk), (4.30)

where σk = |gk〉 〈e|.
Define, with P = |e〉 〈e|,

ρf = Pρ+ ρP − PρP , ρs = (1− P )ρ(1− P ) +
1

Γ1 + Γ2

2∑
k=1

Γk σkρσ
†
k. (4.31)

We have

ρ = ρs + ρf −
1

Γ1 + Γ2

2∑
k=1

Γk σkρfσ
†
k (4.32)

and therefore ρ 7→ (ρf , ρs) is a bijective map. This map is a sort of “change of variables”
decoupling the slow part from the fast part of the dynamics. Note that, in the slow part,
ρs, we have somehow removed the fast dynamics associated with the optical state |e〉.
Moreover, note that, contrarily to ρf , the slow part ρs is still a well-defined density matrix.
This change of variable leads to a standard form:

d

dt
ρf = −

(
Γ1 + Γ2

)
2ε

(ρf + PρfP )− i(P [H̃, ρ] + [H̃, ρ]P − P [H̃, ρ]P ), (4.33)

i
d

dt
ρs = (1− P )[H̃, ρ](1− P ) +

1

Γ1 + Γ2

2∑
k=1

Γkσk[H̃, ρ]σ†k. (4.34)

where 1
ε

only appears in first equation defining d
dt
ρf . Therefore ρf is associated with the fast

part of the dynamics and ρs represents the slow part. The fast part is asymptotically stable

because −(Γ1+Γ2)
2ε

(ρf + PρfP ) defines a negative definite super-operator on the space of
Hermitian operators: Tr (−(ρf + PρfP )ρf ) = −(‖ρf‖2 + ‖PρfP‖2), and therefore Tr

(
ρ2
f

)
defines a strict quadratic Lyapunov function. Moreover the inverse of this super-operator
X 7→ X + PXP is

X 7→ X − 1

2
PXP. (4.35)

Here we can apply the slow manifold approximation (D.1) described in the Appendix D.
Computing the first order terms, we find the following approximation for ρf with respect
to ρs:

ρf =
−2iε

Γ1 + Γ2

(PH̃ρs − ρsH̃P ) +O(ε2). (4.36)
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where we have also applied Pρs = ρsP = 0. Inserting now the equations (4.32) into the
equation (4.34), we get:

d

dt
ρs = −i(1− P )[H̃, ρs](1− P )− i(1− P )[H̃, ρf ](1− P )

+
i

Γ1 + Γ2

(1− P )
2∑

k=1

Γk[H̃, σkρfσ
†
k](1− P )− i

Γ1 + Γ2

2∑
k=1

Γk σk[H̃, ρf ]σ†k,

where we have used the relations

σkσl = 0, σ†kσk = P = |e〉 〈e| , Pσk = 0, σkP = σk, ∀k, l ∈ {1, 2}.

and σkρs = ρsσ
†
k = 0.

Applying now the first order approximation (4.36), and after some simple but tedious
computations, we have

d

dt
ρs = −i(1− P )[H̃, ρs](1− P )− 2ε

Γ1 + Γ2

(
(1− P )H̃PH̃(1− P )ρs + ρs(1− P )H̃PH̃(1− P )

)
+

4ε(
Γ1 + Γ2

)2

2∑
k=1

ΓkσkH̃ρsH̃σ
†
k +O(ε2). (4.37)

We use here the identities σkρs = ρsσ
†
k = 0 and σkP = σk. Continuing the computations,

we get

d

dt
ρs = −i[H, ρs] +

ε

2

2∑
k=1

(
2QkρsQ

†
k −Q

†
kQkρs − ρsQ

†
kQk

)
(4.38)

where we have defined

H = (1− P )H̃(1− P ) and Qk =
2
√

Γk

Γ1 + Γ2

(1− P )σkH̃(1− P ). (4.39)

We have the following theorem:

Theorem 4.3.1. Consider ρ the solution of the Lindblad master equation (4.30) with
0 < ε� 1 and ρs the solution of the slow master equation (4.38) with (4.39). Assume for
the initial states ‖ρ(0)− ρs(0)‖ =

√
Tr ((ρ(0)− ρs(0))(ρ(0)− ρs(0))) = O(ε). Then

‖ρ(t)− ρs(t)‖ =
√

Tr ((ρ(t)− ρs(t))(ρ(t)− ρs(t))) = O(ε)

on a time scale t ∼ 1/ε.

The above approximation is stronger than the one encountered usually in singular-
perturbation techniques: approximation errors of order O(ε) are valid not only for the
usual bounded time scale t ∼ 1 (see Appendix D) but also for t ∼ 1/ε that is unbounded
as ε tends to 0+.
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Proof. Applying (4.32) and the singular perturbation theory of the appendix D, we have
ρ(t) = ρ̃s(t) +O(ε) where

d

dt
ρ̃s = −i[H, ρ̃s] +

ε

2

2∑
k=1

(
2Qkρ̃sQ

†
k −Q

†
kQkρ̃s − ρ̃sQ

†
kQk

)
+O(ε2), ρ̃s(0) = ρ(0). (4.40)

Denoting by
_

δρs = ρ̃s − ρs, we have

d

dt
Tr

(
_

δρs
2
)
≤ 2ε

2∑
k=1

(
Tr
(
Qk

_

δρsQ
†
k

_

δρs

)
− Tr

(
Q
†
kQk

_

δρs
2
))

+ Tr
(
O(ε2)

_

δρs

)
.

We apply now the following Cauchy-Schwarz inequalities:∣∣∣Tr
(
Qk

_

δρsQ
†
k

_

δρs

)∣∣∣ ≤ ∣∣∣∣Tr

(
Q
†
kQk

_

δρs
2
)∣∣∣∣1/2 ∣∣∣∣Tr

(
QkQ

†
k

_

δρs
2
)∣∣∣∣1/2

≤
∣∣∣Tr
(
Q†kQkQ

†
kQk

)∣∣∣1/4 ∣∣∣Tr
(
QkQ

†
kQkQ

†
k

)∣∣∣1/4 ∣∣∣∣Tr

(
_

δρs
4
)∣∣∣∣1/2 ,∣∣∣∣Tr

(
QkQ

†
k

_

δρs
2
)∣∣∣∣ ≤ ∣∣∣Tr

(
Q†kQkQ

†
kQk

)∣∣∣1/2 ∣∣∣∣Tr

(
_

δρs
4
)∣∣∣∣1/2 ,∣∣∣Tr

(
O(ε2)

_

δρs

)∣∣∣ ≤ ∣∣Tr
(
O(ε4)

)∣∣1/2 ∣∣∣∣Tr

(
_

δρs
2
)∣∣∣∣1/2 ≤ O(ε2)

∣∣∣∣Tr

(
_

δρs
2
)∣∣∣∣1/2 .

Taking

C1 = 4 max
k=1,2

∣∣∣Tr
(
Q†kQkQ

†
kQk

)∣∣∣1/2 ,
and as Tr

(
Q†kQkQ

†
kQk

)
= Tr

(
QkQ

†
kQkQ

†
k

)
, we have a constant C2 > 0 such that,

Tr

(
_

δρs
2

(t)

)
≤ Tr

(
_

δρs
2

(0)

)
+ εC1

∫ t

0

Tr
1
2

[
_

δρs
4

(τ)

]
dτ + ε2C2

∫ t

0

Tr
1
2

[
_

δρs
2

(τ)

]
dτ.

Note that,
_

δρs
2

being non-negative, we have

Tr
1
2

[
_

δρs
4

(τ)

]
≤ Tr

[
_

δρs
2

(τ)

]
.

Therefore, noting ξ =

√
Tr

[
_

δρs
2

(τ)

]
, we have

ξ2(t) ≤ ξ2(0) + εC1

∫ t

0

ξ2(τ)dτ + ε2C2

∫ t

0

ξ(τ)dτ.
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Denoting ζ = ξ(t) + C2

2C1
ε, some simple computations lead to

ζ2(t) ≤ 2ξ2(0) + 2εC1

∫ t

0

ζ2(τ)dτ − C2
2

2C1

ε3 t+
C2

2

2C2
1

ε2 ≤ ξ2(0) +
C2

2

2C2
1

ε2 + 2εC1

∫ t

0

ζ2(τ)dτ.

Applying the Gronwall lemma, we have ζ2(t) ≤
[
ξ2(0) +

C2
2

2C2
1
ε2
]
e2εC1t.

Noting that, by the Theorem’s assumption, ξ(0) = O(ε), we have ζ(t) = O(ε) on a time
scale of t ∼ 1/ε. As ξ(t) = ζ(t) +O(ε), this trivially finishes the proof.

From a practical point of view, the main result of this section is as follows. The cor-
rect slow approximation (also called by physicists adiabatic approximation) of the system
described by

d

dt
ρ = −i[H̃, ρ] +

1

2

2∑
k=1

(
2QkρQ

†
k −Q†kQkρ− ρQ†kQk

)
with Qk =

√
Γk |gk〉 〈e| and where the Γk’s are much larger than H̃, is given by

d

dt
ρs = −i[Hs, ρs] +

1

2

2∑
k=1

(
2Qs,kρsQ

†
s,k −Q†s,kQs,kρs − ρsQ†s,kQs,k

)
(4.41)

where ρs is the density operator associated with the space spanned by the |g1〉 and |g2〉,
and where the slow Hamiltonian and the slow jump operators are (P = |e〉 〈e|)

Hs = (1− P )H̃(1− P ) and Qs,k =
2

Γ1 + Γ2

QkH̃(1− P ), k ∈ {1, 2}.

4.3.4 Physical interpretation and reduced Monte-Carlo trajecto-
ries

In this section, we provide a physical interpretation of the last section’s result for the
particular Hamiltonian of the Λ-system (4.29). We get

Hs =
∆

2
(|g2〉 〈g2| − |g1〉 〈g1|) + (∆e +

∆

2
)(|g1〉 〈g1|+ |g2〉 〈g2|).

and

Qs,k = 2
√

Γk

√
|Ω1|2 + |Ω2|2

Γ1 + Γ2

|gk〉 〈bΩ| with |bΩ〉 =
Ω1 |g1〉+ Ω2 |g2〉√
|Ω1|2 + |Ω2|2

.

However, as we can restrict ourselves to the 2-dimensional Hilbert space spanned by |g1〉
and |g2〉, the second part of the Hamiltonian Hs can be removed as it only implies a global
phase change.
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From the Lindblad master equation (4.41) and the above expressions, we can guess the
associated reduced stochastic master equation modeling the evolution of a single Λ-system:

dρs = −i∆
2

[|g2〉 〈g2| − |g1〉 〈g1| , ρs] dt

− 1

2

(
Q†s,1Qs,1ρs + ρsQ

†
s,1Qs,1

)
dt+ Tr

(
Qs,1ρsQ

†
s,1

)
ρsdt+

 Qs,1ρsQ
†
s,1

Tr
(
Qs,1ρsQ

†
s,1

) − ρs
 dN s,1

t

− 1

2

(
Q†s,2Qs,2ρs + ρsQ

†
s,2Qs,2

)
dt+Tr

(
Qs,2ρsQ

†
s,2

)
ρsdt+

 Qs,2ρsQ
†
s,2

Tr
(
Qs,2ρsQ

†
s,2

) − ρs
 dN s,2

t .

(4.42)

Here dN s,1
t and dN s,2

t are independent Poisson increments with averages

E
(
dN s,1

t

)
= Tr

(
Qs,1ρsQ

†
s,1

)
dt = 4Γ1

|Ω1|2 + |Ω2|2
(Γ1 + Γ2)2

Tr (|bΩ〉 〈bΩ| ρs)dt

E
(
dN s,2

t

)
= Tr

(
Qs,2ρsQ

†
s,2

)
dt = 4Γ2

|Ω1|2 + |Ω2|2
(Γ1 + Γ2)2

Tr (|bΩ〉 〈bΩ| ρs)dt.

We can interpret this stochastic master equation through the associated Monte-Carlo tra-
jectories. Defining

γk = 4Γk
|Ω1|2 + |Ω2|2
(Γ1 + Γ2)2

, k ∈ {1, 2},

the evolution through the time interval (t, t+ dt) can be interpreted as below:

• ρs jumps into the ground state |g1〉 〈g1| with probability dtγ1Tr (|bΩ〉 〈bΩ| ρs(t));

• or it jumps into the ground state |g2〉 〈g2| with probability dtγ2Tr (|bΩ〉 〈bΩ| ρs(t));

• or finally, it evolves through the dynamics

d

dt
ρs = −i∆

2
[|g2〉 〈g2| − |g1〉 〈g1| , ρs]

− (γ1 + γ2)

2

(
|bΩ〉 〈bΩ| ρs + ρs |bΩ〉 〈bΩ| − 2Tr (|bΩ〉 〈bΩ| ρs)ρs

)
,

with probability 1− dt(γ1 + γ2)Tr (|bΩ〉 〈bΩ| ρs(t)).

This interpretation shows, in particular, why in the physics literature the state |bΩ〉 is often
called the bright state and the orthogonal state

|dΩ〉 =
Ω∗2√

|Ω1|2 + |Ω2|2
|g1〉 −

Ω∗1√
|Ω1|2 + |Ω2|2

|g2〉
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is called the dark state. Indeed, the probability of jumping towards one of the ground states
by emitting a photon is proportional to the population of the bright state |bΩ〉. Therefore,
whenever the system is in the state |dΩ〉, no photon will be emitted: hence the name of
the dark state.

As it can be seen easily, whenever no detuning is admitted (∆ = 0), the dark state
|dΩ〉 〈dΩ| is the only equilibrium state of the slow dynamics. In fact, we can even prove the
following result:

Theorem 4.3.2. Whenever ∆ = 0, the density matrix ρs, solution of the stochastic master
equation (4.42), converges almost surely towards the dark state |dΩ〉 〈dΩ|.
Remark 4.3.3. The phenomenon of converging towards the dark state is often referred as
the coherent population trapping in the physics literature. The target state can be controlled
via the ratio Ω1/Ω2. The case Ω2 = 0 (|dΩ〉 = |g2〉) corresponds to the optical pumping
phenomena.

Proof. We consider the Markov process:

ft = Tr (|dΩ〉 〈dΩ| ρ(t)).

We can easily compute the evolution of the expectation value of ft:

d

dt
E (ft) =

γ1|Ω2|2 + γ2|Ω1|2
|Ω1|2 + |Ω2|2

(
1−E (ft)

)
. (4.43)

This, together with the fact that ft ∈ [0, 1], implies that

lim
t→∞

E (ft) = 1.

This, together with the Markov inequality (see the Appendix H), proves the convergence
in probability of ft towards 1. However, in order to prove the almost sure convergence,
we need to apply a stronger result. The relation (4.43) implies that the process ft is
a submartingale. The process ft being a bounded submartingale, together with a time-
continuous version of the Theorem H.0.10, implies that the random process ft almost
surely converges towards a random variable f̄ ∈ [0, 1]. We can apply, now, the dominated
convergence theorem:

E
(
f̄
)

= E
(

lim
t→∞

ft

)
= lim

t→∞
E (ft) = 1.

This implies that f̄ ≡ 1 almost surely and ends the proof of the Theorem.

Before ending this section, we note that the passage from the Lindblad master equa-
tion to the associated Monte-Carlo trajectories is not a rigorous passage. One may find
many other stochastic master equations leading to this same Lindblad equation in average.
However, exploring the physical experiments and in particular the coherent population
trapping phenomena, we can see that the considered stochastic master equation must be
the one that incorporates the experimental evidences.
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−φ

φ

(a)

(b)

Figure 4.4: A beam-splitter with adjustable phase φ. A semi-reflecting plate with an angle
of π/4 with respect to the beams (a) and (b), is sandwiched between two retarding plates
inducing opposite phase shifts on beam (a).

4.4 Homodyne detection

In this section, we study another measurement setup allowing the measurement of other
physical observables (different from photon number) for a scattered filed. The main idea
for such experimental setup is to use a beam-splitter to induce a coupling between the
field to be measured and a local oscillator (a coherent field). We start this section by
analyzing the action of the beam-splitter. Next, we will show how the created coupling
can be used to perform the measurement of various field quadratures. Finally, we will finish
by exploring the associated stochastic master equation for a particular example consisting
of the dispersive measurement of an atom through its entanglement to an off-resonant
coherent field.

4.4.1 Quantum beam-splitter and quadrature measurement

Here, we consider two fields coupled through a beam-splitter as shown in figure 4.4.1. Let us
note the annihilation operators of the two considered fields by a and b. The beam-splitter’s
action on the fields can be formulated through an interaction Hamiltonian Hab acting on
the Hilbert space consisting of the tensor product of the two Fock spaces corresponding to
the two fields. Describing a linear interaction, the Hamiltonian Hab is made of two terms
associated to single-photon exchange between the two modes:

Hab(t) = −g(t)

2

(
e−iφa⊗ b† + eiφa† ⊗ b

)
,

where g(t) is a slowly varying real function of time with a support of length τ (duration
of the coupling between the two modes). Furthermore the phase φ is adjusted through the
retarding plates (between which the beam-splitter is sandwiched) inducing opposite phase
shifts on the first beam.
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Let us adopt the Heisenberg point of view and compute the evolution of the operators
a and b under the action of this Hamiltonian. Denoting by (the integral being carried over
the whole support of duration τ)

U = e−i
∫
Hab(t)dt,

the unitary evolution operator, we have

U †(a⊗ 1)U = cos(θ/2)a⊗ 1 + ieiφ sin(θ/2)1⊗ b,
U †(1⊗ b)U = ie−iφ sin(θ/2)a⊗ 1 + cos(θ/2)1⊗ b,

where θ =
∫
g(t)dt and where we have applied the Cambell-Baker-Hausdroff formula.

Furthermore, noting that U †(θ, φ) = U(−θ, φ), we have

U(a⊗ 1)U † = cos(θ/2)a⊗ 1− ieiφ sin(θ/2)1⊗ b,
U(1⊗ b)U † = −ie−iφ sin(θ/2)a+ cos(θ/2)b. (4.44)

Noting that, the action of the beam-splitter on the dark (vacuum state |0〉⊗ |0〉) is the
identity, we now have all the elements to pass to the Schrödinger picture and compute for
instance the output fields when the inputs are coherent fields. Indeed, we can write

U |α〉 ⊗ |β〉 = UDα ⊗Dβ |0〉 ⊗ |0〉 = UDα ⊗DβU
† |0〉 ⊗ |0〉 ,

where Dα and Dβ are, respectively, the displacement operators for the fields a and b
(Dα = exp(αa† − α∗a)). Applying the operator identity Uf(a)U † = f(UaU †) for analytic
functions f , we have

UDαU
† = eαUa

†U†−α∗UaU† .

Therefore, we can write

UDα ⊗DβU
† = UDα ⊗ 1U †U1⊗DβU

†

= exp(αU(a† ⊗ 1)U † − α∗U(a⊗ 1)U †) exp(βU(1⊗ b†)U † − β∗U(1⊗ b)U †)
= exp(

(
α cos(θ/2) + iβeiφ sin(θ/2)

)
a† ⊗ 1−

(
α∗ cos(θ/2)− iβ∗e−iφ sin(θ/2)

)
a⊗ 1)

× exp(
(
β cos(θ/2) + iαe−iφ sin(θ/2)

)
1⊗ b† −

(
β∗ cos(θ/2)− iα∗eiφ sin(θ/2)

)
1⊗ b).

Thus

U |α〉 ⊗ |β〉 =
∣∣α cos(θ/2) + iβeiφ sin(θ/2)

〉
⊗
∣∣β cos(θ/2) + iαe−iφ sin(θ/2)

〉
. (4.45)

Now, let us assume that we dispose of two photodetectors aligned with the two beams
(a) and (b) allowing to measure the photon flux after the beam-splitter (see Figure 4.4.1).
Furthermore, we assume that the field to be measured, (a), admits the density operator
ρa while the field (b) is a coherent field |β〉, of real amplitude β ∈ R, playing the role of a
local oscillator.
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Figure 4.5: Homodyne measurement of various field quadratures

The photodetectors allow us to measure the photon number operators a†a ⊗ 1 and
1⊗ b†b for each incident field. Returning to the Heisenberg picture, we can easily compute
the evolution of these operators through the action of the beam-splitter:

U †(a†a⊗ 1)U = cos2(θ/2)a†a⊗ 1 + sin2(θ/2)1⊗ b†b+ i sin(θ/2) cos(θ/2)
(
eiφa† ⊗ b− e−iφa⊗ b†

)
,

U †(1⊗ b†b)U = sin2(θ/2)a†a⊗ 1 + cos2(θ/2)1⊗ b†b− i sin(θ/2) cos(θ/2)
(
eiφa† ⊗ b− e−iφa⊗ b†

)
.

Taking θ = π/2 (balanced homodyne detection) and computing the difference between the
photon flux signals, we have

Tr
(
(ρa ⊗ |β〉 〈β|)U †(a†a⊗ 1)U

)
− Tr

(
(ρa ⊗ |β〉 〈β|)U †(1⊗ b†b)U

)
=

iTr
(
(ρa ⊗ |β〉 〈β|)

(
eiφa† ⊗ b− e−iφa⊗ b†

))
= iβTr

(
ρa
(
eiφa† − e−iφa

))
.

Therefore, the difference between the photon flux signals provide a measurement of the
field quadrature

Xφ+π/2 = ei(φ+π/2)a† + e−i(φ+π/2)a.

Through the following subsection we will consider an example showing how this homodyne
procedure can be used to perform a dispersive measurement of an atom inside an off-
resonant cavity.

4.4.2 Homodyne detection and quantum trajectories

In this subsection we consider the experimental scheme of Figure 4.4.2. The system consists
of an atom put inside a low-Q cavity composed of two mirrors. The cavity is driven by
a resonant coherent field |β〉 and the cavity field is damped through the output mirror
(admitting an important transmission rate). Let us assume that, after a rotating wave
approximation that, the Jaynes-Cummings type Hamiltonian is given by

H(t)⊗ 1 + i
χ

2
(L† ⊗ a− L⊗ a†)
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where H(t) is a time-dependent Hamiltonian acting on the atom Hilbert space and iχ(L†⊗
a − L ⊗ a†) is the atom-cavity interaction Hamiltonian. Here L is any operator (not
necessarily hermitian) acting only on the atom. We do not necessarily assume that the
atom is a two-level system: it could admit any arbitrary number of levels. Furthermore,
taking for the homodyne measurement scheme θ = π/2 and φ = −π/2 and applying the
relations (4.44), we find that the jump operators associated to the two photo-detectors

are respectively given by
√
γ/2(a− β/√γ) and

√
γ/2(a+ β/

√
γ) (here β stands for β1),

where γ is the damping rate caused by the transmission through the output mirror. The
quantum Monte-Carlo trajectories are given by the following stochastic master equation:

dξ = −i[H(t), ξ]dt+
χ

2
[L†a− La†), ξ]dt− γ

2

(
a†aξ + ξa†a− 2Tr

(
aξa†

)
ξ
)
dt

+

(
(a− β/√γ)ξ(a† − β∗/√γ)

Tr
(
(a− β/√γ)ξ(a† − β∗/√γ)

) − ξ) dN1 +

(
(a+ β/

√
γ)ξ(a† + β∗/

√
γ)

Tr
(
(a+ β/

√
γ)ξ(a† + β∗/

√
γ)
) − ξ) dN2,

where ξ ∈ HS ⊗ Hc is the total state of the system and the cavity and where we have
removed the tensor products for simplicity of notations. Furthermore, dN1 and dN2 are
Poisson processes with mean values

E (dN1) =
γ

2
Tr
(

(a− β/√γ)ξ(a† − β∗/√γ)
)
dt and E (dN2) =

γ

2
Tr
(

(a+ β/
√
γ)ξ(a† + β∗/

√
γ)
)
dt.

−φφ

|β

|β

Figure 4.6: Homodyne measurement of an atom: the atom is put inside a cavity composed
of two mirrors, one of which has an important transmission rate and serves as the output
mirror; this cavity is driven by a coherent field |β〉 in resonance with the cavity.

Consider now the limit where |H(t)|, χ � γ, so that the damping rate through the
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output mirror becomes large: ∣∣∣∣‖H(t)‖L∞t
γ

∣∣∣∣ ∼ ∣∣∣∣χγ
∣∣∣∣ ∼ ε� 1. (4.46)

These assumptions on the time-scales allow us to apply an adiabatic elimination method
based on singular perturbation theory (see the Appendix D). Indeed, as the damping is
assumed to be strong, the probability for the cavity to contain more than 1 photon is
small. Following the same analysis as in [70], we can write for the state of the system ξ:
ξ = ρ0 ⊗ |0〉 0 + (ρ1 ⊗ |1〉 〈0|+ ρ†1 ⊗ |0〉 〈1|) +O(ε2).

Let us start by analyzing the no-jump dynamics (dN1 = dN2 = 0). The dynamics for
ρ0 and ρ1 become

d

dt
ρ0 = −i[H(t), ρ0] +

χ

2
(L†ρ1 + ρ†1L) + γO(ε2),

d

dt
ρ1 = −i[H(t), ρ1]− χ

2
Lρ0 −

γ

2
ρ1 +O(ε2).

The time-scale separation (4.46) implies that this system is written in a standard Tikhonov
form (see the Appendix D), the state ρ1 is the exponentially stable fast part and can be
slaved to the slow part ρ0:

ρ1 = −χ
γ
Lρ0 +O(ε2). (4.47)

By inserting (4.47) into the dynamics of ρ0, we get the following dynamics for the slow
part:

d

dt
ρ0 = −i[H(t), ρ0]− χ2

2γ
(L†Lρ0 + ρ0L

†L) + γO(ε2).

Noting that (4.48) does not conserve the trace of ρ0, by re-normalizing it we find for the
no-jump slow dynamics

d

dt
ρ0 = −i[H(t), ρ0]− χ2

2γ
(L†Lρ0 + ρ0L

†L− 2Tr
(
Lρ0L

†)ρ0) + γO(ε2). (4.48)

Now, we also note that the jump operators
√
γ/2(a − β/

√
γ) and

√
γ/2(a + β/

√
γ),

associated to the two photo-detectors of Figure 4.4.2, yield to the jump operators

χ√
2γ

(L+ α) and
χ√
2γ

(L− α),

where α =
√
γ/χβ. Therefore the reduced stochastic master equation is given as follows

(we replace ρ0 by ρ for simplicity sakes)

dρ = −i[H(t), ρ]dt− χ2

2γ
(L†Lρ+ ρL†L− 2Tr

(
LρL†

)
ρ)

+

(
(L+ α)ρ(L† + α∗)

Tr ((L+ α)ρ(L† + α∗))
− ρ
)
dN1 +

(
(L− α)ρ(L† − α∗)

Tr ((L− α)ρ(L† − α∗)) − ρ
)
dN2,
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where

E (dN1) =
χ2

2γ
Tr
(

(L+ α)ξ(L† + α∗)
)
dt and E (dN2) =

χ2

2γ
Tr
(

(L− α)ξ(L† − α∗)
)
dt.

Now taking the limit of large amplitudes |α| → ∞, we can replace dN1 and dN2 by

dN1 → E (dN1) dt+
√
E (dN1)dW1,

dN2 → E (dN2) dt+
√
E (dN2)dW2,

where dW1 and dW2 are independent Wiener processes and where the limit is in the sense
of the probability distribution laws. By a Wong-Zakai type theorem, the solution of the
stochastic master equation can be well approximated by

dρ = −i[H(t), ρ]dt− χ2

2γ
(L†Lρ+ ρL†L− 2LρL†)

+
χ√
γ

(
eiφαLρ+ e−iφαρL† − 2Tr

(
(eiφαL+ e−iφαL†)ρρ

))
dW,

where φα is the argument of α as a complex number and dW = (dW1 + dW2)/
√

2 is a
Wiener process. In order to obtain the above master equation, we have only considered
the lowest order terms in |α|−1.



Chapter 5

Control of Open Systems

In the aim of achieving a robust processing of quantum information, one of the main
tasks is to prepare and to protect various quantum states. Through the last 15 years, the
application of quantum feedback paradigms has been investigated by many physicists [69,
67, 27, 32, 50] as a possible solution for this robust preparation. However, most of these
efforts have remained at a theoretical level and have not been able to be give rise to
successful experiments. This is essentially due to the necessity of simulating, in parallel to
the system, a quantum filter [13] providing an estimate of the state of the system based
on the historic of quantum jumps induced by the measurement process. Indeed, it is, in
general, difficult to perform such simulations in real time. For an up-to date introduction
to quantum measurement and feedback for continuous time quantum system see [71].

Through this chapter, we consider the two prototypes of quantum systems whose models
were studied within the last chapter. We start by the time-discrete photon-box model and
we present a feedback algorithm stabilizing an arbitrary photon number state (Fock state).
Here, the time-discreteness of the model allows to perform the computations of the quantum
filter and of the feedback law in real time. This time-discrete feedback has been proposed
in [28] and a first mathematical convergence analysis is given in [6]. The exposure below
relies on these two references. Next, we consider the time-continuous Λ-system considered
in Subsection 4.3.2. We present then a feedback algorithm introduced in [53] allowing to
synchronize the laser fields with the atomic transitions. Here, by avoiding to simulate any
quantum filter, we consider a simple feedback which only uses the time of the last quantum
jump and that is compatible to a real-time implementation. Let us point out that, up to
now, none of these two feedback schemes have been tested experimentally.

5.1 Discrete-time system

Through this section we consider the photon-box experiment of Figure 4.2 with the dis-
persive measurement protocol of the Subsection 4.2.4 defining the operators Mg and Me

appearing in the Markov process (4.13). Furthermore, we consider the manipulation of
the cavity field by injecting into the mode a coherent field pulse generated by a resonant
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microwave source (see Figure 5.1). This manipulation can be modeled through the unitary
displacement operator Dα = exp(αa† − α∗a) (see subsection 2.2):

ρ+ = DαρD
†
α.

We describe the state of the quantum filter, just after the detection of the atom number

B
C

D

S

R1
R2

Figure 5.1: A schematic of the closed-loop system borrowed from [28]: an appropriate
coherent field pulse whose amplitude and phase are computed as a function of the quantum
filter state is injected between two atom passages.

k − 1, by ρest
k . This state indicates our knowledge of the system as the observer who has

access to the measurement outputs with all its uncertainties and imperfections. Also, we
describe a common state of maximal knowledge for the cavity mode by ρk. This state
denotes the knowledge of a perfect observer having access to all possible quantum jumps
due to the measurement or the relaxation. This state of maximal knowledge is necessarily
a projector and can also be described by a wavefunction. However, for simplicity sakes,
we forget about the wavefunction description and we only consider the density matrix
language.

Everywhere through this section, except for the Subsection 5.1.5, we are going to neglect
the uncertainties of Subsection 4.2.5 and the relaxations of Subsection 4.2.6. Therefore,
the evolution of the quantum filter state ρest

k must coincide with that of the common state
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of maximal knowledge ρk (modeled by the associated quantum Monte-Carlo trajectories):

ρk+1 =Msk(ρk+ 1
2
), ρk+ 1

2
= Dαkρk,

ρest
k+1 =Msk(ρ

est
k+ 1

2
), ρest

k+ 1
2

= Dαkρ
est
k ,

where,

• sk ∈ {g, e}, Mg(ρ) =
MgρM†g

Tr(MgρM†g)
, Me(ρ) = MeρM†e

Tr(MeρM†e)
with operatorsMg = cos (ϕ0 + ϑN)

and Me = sin (ϕ0 + ϑN) (ϕ0, ϑ constant parameters).

• Dα(ρ) = DαρD
†
α. In open-loop, α = 0, D0 = 1 (identity operator) and D0(ρ) = ρ.

Notice that D†α = D−α.

• sk is a random variable taking the value g when the atom k is detected in g (resp. e
when the atom k is detected in e) with probability

pg,k = Tr
(
Mgρk+ 1

2
M†

g

) (
resp. pe,k = Tr

(
Meρk+ 1

2
M†

e

))
. (5.1)

Through the Subsection 5.1.1, we will study a sort of generic quantum separation
principle stating that,

• if for the case where ρest coincides with ρ (this happens if ρest is initialized at the
initial common state of maximal knowledge, ρest

0 = ρ0) the feedback strategy ensures
the almost sure convergence towards a particular pure state, then the same happens
for the case of a generic ρest

0 different from ρ0.

This statement will allow us through the following subsections 5.1.2, 5.1.3 and 5.1.4 to
restrict ourselves to the case where ρest ≡ ρ .

Finally, the Subsection 5.1.5 is devoted to the numerical study of the feedback control
in presence of the measurement limitations and the relaxation parameters. We note that
in such situation, the dynamics of the filter equation ρest differ from those of ρ.

Everywhere through this Section, we are going to restrict ourselves to a modal ap-
proximation of the Hilbert space. Indeed, we note that the dispersive measurement of the
Subsection 4.2.4 avoids any energy exchange between the field and the atoms. Therefore,
by assuming that we apply controlled displacements of small amplitudes, we may hope
that whenever we initialize the system with a small energy, the system will not reach
states with very large number of photons. This means that we can restrict ourselves to
the finite dimensional subspace spanned by the nmax + 1 first modes {|0〉 , |1〉 , . . . , |nmax〉}.
Thus,

N = diag(0, 1, . . . , nmax), a |0〉 = 0, a |n〉 =
√
n |n− 1〉 for n = 1, . . . , nmax.

The truncated creation operator a† is the Hermitian conjugate of a. Notice that we still
have N = a†a, but truncation does not preserve the usual commutation [a, a†] = 1 (this is
only valid when nmax =∞).

We will assume everywhere that the parameters ϕ0, ϑ are chosen in order to haveMg,
Me invertible and such that the spectrum of M†

gMg = M2
g and M†

eMe = M2
e are not

degenerate.
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5.1.1 A quantum separation principle

We consider here a generic discrete-time closed-loop quantum system together with its
filter equation defined on the Hilbert space H of dimension nmax + 1:

ρk+1 = Msk(ρk+ 1
2
), ρk+ 1

2
= Uαk(ρk),

ρest
k+1 = Msk(ρ

est
k+ 1

2
), ρest

k+ 1
2

= Uαk(ρ
est
k ), (5.2)

where sk ∈ {1, . . . ,m} is a random variable taking the value s ∈ {1, . . . ,m} with probability

Tr
(
M†

sMsρk+ 1
2

)
. Furthermore, Ms(ρ) =MsρM†

s/Tr
(
MsρM†

s

)
, where the operatorsMs

are the Kraus operators for a POVM measurement satisfying
∑

sM†
sMs = 1.

Finally Uα(ρ) = UαρU †α, where Uα is a unitary operator depending on the feedback
control α ∈ C.

We have the following theorem,

Theorem 5.1.1. Consider any closed-loop system of the form (5.2), where the feedback
law αk is a function of the quantum filter: αk = g(ρestk ). Assume moreover that, whenever
ρest0 = ρ0 (so that the quantum filter coincides with the closed-loop dynamics, ρest ≡ ρ),
the closed-loop system converges almost surely towards a fixed pure state ρ̄. Then, for any
choice of the initial state ρest0 , such that kerρest0 ⊂ kerρ0, the trajectories of the system
converge almost surely towards the same pure state: ρk → ρ̄.

Remark 5.1.2. One only needs to choose ρest0 = 1
nmax+1

1(nmax+1)×(nmax+1), so that the as-
sumption kerρest0 ⊂ kerρ0 is satisfied for any ρ0.

Proof. The basic idea is based on the fact that E (Tr (ρkρ̄) | ρ0, ρ
est
0 ) (where we take the

expectation over all jump realizations) depends linearly on ρ0 even though we are applying a
feedback control. Indeed, the feedback law αk depends only on the historic of the quantum
jumps as well as the initialization of the quantum filter ρest

0 . Therefore, we can write

αk = α(ρest
0 , s0, . . . , sk−1),

where {sj}k−1
j=0 denotes the sequence of k first jumps. Finally, through simple computations,

we have

E
(
Tr (ρkρ̄) | ρ0, ρ

est
0

)
=

∑
s0,...,sk−1

M̃sk−1
◦ Uαk−1

◦ . . . ◦ M̃s0 ◦ Uα0(ρ0,

where
M̃sρ =MsρM†

s.

So, we easily have the linearity of E (Tr (ρkρ̄) | ρ0, ρ
est
0 ) with respect to ρ0.

At this point, we apply the assumption kerρest
0 ⊂ kerρ0 and therefore, one can find a

constant γ > 0 and a well-defined density matrix ρc0, such that

ρest
0 = γρ0 + (1− γ)ρc0.
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Now, considering the system (5.2) initialized at the state (ρest
0 , ρest

0 ), we have by the as-
sumptions of the Theorem and applying the dominated convergence theorem:

lim
k→∞

E
(
Tr (ρkρ̄) | ρest

0 , ρest
0

)
= 1.

By the linearity of E (Tr (ρkρ̄) | ρ0, ρ
est
0 ) with respect to ρ0, we have

E
(
Tr (ρkρ̄) | ρest

0 , ρest
0

)
= γE

(
Tr (ρkρ̄) | ρ0, ρ

est
0

)
+ (1− γ)E

(
Tr (ρkρ̄) | ρc0, ρest

0

)
,

and as both E (Tr (ρkρ̄) | ρ0, ρ
est
0 ) and E (Tr (ρkρ̄) | ρc0, ρest

0 ) are less than or equal to one,
we necessarily have that both of them converge to 1:

lim
k→∞

E
(
Tr (ρkρ̄) | ρ0, ρ

est
0

)
= 1.

This implies the almost sure convergence of the physical system towards the pure state
ρ̄.

As stated previously, this theorem allows us to forget about the quantum filter state
ρest through the following subsections 5.1.2, 5.1.3 and 5.1.4 and to restrict ourselves to the
case where αk can be directly chosen as a function of ρk.

Exercice 5.1.3. Prove the following extension of theorem 5.1.1. Consider any closed-
loop system of the form (5.2), where the feedback law αk is a function of the quantum
filter: αk = g(ρestk ). Assume moreover that, whenever ρest0 = ρ0 (so that the quantum
filter coincides with the closed-loop dynamics, ρest ≡ ρ), the closed-loop system converges
almost surely towards a sub-space P (H) defined by its orthogonal projector P (Tr (ρkP )
converges almost surely towards 1). Then, for any choice of the initial state ρest0 , such that
kerρest0 ⊂ kerρ0, the trajectories of the system converge almost surely towards the same
sub-space, i.e., Tr (ρkP ) and Tr (ρestk P ) converge almost surely to 1.

5.1.2 Measurement: a non-deterministic preparation tool

Here, we consider the situation where no control is injected between two pulses and there-
fore the cavity state ρk follows the Markov chain dynamics

ρk+1 = Msk(ρk),

where sk takes the value g (resp. e) with probability Pg,k = Tr
(
MgρkM†

g

)
(resp. with

probability Pe,k = Tr
(
MeρkM†

e

)
). We have the following theorem:

Theorem 5.1.4. Consider the Markov process defined above with an initial density matrix
ρ0. Then

• for any n ∈ {0, . . . , nmax}, Tr (ρk |n〉 〈n|) = 〈n| ρk |n〉 is a martingale
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• ρk converges with probability 1 to one of the nmax + 1 Fock state |n〉 〈n| with n ∈
{0, . . . , nmax}.

• the probability to converge towards the Fock state |n〉 〈n| is given by Tr (ρ0 |n〉 〈n|) =
〈n| ρ0 |n〉.

Proof. Let us prove that Tr (ρk |n〉 〈n|) is a martingale. Set ξ = |n〉 〈n|. We have

E (Tr (ξρk+1) | ρk) = Pg,kTr
(
ξ
MgρkM†g
Pg,k

)
+ Pe,kTr

(
ξMeρkM†e

Pe,k

)
= Tr

(
ξMgρkM†

g

)
+ Tr

(
ξMeρkM†

e

)
= Tr

(
ρk(M†

gξMg +M†
eξMe)

)
.

Since ξ commutes withMg andMe andM†
gMg+M†

eMe = 1, we haveE (Tr (ξρk+1) | ρk) =
Tr (ξρk). This implies that Tr (ρk |n〉 〈n|) is a martingale.

Now, we consider the following function

Vn(ρ) = f(〈n|ρ|n〉),

where f(x) = x+x2

2
. Notice that f is 1-convexe, f ′ ≥ 1

2
on [0, 1] and satisfies

∀(x, y, θ) ∈ [0, 1], θf(x) + (1− θ)f(y) = θ(1−θ)
2

(x− y)2 + f(θx+ (1− θ)y). (5.3)

The function f is increasing and convex and 〈n|ρk|n〉 is a martingale. Thus Vn(ρk) is a
sub-martingale.

We apply the fact that

〈n|Mg(ρ)|n〉 = cos2ϕn

Tr(MgρM†g)
〈n|ρ|n〉, 〈n|Me(ρ)|n〉 = sin2ϕn

Tr(MeρM†e)
〈n|ρ|n〉,

where ϕn = ϕ0 + nϑ. Therefore, we have

E (Vn(ρk+1) | ρk) = Tr
(
MgρkM†

g

)
f

(
cos2ϕn

Tr(MgρkM†g)
〈n|ρk|n〉

)
+ Tr

(
MeρkM†

e

)
f

(
sin2ϕn

Tr(MeρkM†e)
〈n|ρk|n〉

)
Then (5.3), together with

θ = Tr
(
MgρkM†

g

)
, x = cos2ϕn

Tr(MgρkM†g)
〈n|ρk|n〉, y = sin2ϕn

Tr(MeρkM†e)
〈n|ρk|n〉

yields to

E (Vn(ρk+1) | ρk)− Vn(ρk) =

Tr(MgρkM†g)Tr(MeρkM†e)(〈n|ρk|n〉)2

2

(
cos2ϕn

Tr(MgρkM†g)
− sin2ϕn

Tr(MeρkM†e)

)2

.
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Thus we re-discover that Vn(ρk) is a sub-martingale, E (Vn(ρk+1) | ρk) ≥ Vn(ρk). Moreover,
we have also shown that E (Vn(ρk+1) | ρk) = Vn(ρk) implies that either 〈n|ρk|n〉 = 0 or
Tr
(
MgρkM†

g

)
= cos2ϕn (assumption Mg and Me invertible is used here).

We apply now the Kushner’s invariance theorem (Theorem H.0.13 recalled in the Ap-
pendix H) for the Markov process ρk and the non-negative super-martingale 1 − Vn(ρk).
This theorem implies that the Markov process ρk converges in probability to the largest
invariant subset of {

ρ | Tr
(
MgρM†

g

)
= cos2ϕn or 〈n|ρ|n〉 = 0

}
.

But the set {ρ | 〈n|ρ|n〉 = 0} is invariant. It remains thus to characterize the largest
invariant subset included in

{
ρ | Tr

(
MgρM†

g

)
= cos2ϕn

}
. This invariant subset will be

denoted by Xn.
Take ρ ∈ Xn. Invariance means that Mg(ρ) and Me(ρ) belong to Xn (the fact thatMg

and Me are invertible ensures that probabilities to jump with s = g or s = e are strictly
positive for any density matrix ρ). Consequently Tr

(
MgMg(ρ)M†

g

)
= Tr

(
MgρM†

g

)
=

cos2ϕn. This means that Tr
(
M4

gρ
)

= Tr2
(
M2

gρ
)
. By Cauchy-Schwartz inequality,

Tr
(
M4

gρ
)

= Tr
(
M4

gρ
)
Tr (ρ) ≥ Tr2

(
M2

gρ
)

with equality if, and only if,M4
gρ and ρ are co-linear. M4

g being non-degenerate, ρ is nec-
essarily a projector over an eigenstate ofM4

g, i.e., ρ = |m〉 〈m| for some m ∈ {0, . . . , nmax}.
Since Tr

(
MgρM†

g

)
= cos2ϕn > 0, m = n and thus Xn is reduced to {|n〉 〈n|}. Therefore

the only possibilities for the ω-limit set are Tr (ρ |n〉 〈n|) = 0 or 1 and

Wn(ρk) = Tr (ρk |n〉 〈n|)(1− Tr (ρk |n〉 〈n|) k→∞−→ 0 in probability.

The convergence in probability together with the fact that Wn(ρk) is a positive bounded
(Wn ∈ [0, 1]) random process implies the convergence in expectation. Indeed

lim sup
k→∞

E (Wn(ρk)) ≤ ε lim sup
k→∞

P(Wn(ρk) ≤ ε) + lim sup
k→∞

P(Wn(ρk) > ε)

≤ ε+ lim sup
k→∞

P(Wn(ρk) > ε) ≤ ε,

where for the last inequality, we have applied the convergence in probability of Wn(ρk)
towards 0. As the above inequality is valid for any ε > 0, we have

lim
k→∞

E (Wn(ρk)) = 0.

Furthermore, by the first part of the Theorem, we know that Tr (ρk |n〉 〈n|) is a bounded
martingale and therefore by the Doob’s first martingale convergence theorem (see the
Theorem H.0.10 of the Appendix H), Tr (ρk |n〉 〈n|) converges almost surely towards a
random variable l∞n ∈ [0, 1]. This implies that Wn(ρk) converges almost surely towards the
random variable l∞n (1− l∞n ) ∈ [0, 1]. We apply now the dominated convergence theorem

E (l∞n (1− l∞n )) = E
(

lim
k→∞

Wn(ρk)
)

= lim
k→∞

E (Wn(ρk)) = 0.
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This implies that l∞n (1− l∞n ) vanishes almost surely and therefore

Wn(ρk) = Tr (ρk |n〉 〈n|)(1− Tr (ρk |n〉 〈n|)) k→∞−→ 0 almost surely.

As we can repeat this same analysis for any choice of n ∈ {0, 1, . . . , nmax}, ρk converges
almost surely to the set of of Fock states

{|n〉 〈n| | n = 0, 1, . . . , nmax},
which ends the proof of the second part.

We have shown that the probability measure associated to the random variable ρk
converges to the probability measure

nmax∑
n=0

pnδ(|n〉 〈n|),

where δ(|n〉 〈n|) denotes the Dirac distribution at |n〉 〈n| and pn is the probability of con-
vergence towards |n〉 〈n|. In particular, we have

E (Tr (|n〉 〈n| ρk)) k→∞−→ pn.

But Tr (|n〉 〈n| ρk) is a martingale and E (Tr (|n〉 〈n| ρk)) = E (Tr (|n〉 〈n| ρ0)). Thus

pn = 〈n| ρ0 |n〉 ,
which ends the proof of the third and last part.

The Theorem 5.1.4 implies that the QND measurement of the Subsection 4.2.4 can be
seen as a Fock state preparation tool. However, this state preparation is non-deterministic
as we can not be sure to converge towards a desired Fock state |n̄〉 〈n̄|. One way of
removing this indeterminism is to repeat the QND measurement process by re-preparing
the same initial state and re-launching the same measurement process up to reaching
|n̄〉 〈n̄|. However this can take a lot of time and, whenever we remember that in reality we
need to deal with the measurement uncertainties and the relaxations, a rapid deterministic
convergence can be an important issue to keep an acceptable preparation fidelity (see the
subsection 5.1.5). Through the next subsection we propose a feedback protocol to ensure
a rapid and deterministic Fock state preparation.

Exercice 5.1.5 (Open-loop convergence in the resonance case). Consider the Markov
chain ρk+1 = Msk(ρk) where sk = g (resp. sk = e) with probability pg,k = Tr

(
MgρkM†

g

)
(resp. pe,k = Tr

(
MeρkM†

e

)
). The Kraus operator are given by (4.17) with θ1 = 0. The

cavity state at step k is described by the density operator ρk.

1. Show that
E (Tr (Nρk+1)/ρk) = Tr (Nρk)− Tr

(
sin2

(
Θ
2

√
N
)
ρk

)
.

2. Assume that for any integer n, Θ
√
n/π is irrational. Then prove, using invariance

principle (see appendix H), that almost surely ρk tends to the vacuum state |0〉 〈0|
whatever its initial condition is.

3. When Θ
√
n/π is rational for some integer n, describes the possible ω-limits for ρk.
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5.1.3 Quantum feedback: ideal case

We reconsider the Markov chain

ρk+1 = Msk(ρk+ 1
2
), ρk+ 1

2
= Dαkρk, (5.4)

where sk ∈ {g, e} with probabilities pg,k = Tr
(
Mgρk+ 1

2
M†

g

)
and pe,k = Tr

(
Meρk+ 1

2
M†

e

)
.

We aim to stabilize the Fock state with n̄ photons characterized by the density operator
ρ̄ = |n̄〉 〈n̄|. To this end we consider the above Markov chain and we choose the coherent
feedback αk such that the value of the fidelity Tr (ρρ̄) decreases when passing from ρk+ 1

2

to ρk+1. Note that, for α ∈ C (encoding both the amplitude and the phase of the coher-
ent pulse) of small enough amplitude, the Baker-Campbell-Hausdorff formula yields the
following approximation

DαρD
†
α = eαa

†−α∗aρe−(αa†−α∗a) = ρ+ [αa† − α∗a, ρ] +O(|α|2). (5.5)

Therefore, for αk of small enough amplitude, we have

Tr (ρ̄Dαk(ρk)) = Tr (ρ̄ρk) + Tr
(
ρ̄[αka

† − α∗ka, ρk]
)

+O(|αk|2). (5.6)

Thus the complex feedback
αk = εTr (ρ̄[ρk, a]) (5.7)

with a gain ε > 0 small enough ensures that

Tr
(
ρ̄ρk+ 1

2

)
− Tr (ρ̄ρk) ≥ ε

∣∣∣Tr (ρ̄[ρk, a])
∣∣∣2. (5.8)

Furthermore, the conditional expectation of Tr (ρ̄ρk+1) knowing ρk+ 1
2

is given by

E
(

Tr (ρ̄ρk+1) | ρk+ 1
2

)
= pg,kTr

 ρ̄Mgρk+ 1
2
M†g

pg,k

+ pe,kTr

 ρ̄Meρk+ 1
2
M†e

pe,k

 = Tr
(
ρ̄ρk+ 1

2

)
since [ρ̄,Mg] = [ρ̄,Me] = 0 and M†

gMg +M†
eMe = 1. Thus

E (Tr (ρ̄ρk+1) | ρk) = E
(

Tr
(
ρ̄ρk+ 1

2

)
| ρk
)
≥ Tr (ρ̄ρk).

and consequently, the expectation value of Tr (ρ̄ρk) increases at each sampling time:

E (Tr (ρ̄ρk+1)) ≥ E (Tr (ρ̄ρk)) . (5.9)

Considering the Markov process ρk, we have therefore shown that Tr (ρ̄ρk) is a submartin-
gale bounded from above by 1. This, together with Theorem H.0.10, implies that V(ρk)
converges almost surely towards a random variable fid∞ ∈ [0, 1]. Furthermore by the
dominated convergence theorem

E (Tr (ρ̄ρk))↗ E (fid∞) as k →∞.
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A deeper analysis, based on Kushner’s invariance principle (see the proof of the Theo-
rem 5.1.6), implies that the only possible limits for Tr (ρ̄ρk) are 0 or 1 (i.e. fid∞ takes the
values 0 or 1). Note that, if we were dealing with a deterministic system, this analysis
would have been enough to ensure the almost global stabilization of ρk around ρ̄: as the
function Tr (ρ̄ρk) is increasing, whenever Tr (ρ̄ρ0) > 0 the only possible limit would have
been Tr (ρ̄ρk) → 1 which implies ρk → ρ̄. However, in the stochastic case we only have
that the expectation E (Tr (ρ̄ρk)) is increasing and therefore, even for an initial state ρ0

such that Tr (ρ̄ρ0) < 1, we can have a part of the trajectories that converge towards bad
attractors on the level set Tr (ρ̄ρ) = 0. However, by rendering Tr (ρ̄ρk) a submartingale we
have increased the probability of converging towards ρ̄.

In order to solve the problem of the bad attractors and ensuring the global stabilization,
we suggest the following modification of the feedback law:

αk =

{
εTr (ρ̄[ρk, a]) if Tr (ρ̄ρk) ≥ η
argmax
|α|≤ᾱ

Tr (ρ̄Dα(ρk)) if Tr (ρ̄ρk) < η (5.10)

where ᾱ > 0 is an arbitrary real constant and ε > 0 and η > 0 are small enough.
In this subsection, we prove that the above feedback scheme (5.10) ensures the global

asymptotic stabilization of the closed-loop system (5.4) around the target Fock state ρ̄:

Theorem 5.1.6. Consider the quantum system (5.4) with the switching feedback scheme (5.10).
For small enough parameters ε, η > 0 in the feedback scheme, the trajectories of (5.4) con-
verge almost surely toward the target Fock state ρ̄.

Proof. The proof of Theorem 5.1.6 is based on the application of the Lyapunov-type func-
tion

V (ρ) = f(Tr (ρ̄ρ)),

where f(x) = x+x2

2
has already been used during the proof of Theorem 5.1.4. The proof

relies in 4 lemmas:

• in Lemma 5.1.7, we prove an inequality showing that, for small enough ε, V (ρk) is a
sub-martingale within S≥η = {ρ | Tr (ρ̄ρ) ≥ η};

• in Lemma 5.1.8, we show that for small enough η, the trajectories starting within the
set S<η = {ρ | Tr (ρ̄ρ) < η} always reach in one step the set S≥2η = {ρ | Tr (ρ̄ρ) ≥ 2η};

• in Lemma 5.1.9, we show that the trajectories starting within the set S≥2η, will never
hit the set S<η with a uniformly non-zero probability pη > 0;

• in Lemma 5.1.10, we combine the first step and the Kushner’s invariance principle
(see the Theorem H.0.13 of the Appendix H), to prove that almost all trajectories
remaining inside S≥η converge towards ρ̄.

The combination of the Lemmas 5.1.8, 5.1.9 and 5.1.10 shows then directly that ρk
converges almost surely towards ρ̄. We detail now these lemmas and their proofs.
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Lemma 5.1.7. For ε > 0 small enough and for ρk satisfying Tr (ρ̄ρk) ≥ η,

E (V (ρk+1) | ρk) ≥ V (ρk) + ε
2
|Tr (ρ̄ [ρk, a])|2

+
pg,kpe,k

2
(Tr (ρ̄Mg ◦ Dαk(ρk))− Tr (ρ̄Me ◦ Dαk(ρk)))

2 . (5.11)

Proof. We have

E (V (ρk+1) | ρk) = pg,kf (Tr (ρ̄Mg ◦ Dαk(ρk))) + pe,kf (Tr (ρ̄Me ◦ Dαk(ρk))) .

By (5.3) we find

E (V (ρk+1) | ρk) = f (Tr (ρ̄Dαk(ρk))) +
pg,kpe,k

2
(Tr (ρ̄Mg ◦ Dαk(ρk))− Tr (ρ̄Me ◦ Dαk(ρk)))

2 ,

where we have applied the fact that Mg and Me commute with ρ̄ and that M†
gMg +

M†
eMe = 1.
Moreover, since αk = εTr (ρ̄[ρk, a]), applying (5.6), we get

Tr (ρ̄Dαk(ρk)) = Tr (ρ̄ρk) + 2ε |Tr (ρ̄[ρk, a])|2 +O(ε2).

Thus for ε > 0 small enough and uniformly in ρk

Tr (ρ̄Dαk(ρk)) ≥ Tr (ρ̄ ρk) + ε |Tr (ρ̄[ρk, a])|2 .

Using the fact that f is increasing and f(x+ y) ≥ f(x) + y/2 for any x, y > 0, we get

f (Tr (ρ̄ Dαk(ρk))) ≥ f((Tr (ρ̄ ρk)) + ε
2
|Tr (ρ̄[ρk, a])|2 .

This finishes the proof of Lemma 5.1.7

Lemma 5.1.8. When η > 0 is small enough, any state ρk satisfying the inequality Tr (ρ̄ρk) <
η yields a new state ρk+1 such that Tr (ρ̄ρk+1) ≥ 2η.

Proof. Let us first prove that for any density matrix ρ

max
|α|≤ᾱ

Tr (ρ̄Dα(ρ)) > 0. (5.12)

If for some ρ, the above maximum is zero, then for all α ∈ C (analyticity of Dα with respect
to <(α) and =(α)):

Tr (ρ̄Dα(ρ)) = 0.

We can decompose ρ as a sum of projectors,

ρ =
m∑
ν=1

λν |ψν〉 〈ψν | ,

where λν are strictly positive eigenvalues,
∑

ν λν = 1, and ψν are the associated normalized
eigenstates of ρ, 1 ≤ m ≤ nmax. Since Tr (ρ̄ Dα(ρ)) ≡ 0 for all α ∈ C , we have for all
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ν, 〈ψν | Dα|n̄〉 = 0. Fixing one ν ∈ {1, . . . ,m} and taking ψ = ψν noting that Dα =
exp

(
<(α)(a† − a) + i=(α)(a† + a)

)
and deriving j times versus <(α) and =(α) around

α = 0 we get, 〈
ψ | (a† − a)j|n̄

〉
=
〈
ψ | (a† + a)j|n̄

〉
= 0 ∀j ≥ 0.

With j = 0, we get, 〈ψ |n̄〉 = 0. With j = 1 we get 〈ψ |n̄− 1〉 = 〈ψ |n̄+ 1〉 = 0 since
a† |n̄〉 =

√
n̄+ 1 |n̄+ 1〉 and a |n̄〉 =

√
n̄ |n̄− 1〉. With j = 2 and using the null Hermitian

products obtained for j = 0 and 1, we deduce that 〈ψ |n̄− 2〉 = 〈ψ |n̄+ 2〉 = 0, since
aa† |n̄〉 and a†a |n̄〉 are colinear to |n̄〉. Similarly for any j and using the null Hermitian
products obtained for j′ < j, we deduce that 〈ψ |max(0, n̄− j)〉 = 〈ψ |min(nmax, n̄+ j)〉 =
0. Thus, for any n, 〈ψ|n〉 = 0, |ψ〉 = 0 and we get a contradiction. We have therefore
proved the relation (5.12).

Note, furthermore, that as the operatorsMg andMe are invertible, (5.12) also implies

F (ρ) = min
s∈{g,e}

max
|α|≤ᾱ

Tr (ρ̄Ms ◦ Dα(ρ)) > 0.

The map F is continuous with respect to ρ and as the space of the density matrices forms
a compact set, there exists δ > 0 such that F (ρ) ≥ δ for any density matrix ρ. Taking now
η ≤ δ/2 and ρk such that Tr (ρ̄ρk) < η, we necessarily have

Tr (ρ̄ρk+1) ≥ min
s∈{g,e}

max
|α|≤ᾱ

Tr (ρ̄Ms ◦ Dα(ρ)) ≥ δ ≥ 2η,

as the applied control field is given by αk = argmax
|α|≤ᾱ

Tr (ρ̄Dα(ρk)).

Lemma 5.1.9. Whenever ρk satisfies Tr (ρ̄ρk) ≥ 2η, we have

P
(

inf
k′≥k

Tr (ρ̄ρk′) > η | Tr (ρ̄ρk) ≥ 2η

)
≥ pη =

η

1− η > 0.

Proof. We know from (5.9) that the process 1 − Tr (ρ̄ρk) is a supermartingale in the set
S≥η = {ρ | Tr (ρ̄ρ) ≥ η}. Therefore, one only needs to use the Doob’s inequality (see the
Theorem H.0.11 of the Appendix H):

P(sup
k′≥k

(1− Tr (ρ̄ρk′))) ≥ 1− η | ρk ∈ S≥2η) ≤
1− Tr (ρ̄ρk)

1− η ≤ 1− 2η

1− η ,

and thus

P
(

inf
k′≥k

Tr (ρ̄ρk′) > η | Tr (ρ̄ρk) ≥ 2η

)
= 1− P(sup

k′≥k
(1− Tr (ρ̄ρk′))) ≥ 1− η | Tr (ρ̄ρk) ≥ 2η)

≥ 1− 1− 2η

1− η =
η

1− η = pη.
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Lemma 5.1.10. Almost all trajectories of (5.4) that never leave the set S≥η = {ρ | Tr (ρ̄ρ) ≥
η} converge towards the target state ρ̄.

Proof. We apply first the Kushner’s invariance Theorem to the Markov process ρk with
the sub-martingale function V (ρk). It ensures convergence in probability towards I the
largest invariant set attached to this sub-martingale (see Theorem H.0.13). Let us prove
that I is reduced to {ρ̄}.

By inequality (5.11), if ρ belongs to I then Tr (ρ̄ [ρ, a]) = 0, i.e., α ≡ 0 and also

Tr (ρ̄ Mg ◦ Dα(ρ)) = Tr (ρ̄ Me ◦ Dα(ρ)).

Invariance associated α ≡ 0 implies therefore

Tr (ρ̄ Mg(ρ)) = Tr (ρ̄ Me(ρ)).

Then ρ satisfies

Tr
(
ρ̄MgρM

†
g

)
Tr
(
MeρM

†
e

)
= Tr

(
ρ̄MeρM

†
e

)
Tr
(
MgρM

†
g

)
that reads, since M †

g ρ̄Mg = cos2ϕn̄ ρ̄, M †
e ρ̄Me = sin2ϕn̄ ρ̄ (recalling that ϕn̄ = n̄ϑ + ϕ0),

and Tr (ρ̄ρ) > 0,
cos2ϕn̄Tr

(
MeρM

†
e

)
= sin2ϕn̄Tr

(
MgρM

†
g

)
.

Since Tr
(
MeρM

†
e

)
+Tr

(
MgρM

†
g

)
= 1, we recover Tr

(
MgρM

†
g

)
= cos2ϕn̄ the same condition

as the one appearing at the end of the proof of Theorem 5.1.4. Similar invariance arguments
combined with Tr (ρ̄ρ) > 0 imply then ρ = ρ̄. Thus I is reduced to {ρ̄}.

Consider now the event P≥η = {∀k ≥ 0, Tr (ρ̄ρk) ≥ η}}. Convergence of ρk in proba-
bility towards ρ̄ means that

∀δ > 0, lim
k→∞

P (‖ρk − ρ̄‖ > δ | P≥η) = 0,

where ‖ · ‖ is any norm on the space of density matrices. The continuity of ρ 7→ Tr (ρ̄ρ)
implies that, ∀δ > 0,

lim
k→∞

P (Tr (ρ̄ρk) < 1− δ | P≥η) = 0.

As 0 ≤ Tr (ρ̄ρ) ≤ 1, we have

1 ≥ E (Tr (ρ̄ρk) | P≥η) ≥ (1− δ)P (1− δ ≤ Tr (ρ̄ρk) | P≥η) .

Thus
1 ≥ E (Tr (ρ̄ρk) | P≥η) ≥ (1− δ)

(
1− P (Tr (ρ̄ρk) < 1− δ | P≥η)

)
.

and consequently, ∀δ > 0, lim inf
k→∞

E (Tr (ρ̄ρk) | P≥η) ≥ 1− δ, i.e.,

lim
k→∞

E (Tr (ρ̄ρk) | P≥η) = 1.
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The process Tr (ρ̄ρk) being a submartingale, we know by Theorem H.0.10 that it converges,
for almost all trajectories remaining in the set S≥η, towards a random process fid∞. By
the dominated convergence Theorem, we obtain

E (fid∞) = E
(

lim
k→∞

Tr (ρ̄ρk) | P≥η
)

= lim
k→∞

E (Tr (ρ̄ρk) | P≥η) = 1.

This trivially proves that fid∞ ≡ 1 almost surely and finishes the proof of Lemma 5.1.10.

5.1.4 Quantum feedback and feedback delay

We have proved that in the ideal case of perfect measurement and no environmentally
induced relaxation, the feedback strategy of (5.10) ensures the deterministic preparation
of an arbitrary Fock state. Through this subsection, we study a first source of imperfection:
the delay. Indeed, in such an experimental setup, we have to take into account a delay of
d steps between the measurement process and the feedback injection. Indeed, there are,
constantly, d atoms flying between the photon box (the cavity) to be controlled and the
atom-detector (typically d = 5). Therefore, in our feedback design, we do not have access
to the measurement results for the d last atoms. For simplicity sakes, we will only consider
the case of d = 1 in this section, noting that the general case can be treated exactly in the
same manner (see the Remark 5.1.16 and the reference [6]).

In the case we have a delay of 1 atom between the measurement and the injection, the
dynamics are given by

ρk+1 = Msk(ρk+ 1
2
), ρk+ 1

2
= Dαk−1

(ρk), (5.13)

where sk ∈ {g, e} with probabilities Tr
(
M†

sk
Mskρk+ 1

2

)
.

A first source of problem is due to the fact that, the feedback αk−1 is chosen as a
function of ρk−1 and therefore, ρk does not define anymore a Markov chain. However, this
can be fixed quite easily by extending the state space to χk = (ρk, αk−1). As, for predicting
χk+1 we only need to know χk, it defines a Markov process.

Here, similarly to the previous section, we would like to choose the feedback law in
order to ensure an increasing expectation for the fidelity Tr (ρ̄ρk). However, we must note
that the feedback αk will act on the state ρk+1 to reach ρk+2 and we have not access to
ρk+1 when computing αk. Therefore, we need to look for a feedback law αk such that

E (Tr (ρ̄ρk+2) | χk) ≥ E (Tr (ρ̄ρk+1) | χk) . (5.14)

Before anything, we note that

E (Tr (ρ̄ρk+2) | χk) = E
(

Tr
(
ρ̄(M†gρk+3/2Mg +M†eρk+3/2Me)

)
| χk

)
= E (Tr

(
ρ̄ρk+3/2

)
| χk

)
,

where we have applied the facts thatMg,e commute with ρ̄ and thatM†
gMg+M†

eMe = 1.
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We go further in the computations and we have:

E
(
Tr
(
ρ̄ρk+3/2

)
| χk

)
= pg,kE

(
Tr
(
ρ̄ Dαk ◦Mg ◦ Dαk−1

(ρk)
)
| χk

)
+ pe,kE

(
Tr
(
ρ̄ Dαk ◦Me ◦ Dαk−1

(ρk)
)
| χk

)
= E

(
Tr
(
ρ̄ Dαk ◦Kαk−1

(ρk)
)
| χk

)
,

where

Kα(ρ) =MgDαρD
†
αM†

g +MeDαρD
†
αM†

e.

Moreover

E (Tr (ρ̄ρk+1) | χk) = E
(
Tr
(
ρ̄ Kαk−1

(ρk)
)
| χk

)
.

Thus, in order to ensure the inequality (5.14), similarly to the previous subsection and
applying the Baker-Campbell-Hausdorff formula, we only need to choose

αk = εTr
(
ρ̄ [ρpred

k , a]
)
,

where

ρpred
k = ρpred(χk) := Kαk−1

(ρk),

is called the predictor’s state as it can be seen as a prediction of the state ρk+1.
Similarly to the previous subsection, by applying stochastic Lyapunov techniques, we

can prove that the above feedback strategy ensures the almost sure convergence towards
the set of Fock states. While it increases the probability of converging towards the desired
Fock state ρ̄, it does not avoid the other Fock states. In the aim of avoiding these bad
attractors, we propose the following modification

αk =


εTr
(
ρ̄ [ρpred

k , a]
)

if Tr
(
ρ̄ρpred

k

)
≥ η

argmax
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρpred

g,k )
)

Tr
(
ρ̄ Dα(ρpred

e,k )
))

if Tr
(
ρ̄ρpred

k

)
< η

(5.15)

with {
ρpred
g,k =MgDαk−1

ρkD
†
αk−1
M†

g

ρpred
e,k =MeDαk−1

ρkD
†
αk−1
M†

e

(5.16)

We note, in particular, that the form of the second feedback term in (5.15) for the case of

Tr
(
ρ̄ρpred

k

)
< η is different from that of (5.10). In fact, in such a situation, we need to

choose the feedback αk such that whatever the (unread yet) result of the measurement sk

of the atom number k is, Tr
(
ρ̄ρpred

k+1

)
becomes greater (or equal) than η. This will be more

clear in the proof of the Lemma 5.1.13.

Theorem 5.1.11. Consider the Markov chain χk = (ρk, αk−1) defined by the dynam-
ics (5.13)-(5.15). It converges almost surely towards (ρ̄, 0).
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The proof of this theorem is very similar to that of Theorem 5.1.6 and is based on the
Lyapunov function

V (χ) = f (Tr (ρ̄Kα(ρ)))

defined on the state χ = (ρ, α) and where the function f(x) = x+x2

2
is the same as in

previous subsections. Four similar lemmas as the ones in the previous subsection ends the
proof of Theorem 5.1.11.

Lemma 5.1.12. For ε > 0 small enough and for χk satisfying Tr
(
ρ̄ρpred(χk)

)
≥ η,

E
(
Tr
(
ρ̄ρpred(χk+1)

)
| χk

)
≥ Tr

(
ρ̄ρpred(χk)

)
+ ε
∣∣∣Tr
(
ρ̄ [ρpredk , a]

)∣∣∣2
and also

E (V (χk+1) | χk) ≥ V (χk) + ε
2

∣∣∣Tr
(
ρ̄ [ρpredk , a]

)∣∣∣2
+

pg,kpe,k
2
(Tr

(
ρ̄ Dαk ◦Mg ◦ Dαk−1

(ρk)
)
− Tr

(
ρ̄ Dαk ◦Me ◦ Dαk−1

(ρk)
))2

. (5.17)

Proof. Since M †
gMg +M †

eMe = 1 and [ρ̄,Mg] = [ρ̄,Me] = 0, we have

Tr (ρ̄ Kαk(ρk+1)) = Tr (ρ̄ Dαk(ρk+1)).

Also, we have:

E (f (Tr (ρ̄ Kαk(ρk+1))) | χk) = pg,kf
(
Tr
(
ρ̄ Dαk ◦Mg ◦ Dαk−1

(ρk)
))

+

pe,kf
(
Tr
(
ρ̄ Dαk ◦Me ◦ Dαk−1

(ρk)
))
.

The rest of the proof is exactly as in Lemma 5.1.7 and is based on the 1-convexity of the
function f .

Lemma 5.1.13. When η > 0 is small enough, any state χk satisfying the inequality
Tr
(
ρ̄ρpred(χk)

)
< η yields a new state χk+1 such that Tr

(
ρ̄ρpred(χk+1)

)
≥ 2η.

Proof. Since Mg and Me are invertible, there exists ζ ∈]0, 1[ such that, for any χ,
Tr
(
ρpred
g (χ)

)
≥ ζ and Tr

(
ρpred
e (χ)

)
≥ ζ (ρpred

g and ρpred
e are defined in (5.16)). Denote

by Xζ the compact set of Hermitian semi-definite positive matrices with trace in [ζ, 1]: for
any χ, ρpred

g (χ) and ρpred
e (χ) are in Xζ . Let us prove first that, for any ρg, ρe ∈ Xζ

max
|α|≤ᾱ

(Tr (ρ̄ Dα(ρg))Tr (ρ̄ Dα(ρe))) > 0. (5.18)

If for some ρg, ρe ∈ Xζ , the above maximum is zero, then for all α ∈ C (analyticity of Dα

versus <(α) and =(α)):
Tr (ρ̄ Dα(ρg))Tr (ρ̄ Dα(ρe)) ≡ 0.
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This implies that either Tr (ρ̄ Dα(ρg)) ≡ 0 or Tr (ρ̄ Dα(ρe)) ≡ 0 (if the product of two ana-
lytic functions is zero, one of them is zero). Let us assume for instance that, Tr (ρ̄ Dα(ρg)) ≡
0. Exactly as in the proof of Lemma 5.1.8, this implies a contradiction and therefore (5.18)
holds true for any ρg, ρe ∈ Xζ .

The rest of the proof is very similar to that of Lemma 5.1.8 and we leave it to the
reader.

Lemma 5.1.14. Initializing the Markov process χk within the set {χ | Tr
(
ρ̄ρpred(χ)

)
≥

2η}, χk will never hit the set {χ | Tr
(
ρ̄ρpred(χ)

)
< η} with a probability larger than

pη =
η

1− η > 0.

The proof of this Lemma is similar to that of Lemma 5.1.9 and is based on the appli-
cation of Doob’s inequality for the supermartingale 1− Tr

(
ρ̄ρpred(χk)

)
.

Lemma 5.1.15. Sample paths χk remaining in the set {Tr
(
ρ̄ρpred(χ)

)
≥ η} converge

almost surely towards χ̄ as k →∞.

The proof of this Lemma is similar to that of Lemma 5.1.10 and is based on the appli-
cation of Kushner’s invariance principle for the Markov process χk with the submartingale
function V (χk). We leave the adaptation to the reader.

Remark 5.1.16. The above analysis can be very easily extended to the case where we have
d atom of delay between the measurement and the injection. The associated dynamics

ρk+1 = Msk(ρk+ 1
2
), ρk+ 1

2
= Dαk−d(ρk)

defines a Markov process for the extended state χk = (ρk, αk−1, . . . , αk−d). Similarly
to (5.15), the feedback law

αk =


εTr

(
ρ̄ [ρpredk , a]

)
if Tr

(
ρ̄ρpredk

)
≥ η

argmax
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρpredg,k )

)
Tr
(
ρ̄ Dα(ρprede,k )

))
if Tr

(
ρ̄ρpredk

)
< η

(5.19)

with 
ρpredk = Kαk−1

◦ . . . ◦Kαk−d(ρk)

ρpredg,k = Kαk−1
◦ . . . ◦Kαk−d+1

(MgDαk−dρkD
†
αk−d

M †
g )

ρpredg,k = Kαk−1
◦ . . . ◦Kαk−d+1

(MeDαk−dρkD
†
αk−d

M †
e )

ensures the almost sure stabilization of χk around (ρ̄, 0, . . . , 0). We refer to [6] for more
details.

Remark 5.1.17. The quantum separation principle of the Theorem 5.1.1 can be extended
very easily to the above delayed case (we have implicitly assumed this above). We leave its
proof to the readers as an exercise.
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5.1.5 Quantum feedback: realistic simulations

Through this subsection, we study all the other uncertainties and imperfections that lead
to a difference between the dynamics of the system and the filter. For simplicity sakes we
forget about the delay here and we leave the adaptation to the delayed case as an exercise
to the reader.

Following the analysis of the Subsections 4.2.5 and 4.2.6, the quantum filter dynamics
are given by

ρest
k+1 = T ◦ Bsk ◦ Dαk(ρ

est
k ),

where the sk ∈ {g, e, u} is a random variable denoting the result of measurement: atom
in |g〉, atom in |e〉, or no atom detected. Furthermore Bs is the Bayesian filter given in
Subsection 4.2.5:

Bg(ρ) =
1− ηf

(1− ηf )pg + ηfpe
MgρM†

g +
ηf

(1− ηf )pg + ηfpe
MeρM†

e,

Be(ρ) =
1− ηf

(1− ηf )pe + ηfpg
MeρM†

e +
ηf

(1− ηf )pe + ηfpg
MgρM†

g,

Bu(ρ) =
1− ηa

1− ηaηd
ρ+

ηa(1− ηd)
1− ηaηd

(
MgρM†

g +MeρM†
e

)
,

where pg = Tr
(
M†

gMgρ
)
, pe = Tr

(
M†

eMeρ
)
, ηf is the detection fault rate, ηa is the pulse

occupation rate and ηd is the detection’s efficiency rate.
Following the analysis of the Subsection 4.2.6, the super T, modeling the decoherence,

is given by:

T(ρ) = ρ− κτa(1 + nth)

2

(
a†aρ+ ρa†a− 2aρa†

)
− κτanth

2

(
aa†ρ+ ρaa† − 2a†ρa

)
,

where κ is the cavity rate and nth is the average number of thermal photons per mode.
Finally, the feedback law αk is given by (5.19) where ρk must be replaced by ρest

k .
Figures 5.2 and 5.3 correspond to the closed-loop simulation of a single trajectory for such
feedback-scheme and with realistic imperfections (see [28] for more details):

ηf = 1
10
, ηa = 3

10
, ηd = 8

10
, κτa = 6.4 10−4, nth = 5

100
,

d = 5, η = 1
10
, ᾱ = 1, nmax = 9, n̄ = 3, ε = 1

2n̄+1
, ϑ = 4

10
, ϕ0 = π

4
− n̄ϑ.

Note that, through these simulations the probability distribution for the random vari-
ables sk ∈ {g, e, u} are given by the simulation of the real system in parallel to the filter.
In order to simulate the real system, we simulate its common state of maximal knowl-
edge, assuming there is no uncertainty in the measurement and that the relaxation is also
measured:

ρk+1 = Mtk ◦Mrk ◦Msk ◦ Dαk(ρk),
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Figure 5.2: Closed-loop simulation of the photon-box system: a single realization with
realistic parameters and uncertainties.
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density matrix ρ (photon populations) .
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where sk ∈ {g, e, u}, rk ∈ {loss, non-loss} and tk ∈ {gain, no-gain} are random variables
admitting probability distributions:

P(sk = g) = ηaTr
(
M†

gMgDαk(ρk)
)
,

P(sk = e) = ηaTr
(
M†

eMeDαk(ρk)
)
,

P(sk = u) = 1− ηa,
P(rk = loss) = κ(1 + nth)τaTr

(
a†aρ

)
,

P(rk = no-loss) = 1− κ(1 + nth)τaTr
(
a†aρ

)
,

P(tk = gain) = κnthτaTr
(
aa†ρ

)
,

P(tk = no-gain) = 1− κnthτaTr
(
aa†ρ

)
.

These probability distributions are respectively associated to the Kraus operators
√
ηaMg,√

ηaMe,
√

1− ηa 1, Mloss, Mno-loss, Mgain and Mno-gain.

5.2 Continuous-time system

Through this section we consider the continuous-time system of the Section 4.3. The Λ-
configuration of the subsection 4.3.2 and the physical phenomena of coherent population
trapping, presented in Subsection 4.3.4, are the basis of atomic micro-clocks largely used
within the GPS satellites.

Indeed, the SI second is defined to be “the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two hyperfine levels of the radiation
corresponding to the transition between the two hyperfine levels of the ground state of the
cesium 133 atom” [1]. A primary frequency standard is a device that realize this definition.
Indeed, the basic idea to achieve accurate and stable clocks is to synchronize a laser field
with particular atomic transition frequencies.

In particular, the CPT-based atomic micro-clocks are based on the Λ-structure of the
Subsection 4.3.2, where the two ground states |g1〉 and |g2〉 have their energy separation in
the radio-frequency or microwave region, and the excited state |e〉 is coupled to the lower
ones by optical transitions. In such clocks, we consider a population of identical quantum
systems with few mutual interactions (a vapor cell) having reached its asymptotic statistical
regime. As it can be seen through the Figure 5.4, the principle behind the mechanism of
such clocks is that, whenever the detuning ∆ (defined in Subsection 4.3.2) vanishes, the
atoms converge rapidly to the dark state (coherent population trapping phenomena) and
therefore the ensemble becomes transparent to the laser field (no photon absorption).
However, as soon as the detuning ∆ becomes non-zero, the system will keep absorbing the
photons and irradiating them in a random direction through spontaneous emission. This
yields to a drop of the transmission rate that can be measured via a photodetector aligned
with the laser field. Therefore, we need to look for an algorithm allowing to tune the laser’s
frequency in order to reach the maximum transmission rate (or equivalently the minimum
absorption rate). This can be done through an Extremum-Seeking feedback loop. A basic
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a) ∆ = 0

b) ∆ = 0

Figure 5.4: Basic principle behind the mechanism of the CPT-based atomic micro-clocks,
a) whenever the detuning ∆ 6= 0 the vapor cell keeps absorbing the photons and irradiating
them in a random direction through the spontaneous emission; b) no detuning leads to
the transparency of the vapor cell with respect to the laser field; therefore we reach the
maximum transmission rate.)
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schematic of such a loop can be seen in Figure 5.5. Indeed for any ∆ the absorption rate
converges very rapidly towards a static value f(∆) and the diagram of Figure 5.5 illustrates
the algorithm to reach this minimum (at least approximately). Note that, in practice, we
do not have access to the detuning ∆ but to the laser frequencies. Having locked one of
the laser frequencies, we will therefore tune the frequency of the other one to reach the
minimum absorption rate.

Figure 5.5: The basic extremum seeking feedback loop for a non-linear static system y =
f(u) (s = d

dt
is the Laplace variable and (k, a, ω) are constant design parameters).

The two main assumptions for any function f(u) allowing us to apply such a feedback
loop is that there exists a u∗ such that f ′(u∗) = 0 and f ′′(u∗) > 0. The function f(u) admits,
therefore, a local minima at u∗. We assume that, we start within a small neighborhood of
this point and we are interested in improving the precision by getting as near as possible to
u∗. Here, the input signal is perturbed with a sinusoid of frequency ω and small amplitude
a > 0. Indeed, the dynamics associated to the diagram 5.5 can be written as:

d

dt
v = −k sin(ωt)y, y = f(v + a sin(ωt)),

where k > 0 is a positive gain. Assuming that f is analytic and considering its Taylor
expansion, we have

d

dt
v = −k sin(ωt)

(
f(v) + a sin(ωt)f ′(v) + a2 g(a, v, t)

)
, (5.20)

where g(a, v, t) is a bounded 2π
ω

-periodic function in t. By changing the time-scale to
τ = ωt, we have

d

dτ
v = −k

ω
sin(τ)

(
f(v) + a sin(τ)f ′(v) + a2 g(a, v, τ)

)
.
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Assuming ω large enough, averaging over the period 2π of the system and removing the
oscillating terms, we find

d

dτ
vav = −ka

2ω
f ′(vav)− k a2

ω
gav(a, vav).

However the system ẇ = − ka
2ω
f ′(w) is hyperbolically asymptotically stable around u∗ (the

assumptions f ′(u∗) = 0 and f ′′(u∗) > 0). As−k a2

ω
gav(a, w), is a small smooth perturbation

of this vector field (a is assumed to be small and the derivative of gav with respect to w at
u∗ is uniformly bounded for a in a small neighborhood of zero), the above system is also
hyperbolically asymptotically stable around an equilibrium point in an O(a)-neighborhood
of u∗. Then by the averaging theorem, the system (5.20) admits a hyperbolically stable
periodic orbit in an O(a+ 1

ω
)-neighborhood of u∗.

In contrast with the above scenario here we are interested in considering a single Λ-
system (for instance a Λ-structured ion trapped within a Coulombian potential) instead
of a vapor cell. In such a situation, we will not realize any change in the transmission
rate even if the detuning ∆ 6= 0 (as the proportion of absorbed photons within the time
unit can be neglected). However, by surrounding the dispositive by photodetectors and
collecting the spontaneously emitted photons (or at least a part of them), we will get some
information on the state of the system (see the Subsection 4.3.1 and the Figure 4.2). The
collected information is no more in the form of a transmission or absorption rate but rather
of the form of discrete click times of the photodetector indicating the arrival of an emitted
photon. The question is whether how to integrate such information in a synchronization
loop as the one presented in Figure 5.5. The next two subsections are based on [53]: they
present and analyze the convergence of such a synchronization feedback loop.

5.2.1 Synchronizing feedback loop

We recall from the Subsection 4.3.4 that, whenever we apply near resonant laser fields and
whenever we have the time-scale assumptions of the Subsection 4.3.2, the Lindblad master
equation (and also the associated stochastic master equation) can be reduced (removing
the stable fast dynamics associated to the excited state |e〉) to a master equation leaving
on the 2-dimension Hilbert space spanned by |g1〉 and |g2〉. Recall that the dynamics of
the slow part are given by the following stochastic master equation

dρ = −i∆
2

[|g2〉 〈g2| − |g1〉 〈g1| , ρ] dt

− 1

2

(
L†1L1ρ+ ρL†1L1

)
dt+ Tr

(
L1ρL

†
1

)
ρdt+

 L1ρL
†
1

Tr
(
L1ρL

†
1

) − ρ
 dN1

t

− 1

2

(
L†2L2ρ+ ρL†2L2

)
dt+ Tr

(
L2ρL

†
2

)
ρdt+

 L2ρL
†
2

Tr
(
L2ρL

†
2

) − ρ
 dN2

t (5.21)
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Here the Lindblad operators L1 and L2 are given by

Lk = 2
√

Γk

√
|Ω1|2 + |Ω|2
Γ1 + γ2

|gk〉 〈bΩ| , bΩ =
Ω1 |g1〉+ Ω2 |g2〉√
|Ω1|2 + |Ω2|2

and dN1
t and dN2

t are independent Poisson increments with averages

E
(
dNk

t

)
= Tr

(
LkρL

†
k

)
dt = 4Γk

|Ω1|2 + |Ω2|2
(Γ1 + Γ2)2

Tr (|bΩ〉 〈bΩ| ρ)dt.

Here in the aim of the synchronization, we consider a modulation of the Rabi frequencies
by replacing constant Ω1 and Ω2 with

Ω̃1 = Ω1 + iεΩ2 cos(ωt), Ω̃2 = Ω2 − iεΩ1 cos(ωt),

with ε � 1 and ω � Γ1,Γ2 the design parameters (furthermore as in Subsection 4.3.2
Ω1,Ω2 � Γ1,Γ2). Setting

γj = 4
Ω2

1 + Ω2
2

(Γ1 + Γ2)2
Γj, for j = 1, 2 and γ = γ1 + γ2,

If we replace ∆/γ by ∆, ω/γ by ω and γt by t in the stochastic master equation dy-
namics (5.21), we get the quantum Monte-Carlo trajectories in the 1/γ scale, the optical-
pumping scale, that reads:

• In the absence of quantum jumps, the systems density matrix ρ evolves through the
dynamics

d

dt
ρ = −i

[
∆

2
σz, ρ

]
− 1

2
{|b+ ιε cos(ωt)d〉 〈b+ ιε cos(ωt)d| , ρ}

+ Tr (|b+ ιε cos(ωt)d〉 〈b+ ιε cos(ωt)d| ρ)ρ. (5.22)

with |b〉 = cosα |g1〉 + sinα |g2〉, |d〉 = − sinα |g1〉 + cosα |g2〉 (α ∈
[
0, π

2

]
is the

argument of Ω1 + iΩ2).

• At each time step dt the system may jump on the ground state |gj〉 (j = 1, 2) with
a probability given by

pjump(ρ→ |gj〉 〈gj|) =
γj

γ1 + γ2

Tr (|b+ iε cos(ωt)d〉 〈b+ iε cos(ωt)d| ρ)dt (5.23)

This quantum jump leads to the emission of a photon that will be detected with
certain efficiencies: ηj ∈ (0, 1] for the jumps to the state |gj〉.
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We assume a broad band detection process and thus the only information available
with such measure is just the jump time. The type of jump (either to |g1〉 or |g2〉) is not
available here. Thus the total jump probability reads

pjump = Tr (|b+ iε cos(ωt)d〉 〈b+ iε cos(ωt)d| ρ)dt (5.24)

After each jump, ρ coincides with |g1〉 〈g1| or |g2〉 〈g2|.
We are interested in synchronizing the lasers with the system’s frequencies and therefore

make ∆ converge to zero. Note that, in practice we have a certain knowledge of the
transition frequency and therefore we can always tune our lasers so that the detuning |∆|
does not exceed a fixed threshold C.

The main strategy for the correction of the detuning is to wait for the matured quantum
jumps (clicks of the photo-detector). This means that we choose a certain time constant
T � 1 and if the distance between two jumps is more than T , we will correct the detuning
according to the time when the second jump happens. Note that, one can easily show that
these matured quantum jumps, almost surely, happen within a finite horizon.

Assume that ε� 1� ω and consider the following synchronization algorithm:

1. Start with a certain detuning ∆0 with |∆0| ≤ C and set the switching parameter
S = 0 and the counter N = 0.

2. Wait for a first click and meanwhile evolve the switching parameter through d
dt
S = 1.

3. If the click happens while S ≤ T then switch the parameter S to zero and go back
to the step 2.

4. If the click happens while S > T then switch the parameter S to zero, change the
counter value to N + 1, correct the detuning ∆N as follows:{

∆N+1 = ∆N − δ sin(2α) cos(ωt) if |∆N − δ sin(2α) cos(ωt)| ≤ C,

∆N+1 = C, otherwise

and go back to the step 2.

Here, we have chosen the correction gain δ � 1. We claim that, given any small ε, we can
adjust the parameters ω large and δ small enough such that with the above algorithm, the
detuning ∆N converges in average to an O(ε2)-neighborhood of 0 with a deviation of order
O(ε). Indeed, we have the following result

Theorem 5.2.1. Consider the Monte-Carlo trajectories described by (5.22)-(5.23) where

|b〉 = cosα |g1〉+ sinα |g2〉 with 0 < α <
π

2
. (5.25)

Moreover, we assume perfect detection efficiency η1 = η2 = 1 and

ε� 1,
1

ω
∼ ε2. (5.26)
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Consider then the above synchronization algorithm with

C < 1/2 and δ ∼ ε3. (5.27)

We can fix then the time constant T in the algorithm large enough so that:

lim sup
N→∞

E
(
∆2
N

)
≤ O(ε2). (5.28)

We also have the following corollary

Corollary 5.2.2. Under the assumptions of the Theorem 5.2.1, one has

lim sup
N→∞

P(|∆N | >
√
ε) ≤ O(ε). (5.29)

This corollary results from the Markov inequality:

P(|∆N | >
√
ε) = P(∆2

N > ε) ≤ E (∆2
N)

ε
.

Therefore applying (5.28), one deduces (5.29).

Remark 5.2.3. Following the steps of the proof and changing the assumptions (5.26)
and (5.27) to

1/ω ∼ ε and δ ∼ ε2, (5.30)

one can show that, the detuning reaches an O(ε)-neighborhood of 0 with a deviation of order√
ε.

We assume

1/ω = ε2κ1, δ = ε3κ2,

where κ1, κ2 ∼ 1.

The proof of the Theorem 5.2.1 admits 2 main steps:

Step 1 We consider the evolution in the absence of the quantum jumps through the dy-
namics (5.22). We study the asymptotic regime of the dynamics. The constant time
T will then be chosen to ensure the non-jumping system to reach an ε3-neighborhood
of the limit regime.

Step 2 In the second step, applying the result of the first step, we calculate the conditional
expectation of ∆N+1 having fixed ∆N . Finally, we sum up all these results in order
to find the limit (5.28).

Through the two following subsections, we consider these two steps separately.
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5.2.2 Convergence analysis: asymptotic regime of the non-jumping
system

We are interested in the dynamics of the system (5.22). In this aim, we apply the Kapitsa
shortcut method (see the Appendix C). Note that,

|b+ ιε cos(ωt)d〉 〈b+ iε cos(ωt)d| = |b〉 〈b|+ ε2

2
|d〉 〈d|

+ iε cos(ωt)(|b〉 〈d| − |d〉 〈b|) +
ε2

2
cos(2ωt) |d〉 〈d| .

Applying the Kapitsa method, the variable ρ may be developed as

ρ = ρ̃+O(
ε

ω
) = ρ̃+O(ε3), (5.31)

where ρ̃ represents the unperturbed trajectory. Through the rest of this subsection we
study the dynamics of ρ̃.

The unperturbed part, ρ̃, satisfies the dynamics:

d

dt
ρ̃ = −i∆

2
[σz, ρ̃]− 1

2

{
|b〉 〈b|+ ε2

2
|d〉 〈d| , ρ̃

}
+ Tr

((
|b〉 〈b|+ ε2

2
|d〉 〈d|

)
ρ̃

)
ρ̃. (5.32)

In order to study the asymptotic behavior of (5.32), we begin with the case ε ≡ 0 and we
study first the system

d

dt
ρ̂ = −i∆

2
[σz, ρ̂]− 1

2
{|b〉 〈b| , ρ̂}+ Tr (|b〉 〈b| ρ̂)ρ̂, (5.33)

where {A,B} = AB +BA is the anti-commutator.
The dynamics in the Bloch sphere coordinates, X = Tr (σxρ̂), Y = Tr (σyρ̂), Z =

Tr (σzρ̂), are given as follows:

d

dt
X = −∆Y − sin(2α)

2
+

(
sin(2α)

2
X +

cos(2α)

2
Z

)
X

d

dt
Y = ∆X +

(
sin(2α)

2
X +

cos(2α)

2
Z

)
Y

d

dt
Z = −cos(2α)

2
+

(
sin(2α)

2
X +

cos(2α)

2
Z

)
Z,

where we have applied |b〉 = cosα |g1〉+ sinα |g2〉. Taking

′ = 2
d

dt
, p = 2∆, β = 2α,
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we have the following dynamical system

X ′ = −pY − sin β + (sin βX + cos βZ)X
Y ′ = pX + (sin βX + cos βZ)Y
Z ′ = − cos β + (sin βX + cos βZ)Z.

(5.34)

living on R3. Since the two transformations (X, Y, Z, p, β) 7→ (−X,−Y,−Z, β + π) and
(X, Y, Z, p, β) 7→ (X, Y,−Z, π − β) leave the above equations unchanged, we can always
consider, for the study of this dynamical system versus the parameter p and β, that the
angle β ∈ [0, π

2
] and p ∈ R. Since X2 + Y 2 + Z2 = 1 is invariant, these 3 differential

equations define a dynamical system on the two dimensional sphere S2, the Bloch sphere.
Consider the element of Euclidean length δs2 = (δX)2 +(δY )2 +(δZ)2 and its evolution

along the dynamics defined by (5.34) on S2. We have(
δs2
)′

= 2 (δXδX ′ + δY δY ′ + δZδZ ′)

with (δX ′, δY ′, δZ ′) given by the first variation of (5.34):

δX ′ = −pδY + (sin βX + cos βZ)δX +X(sin βδX + cos βδZ)

δY ′ = pδX + (sin βX + cos βZ)δY + Y (sin βδX + cos βδZ)

δZ ′ = (sin βX + cos βZ)δZ + Z(sin βδX + cos βδZ).

Since XδX + Y δY + ZδZ = 0, we obtain the simple relation(
δs2
)′

= 2(sin βX + cos βZ)δs2. (5.35)

Thus S2 splits into two hemispheres: the open hemisphere S2
+ corresponding to sin βX+

cos βZ > 0 and where the dynamics is a strict dilation in any direction; the open hemisphere
S2
− corresponding to sin βX + cos βZ < 0 where the dynamics is a strict contraction

(see [48]). The boundary between these two hemispheres is given by the intersection of the
plane sin βX + cos βZ = 0 with S2. We have

(sin βX + cos βZ)′ = −1− p sin βY − (sin βX + cos βZ)2.

Thus, when |p sin β| ≤ 1, S2
+ is negatively invariant and S2

− positively invariant.
Assume first that p 6= 0 and β ∈]0, π

2
[ and consider the equilibrium on S2. Simple

computations prove that we have only two equilibria associated to the point M+ ∈ S2
+ and

M− ∈ S2
− of coordinates (X+, Y+, Z+) and (X−, Y−, Z−) given by

X± = ±
(

cosβ
sinβ

) √
(p2−1)2+4p2 cos2 β−p2−1√

2p2

√
p2−1+

√
(p2−1)2+4p2 cos2 β

Y± =

√
(p2−1)2+4p2 cos2 β−p2−1

2p sinβ

Z± = ±
√

p2−1+
√

(p2−1)2+4p2 cos2 β

2p2

(5.36)
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When p = 0, the above formula can be extended by continuity to get the two equilibria:

X± = ± sin β, Y± = 0, Z± = ± cos β.

When β = 0, similarly we obtain the two equilibria

X± = 0, Y± = 0, Z± = ±1.

When β = π
2

the situation is slightly different:

• for |p| < 1 we have two equilibria

X± = ±
√

1− p2, Y± = −p, Z± = 0.

• for |p| = 1 we have a unique equilibrium

X± = 0, Y± = −p, Z± = 0.

• for |p| > 1 we have two equilibria

X± = 0, Y± = −1

p
, Z± = ±

√
1− 1

p2
.

With all the above properties we deduce the following lemma

Lemma 5.2.4. Consider the differential equations (5.34) defining an autonomous dynam-
ical system on the Bloch Sphere S2 with the parameters p ∈ R and β ∈ [0, π

2
]. Then

1. for (|p|, β) 6= (1, π/2), we have two distinct equilibrium points M+ and M− defined
here above by (5.36). The two Lyapounov exponents at M+ (resp. M−) have strictly
positive (resp. negative) real parts: M+ is locally exponentially unstable (in all direc-
tion) and M− is locally exponentially stable.

2. For |p sin β| < 1, all the trajectories (except the unstable equilibrium M+) converge
asymptotically to the equilibrium point M− that is exponentially stable: the attraction
region of M− is S2/{M+}.

Proof of Lemma 5.2.4. The first point result from (5.35) applied locally around M+

and M− and from sin βX+ + cos βZ+ > 0 whereas sin βX− + cos βZ− < 0.
The second point comes from the negative invariance of S2

+, positive invariance of S2
−

and the Poincare-Bendixon theory (see the Appendix F) for autonomous systems on the
sphere: an hypothetic limit cycle C cannot intersect S2

+ and S2
− simultaneously and thus

must be included in S2
+ or S2

−; strict surface dilation (resp. contraction) in S2
+ (resp.

S2
−) is incompatible with the existence of C ⊂ S2

+ (resp. C ∈ S2
−) because of the Gauss

theorem (see Theorem F.0.4 of the Appendix F); since there is no limit cycle and since
there exist only two equilibrium points, M+ exponentially unstable in all direction and M−
exponentially stable, the attraction domain of M− is the all sphere without the unstable
point M+.
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Remark 5.2.5. It is tempting to conjecture that, for all values of the parameters p and
β ensuring two separate equilibria M+ and M− defined here above, we have a quasi-global
convergence towards M−, the locally exponentially stable equilibrium. This is not true since
for β = π/2 and |p| > 1 we have the coexistence of the periodic orbit X2 + Y 2 = 1 with
Z = 0 with the two equilibria

X± = 0, Y± = −1

p
, Z± = ±

√
1− 1

p2

and thus a trajectory starting with Z > 0 remains with Z > 0 for all the time and cannot
converge to M− since Z− < 0.

We are now ready to study the unperturbed system (5.32) in the case where ε 6= 0.

Under the assumption of the Theorem 5.2.1 on C, we know that the detuning ∆ can
not get larger than 1/2 and therefore in the above notations p < 1. This trivially implies
|p sin β| < 1 and therefore we are in the settings of the second point of the Lemma 5.2.4.
Hence, the system (5.33) admits two distinct equilibria ρ− and ρ+ given by (5.36) in the
Bloch sphere coordinates. Moreover the trajectories of the system, not starting at ρ+,
necessarily converge towards the equilibria ρ−.

Applying this characterization of the dynamics, one easily gets

Lemma 5.2.6. Under the assumption of the Theorem 5.2.1 for |b〉 and the assumption
|∆| < 1

2
, and for small enough ε, the system (5.32) admits a locally asymptotically stable

equilibrium ρε of the form

ρε = ρ− + ε2ρ1 +O(ε4),

where ρ− is given by (5.36) in the Bloch sphere coordinates. Moreover the trajectories
starting at |g1〉 〈g1| or |g2〉 〈g2| converge towards this equilibrium.

For the proof of this lemma, note that, as α 6= 0, |g1〉 〈g1| and |g2〉 〈g2| are not the
equilibriums of the system (5.33). Thus, taking ε small enough, they will not be an
equilibrium of (5.32) neither, and therefore the trajectories starting at |g1〉 〈g1| and |g2〉 〈g2|
necessarily converge towards the perturbed asymptotically stable equilibrium ρε.

The Lemma 5.2.6, together with (5.31), implies that the trajectories ρ(t) of the sys-
tem (5.22) starting at |g1〉 〈g1| or |g2〉 〈g2| converge to an O(ε3)-neighborhood of ρ−+ ε2ρ1.

We may therefore choose the time constant T in the synchronization algorithm of the
Subsection 5.2.1 such that

ρ(t) = ρ− + ε2ρ1 +O(ε3), ∀t > T. (5.37)

Through the nest subsection, we apply the result of this subsection in order to charac-
terize the conditional evolution of the detuning.
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5.2.3 Convergence analysis: conditional evolution of detuning

We are interested in the conditional expectations of ∆N+1 and ∆2
N+1 knowing the value

of ∆N . Due to the synchronization algorithm ∆N+1 = ∆N − δ sin(2α) cos(ωt), the value
of ∆N+1 only depends on the phase φ = ωt mod (2π). We update ∆N+1 only if the
time interval with respect to the previous jump is large enough to ensure that the so-
lution of the no-jump dynamics (5.22) has reached its asymptotic regime (5.37). Thus
Tr (|b+ iε cos(ωt)d〉 〈b+ iε cos(ωt)d| ρ) is given inserting the limit (5.37). The jump proba-
bility defined by (5.24) depends only on φ = ωt mod (2π). Since the probability of having
a phase φ during the update ∆N to ∆N+1 is proportional to

Tr (|b+ iε cos(φ)d〉 〈b+ iε cos(φ)d| ρ),

this probability admits a density with respect to the Lebesgue measure on [0, 2π], given by

pφ,N =
1

ZN(ε)

(
Tr
(
|b〉 〈b| ρ−

)
+ ε2 cos2(ϕ)Tr

(
|d〉 〈d| ρ−

)
+ ε2Tr (|b〉 〈b| ρ1)

− ε cos(ϕ)Tr
(
σyρ−

)
+O(ε3)

)
, φ ∈ [0, 2π), (5.38)

where the index N in pφ,N denotes, in particular, the dependence of ρ− and ρ1 to the
detuning ∆N . Furthermore, the constant ZN(ε) > 0 is a normalization constant given by
the integral over [0, 2π] of the term between parentheses. In particular, one can easily find
the strictly positive constants c1, c2 > 0 such that

c1ε
2 < ZN(ε) < c2. (5.39)

Removing the threshold C in the algorithm by allowing the detuning to get large, the
value of ∆N+1, having fixed ∆N , is given as follows

∆N+1 = ∆N − δ sin(2α) cos(ϕ) (5.40)

with a probability density pϕ,N .
Similarly for ∆2

N+1 one has

∆2
N+1 = ∆2

N − 2δ sin(2α) cos(ϕ)∆N + δ2 sin2(2α) cos2(ϕ), (5.41)

with a probability density pϕ,N .
Inserting (5.38) into (5.41), we have

E
(
∆2
N+1 | ∆N

)
= ∆2

N − πε
δ

ZN(ε)

ΘN

2
+O

(
δ2

ZN(ε)

)
+O

(
δε3

ZN(ε)

)
, (5.42)

where

ΘN = 4∆2
N + 1−

√
(4∆2

N − 1)2 + 16∆2
N cos2(2α).

Note, in particular, that ΘN > 0 as α 6= 0.
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Now, taking into account the threshold C for the growth of the detuning ∆N+1, we can
easily see that

ΘN =
16∆2

N sin2(2α)

4∆2
N + 1 +

√
(4∆2

N − 1)2 + 16∆2
N cos2(2α)

≥ 8 sin2(2α)

1 + 4C2
∆2
N .

Therefore, noting by

ς = πκ2
4 sin2(2α)

1 + 4C2
> 0, (5.43)

where δ = κ2ε
3, we have

E
(
∆2
N+1 | ∆N

)
≤ ∆2

N −
ε4

ZN(ε)
ς∆2

N + c3
ε6

ZN(ε)
, (5.44)

where c3 > 0 is a fixed positive constant. Taking now the expectation of the both sides,
we have

E
(
∆2
N+1

)
≤
(

1− ε4

ZN(ε)
ς

)
E
(
∆2
N

)
+ c3

ε6

ZN(ε)
, (5.45)

where we have applied the relation E
(
E (X|Y )

)
= E (X). Noting that

0 <
ε4

c2

≤ ε4

ZN(ε)
≤ ε2

c1

,

where c1 and c2 are given by (5.39), the system (5.45) is a contracting one. Furthermore
by noting that

ε6

ZN−1(ε)
+

(
1− ε4

ZN−1(ε)
ς

)
× ε6

ZN−2(ε)
+ . . .+

N−1∏
k=1

(
1− ε4

Zk(ε)
ς

)
× ε6

Z0(ε)
=

ε2

ς
(1−

N∏
k=0

(
1− ε4

ZN(ε)
ς
)

) ≤ ε2

ς
,

we easily have the following lemma:

Lemma 5.2.7. Considering the Monte-Carlo trajectories described by (5.22)- (5.23) and
applying the synchronization algorithm of the Subsection 5.2.1, we have

E
(
∆2
N

)
≤
(

1− ε4

c2

ς

)N
∆2

0 +O(ε2),

where the positive constant ς is given in (5.43) and c2 in (5.39).

This trivially finishes the proof of the Theorem 5.2.1 and we have

lim sup
N→∞

E
(
∆2
N

)
≤ O(ε2).

Furthermore, note that as the detuning ∆N gets near 0, the normalization constant ZN(ε)
converges to an O(ε2). This, in particular, leads to a higher convergence rate in the
Lemma 5.2.7.



Appendix A

Basic Quantum notions

All the objects, notions and operators described in this section are mathematically well
defined when the Hilbert spaces where the wave functions live are of finite dimensions.
When the Hilbert spaces are of infinite dimensions, one has to be aware that these objects,
notions and operators might also be defined in principle but one needs to explore the
mathematical justifications depending strongly on the specific physical system under study
(involving in particular its spectral decomposition). For clarity sake, we consider here only
the finite dimensional case even if some constructions and objects (such as tensor product)
admit a straightforward extension to infinite dimensional Hilbert spaces.

A.1 Bra, Ket and operators

We just recall here some basic notions of quantum mechanics. We refer to the excellent
course [22] where these notions are explained in details. Bra 〈•| and Ket |•〉 are co-vector
and vector. The quantum state is described by the ket |ψ〉 an element of norm one and
belonging to a Hilbert space H. The quantum state is also called (probability amplitude)
wave function. The Hermitian conjugate of a Ket is a Bra: 〈ψ| = |ψ〉†. The Hermitian
product between two kets (vectors, i.e. elements of H), |ψ〉 and |φ〉 is denoted by

〈ψ| · |φ〉 = 〈ψ|φ〉 = 〈φ|ψ〉∗ ∈ C

141
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where ∗ stands for complex conjugate. If we consider a Hilbert basis of H, denoted by |n〉,
n = 1, . . . , dim(H), we have

|ψ〉 =
∑
n

ψn |n〉 , ∀n, 〈n|ψ〉 = ψn ∈ C

〈ψ|ψ〉 =
∑
n

|ψn|2 = 1

|φ〉 =
∑
n

φn |n〉 , ∀n, 〈n|φ〉 = φn ∈ C

〈φ|φ〉 =
∑
n

|φn|2 = 1

〈ψ|φ〉 =
∑
n

ψ∗nφn

since for all m,n, 〈m|n〉 = δm,n.
Any linear operator M from H into H reads, in the orthonormal frame (|n〉),

M =
∑
m,n

Mm,n |m〉 〈n| , Mm,n ∈ C

where Mm,n = 〈m|M |n〉 is the Hermitian product between |m〉 and M |n〉. The operator
M is Hermitian when M = M † that reads Mm,n = M∗

n,m. The orthogonal projector P on
a Hilbert subspace H0 of H is a Hermitian operator defined by the relation

P =
∑
k

|φk〉 〈φk|

where |φk〉k∈{1,...,dim(H0)} is any orthonormal basis of H0.

The operator U is unitary when U−1 = U †. Any operator U = exp(iH) is unitary as
soon as H is Hermitian. We recall that

exp(A) =
+∞∑
k=0

Ak

k!

for any operator A.
Take a Hermitian operator M and consider its spectral decomposition

M =
∑
ν

λνPν

where the λν ’s are the eigenvalues of M (λν ∈ R) and Pν the orthogonal projector on the
eigenspace associated to λν . By construction we have 1 =

∑
ν Pν where 1 is the identity

operator. For any function f : R 7→ R we can define f(M) by

f(M) =
∑
ν

f(λν)Pν .
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Thus M and f(M) commute and the image by f of the M -spectrum is the spectrum of
f(M). This definition of f(M) is just a more intrinsic formulation of the usual construction
based M = U∆U † with U unitary and ∆ diagonal: f(M) = Uf(∆)U † with f(∆) the
diagonal matrix obtained by taking the image via f of the scalar elements forming the
diagonal matrix ∆.

A.2 Schrödinger equation

In general the state |ψ〉 of the quantum system living in H depends on the time t. This
dependance is described by the Schrödinger equation:

i
d

dt
|ψ〉 = H(t) |ψ〉 (A.1)

where H(t) is a time-varying Hermitian operator called the Hamiltonian (we set ~ = h
2π

to
one).

The evolution of |ψ〉 is unitary: if |ψ〉 and |φ〉 are solutions of the same Schrödinger
equation (A.1) then 〈ψ|φ〉t is constant and equal to the initial value 〈ψ|φ〉0. This means
that we can set |ψ〉t = Ut |ψ〉0, for any solution of (A.1) starting form |ψ〉0 where the time
dependant unitary operator Ut called also the propagator is solution of

i
d

dt
Ut = H(t)Ut, U0 = 1. (A.2)

Whenever the Hamiltonian H is time-invariant, and once we have the spectral decomposi-
tion of H, we have an explicit expression of Ut. Indeed, taking

H =
∑
ν

ωνPν

where for each ν, ων is a different eigenvalue and Pν is the orthogonal projector onto the
eigenspace associated to ων , we have

Ut = e−itH =
∑
ν

e−iωνtPν

and thus
|ψ〉t =

∑
ν

e−iωνtPν |ψ〉0 .

Since, for any angle θ, |ψ〉 and eiθ |ψ〉 represent the same quantum state, the Hamiltonian
H(t) is defined up-to an addition of λ1, where λ is any real quantity (homogeneous to
an energy). More precisely, take any time varying global phase θt. Then |ψ〉t and |φ〉t =
eiθt |ψ〉t represent the same quantum system. This means that if the evolution of |ψ〉
is driven by the Hamiltonian H(t), then the évolution of |φ〉 is driven by H(t) + θ̇t1:
Hamiltonians H(t) and H(t) + θ̇t1 are equivalent since they are attached to the same
system. Thus, in specific examples, we can always choose the origin of the energy in order
to get the simplest computation and formulae.
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Exercice A.2.1. Show that if we replace H(t) by H(t)− Tr(H(t))
dim(H)

1 we ensure that det(Ut) ≡
1. (hint: use the Liouville formula i d

dt
det(Ut) = Tr (H(t)) det(Ut))

A.3 Composite systems and tensor product

A composite system is made of several sub-systems. It is very important to realize that the
state space (Hilbert space) of a composite system is not the Cartesian product of the state
space of its sub-systems, as it is the case for classical systems. It is their tensor product.
This difference is essential.

Take a composite system of Hilbert space H made of two sub-systems with Hilbert
spaces H1 and H2. Then H = H1 ⊗ H2 and dim(H) = dim(H1) dim(H2). From Hilbert
basis (|n1〉)n1∈{1,...,dim(H1)} of H1 and (|n2〉)n2∈{1,...,dim(H2)} of H2, we get a Hilbert basis of
H,

(|n1n2〉) n1 ∈ {1, . . . , dim(H1)}
n2 ∈ {1, . . . , dim(H2)}

where |n1n2〉 is used to denote |n1〉 ⊗ |n2〉. H = H1 ⊗H2 contains all the tensor products
|ψ1〉⊗ |ψ2〉 of elements |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. But it contains much more elements that
are not tensor products of elements of H1 and H2

Exercice A.3.1. Prove that
|ψ〉 = |11〉+ |22〉

cannot be expressed as a tensor product.

Take |ψ〉 , |φ〉 ∈ H. Then we have

|ψ〉 =
∑
n1,n2

ψn1,n2 |n1n2〉 , 〈n1n2|ψ〉 = ψn1,n2 ∈ C

|φ〉 =
∑
n1,n2

φn1,n2 |n1n2〉 , 〈n1n2|φ〉 = φn1,n2 ∈ C

〈ψ|φ〉 =
∑
n1,n2

ψ∗n1,n2
φn1,n2 .

Exercice A.3.2. Prove from the above relationships that if |ψ〉 = |ψ1〉 ⊗ |ψ2〉 and |φ〉 =
|φ1〉 ⊗ |φ2〉 with |ψ1〉 , |φ1〉 ∈ H1 and |ψ2〉 , |φ2〉 ∈ H2, then 〈ψ|φ〉 = 〈ψ1|φ1〉〈ψ2|φ2〉.

Consider M1 a linear operator on H1 and M2 a linear operator on H2. The tensor
product M1 ⊗M2 defines a linear operator on H via the following relationships:

|ψ〉 =
∑
n1,n2

ψn1,n2 |n1n2〉 , 〈n1n2|ψ〉 = ψn1,n2 ∈ C

M1 ⊗M2 |ψ〉 =
∑
n1,n2

ψn1,n2M1 |n1〉 ⊗M2 |n2〉 .
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Thus when |ψ〉 = |ψ1〉 ⊗ |ψ2〉, then we have always

M1 ⊗M2 |ψ〉 = M1 |ψ1〉 ⊗M2 |ψ2〉 .

There are many operators on H that are not tensor product of operators on H1 and H2.

Exercice A.3.3. Show that the linear operator (11 and 12 are the identity operator of H1

and H2 respectively)

(|1〉 〈2|+ |2〉 〈1|)⊗ 12 + 11 ⊗ (|1〉 〈2|+ |2〉 〈1|)

is not a tensor product M1 ⊗M2 (hint: consider the image of |11〉).

If U1 and U2 are unitary operators on H1 and H2, then U1 ⊗ U2 is also unitary and

(U1 ⊗ U2)−1 = U−1
1 ⊗ U−1

2 = U †1 ⊗ U †2 = (U1 ⊗ U2)†.

For any operators A1 and A2 on H1 and H2, we have1

exp(A1 ⊗ 12 + 11 ⊗ A2) = exp(A1)⊗ exp(A2)

This results from the fact that A1 ⊗ 12 and 11 ⊗ A2 commute:

exp(A1 ⊗ 12 + 11 ⊗ A2) = exp(A1 ⊗ 12) exp(11 ⊗ A2).

Since exp(A1 ⊗ 12) = exp(A1)⊗ 12 and exp(11 ⊗ A2) = 11 ⊗ exp(A2), we get

exp(A1 ⊗ 12 + 11 ⊗ A2) = (exp(A1)⊗ 12)(11 ⊗ exp(A2)) = exp(A1)⊗ exp(A2).

This computation explains the shortcut notations of A1 +A2 instead of A1⊗ 12 + 11⊗A2

and the rule
exp(A1 + A2) = exp(A1) exp(A2) = exp(A2) exp(A1)

that is free from ambiguity since operators A1 and A2 act on different spaces and necessarily
commute.

Take a composite system living on the tensor product H⊗E where E is another Hilbert
space (typically the Hilbert space of the environment). The partial trace versus E is a
superoperator that to any operator M on H⊗ E associates an operator on H, denoted by
TrE (M). It is defined as follows. Take any orthonormal basis of H, (|n〉)n, and of E , (|ν〉)ν .
For the operator M defined by

M =
∑

n1,ν1,n2,ν2

Mn1,ν1,n2,ν2 |n1ν1〉 〈n2ν2|

its partial trace is given by

TrE (M) =
∑
n1,n2,ν

Mn1,ν,n2,ν |n1〉 〈n2| .

1Notice that in general exp(A1 ⊗A2) 6= exp(A1)⊗ exp(A2).
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Exercice A.3.4. Show that this definition is independent of the choice of the orthonormal
frames (|n〉)n in H and (|ν〉)ν in E.

Partial traces are related to usual traces:

Tr (M) = TrH (TrE (M)) = TrE (TrH (M)).

We also have TrE
(
M †) = (TrE (M))† and if M = A ⊗ B then TrE (A⊗B) = Tr (B)A.

Finally, for any operators M on H× E and A on H, we have:

Tr (TrE (M)A) = Tr (M(A⊗ I)).

A.4 Density operator

There are mainly two situations where the quantum state |ψ〉 cannot be used directly:

• a statistical mixture of identical quantum systems, living in H. Each |ψ〉 belongs to
the unit sphere of H; the only way to represent statistical mixture consists in taking
average of the projectors onto each |ψ〉: set k the index associated to this statistical
mixture, one defines then the density operator ρ as

ρ =
∑
k

pk |ψk〉 〈ψk|

where pk ∈ (0, 1) is the probability of |ψk〉 and thus
∑

k pk = 1.

• the true quantum state belongs to a tensor product H⊗E and we do not have access
to E ; denoting by |Ψ〉 ∈ H ⊗ E this quantum state, the density operator is then
defined by a partial trace versus E of the projector |Ψ〉 〈Ψ|:

ρ = TrE (|Ψ〉 〈Ψ|).

The density operator is then always Hermitian, semi-definite positive and with Tr (ρ) = 1.
When additionally Tr (ρ2) = 1, ρ is a projector onto a pure state ρ = |ψ〉 〈ψ|, one says
briefly that ρ is a pure state.

Exercice A.4.1. Take |Ψ〉 ∈ H ⊗ E and assume that ρ = TrE (|Ψ〉 〈Ψ|) is a pure state,
ρ = |ψ〉 〈ψ| with |ψ〉 ∈ H. Then prove that |Ψ〉 = |ψ〉 ⊗ |ξ〉 with |ξ〉 ∈ E.

If we assume that

• either for the mixture case, each |ψk〉 admits a time evolution (A.1) relying on the
same Hamiltonian H.

• or that |Ψ〉 admits a time evolution (A.1) with Hamiltonian H ⊗ I,
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then the time evolution of the density operator ρ is given by the Liouville equations

i
d

dt
ρ = [H, ρ] = Hρ− ρH

where H may depend on t. Thus, the spectrum of ρ is invariant since ρt and ρ0 are related
by ρtUt = Utρ0 where Ut is the propagator defined in (A.2). In particular, for any integer
exponent m, Tr ((ρt)

m) = Tr ((ρ0)m).

A.5 Observables and measurement

To each measurement process is attached a Hermitian operator M on H, called also a
physical observable. Take its spectral decomposition

M =
∑
ν

λνPν

where the λν ’s are the eigen-values of M (λν ∈ R) and Pν the orthogonal projector on the
eigenspace associated to λν . In this spectral decomposition λν1 6= λν2 as soon as ν1 6= ν2:
each ν corresponds to a different value of the measurement process.

Take now |ψ〉 ∈ H. Then the measurement process attached to M yields to λν with
probability 〈ψ|Pν |ψ〉. Indeed, assume that we have, at our disposal, a large number n of
identical systems with the same quantum state |ψ〉. For each system, we measure M and
obtain the value λν1 , . . ., λνn . Set

nν = #{λµ | λµ = λν}.

Then for n large and each ν, we have nν
n
≈ 〈ψ|Pν |ψ〉. This is consistent with the fact that,

independently of |ψ〉, we have
∑

ν nν = n and
∑

ν Pν = I. Notice also that the arithmetic
mean value of the n measures is approximatively 〈ψ|M |ψ〉 since we have, for n large,

∑n
k=1 λνk
n

=
∑
ν nνλν
n

≈
∑
ν

〈ψ|Pν |ψ〉λν = 〈ψ|M |ψ〉.

Moreover just after the measure number k that yields λνk , the state |ψ〉 is drastically
changed to 1

〈ψ|Pν |ψ〉Pνk |ψ〉. This is the famous ”collapse of the wave packet” associated
to any measurement process and on which is based the Copenhagen interpretation of the
wave function |ψ〉.

Example A.5.1. The measurement of σz = − |g〉 〈g|+ |e〉 〈e| for the first qubit of a 2-qubit
system (see Section 2.4 for the definition of an n-qubit system) corresponds to the operator
(observable) M = σz ⊗ Id. On the 2-qubit system

|ψ〉 = ψgg |gg〉+ ψge |ge〉+ ψeg |eg〉+ ψee |ee〉
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the measurement of σz for the first qubit, gives, in average,

〈ψ|M |ψ〉 = −(|ψgg|2 + |ψge|2) + (|ψeg|2 + |ψee|2)

i.e., gives either −1 with a probability |ψgg|2 + |ψge|2, or +1 with a probability |ψeg|2 + |ψee|2.
If, just before the measurement of σz on the first qubit, the quantum state is

|ψ〉 = ψgg |gg〉+ ψge |ge〉+ ψeg |eg〉+ ψee |ee〉 ,

then, just after the measurement, the quantum state changes to

• either ψgg |gg〉+ψge|ge〉√
|ψgg |2+|ψge|2

= |g〉 ⊗
(

ψgg |g〉+ψge|e〉√
|ψgg |2+|ψge|2

)
if the measurement outcome is −1,

• or ψeg |eg〉+ψee|ee〉√
|ψeg |2+|ψee|2

= |e〉 ⊗
(

ψeg |g〉+ψee|e〉√
|ψeg |2+|ψee|2

)
if the measurement outcome is +1

For systems with quantum states described by a density operator ρ, the measurement
process attached to the Hermitian operator M with spectral decomposition M =

∑
ν λνPν

becomes:

• the probability to get λν , as the measurement outcome, is Tr (ρPν) and just after
this measurement ρ collapses to 1

Tr(ρPν)
PνρPν (notice that Tr (ρPν) = Tr (PνρPν)

since P 2
ν = Pν).

• the average value of a large number of measurements of M on the same quantum
state ρ is given by Tr (ρM).

A.6 Pauli Matrices

The Pauli matrices are 2× 2 Hermitian matrices defined here below:

σx = |e〉 〈g|+ |g〉 〈e| , σy = −i |e〉 〈g|+ i |g〉 〈e| , σz = |e〉 〈e| − |g〉 〈g| .

They satisfy the following relations (1 denotes the 2× 2 identity matrix here):

σ2
x = 1, σ2

y = 1, σ2
z = 1, σxσy = iσz, σyσz = iσx, σzσx = iσy.

For any angle θ ∈ R we have

eiθσα = cos θ1 + i sin θσα, for α = x, y, z.

Thus the solution of the Schrödinger equation (Ω ∈ R)

i
d

dt
|ψ〉 =

Ω

2
σz |ψ〉
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reads

|ψ〉t = e
−iΩt

2
σz |ψ〉0 =

(
cos

(
Ωt

2

)
− i sin

(
Ωt

2

)
σz

)
|ψ〉0 .

For α, β = x, y, z, α 6= β we have the useful formulas:

σαe
iθσβ = e−iθσβσα,

(
eiθσα

)−1
=
(
eiθσα

)†
= e−iθσα

and also
e−

iθ
2
σασβe

iθ
2
σα = e−iθσασβ = σβe

iθσα .

Take σ = aσx + bσy + cσz with a, b, c ∈ R such that a2 + b2 + c2 = 1. Then σ2 = 1.
Thus for any angle θ ∈ R, we have

eiθσ = cos θ1 + i sin θ σ.
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Appendix B

Linear quantum operations

A linear quantum operation T is a linear superoperator acting on the space of the density
matrices in the system’s Hilbert space S, and satisfying the following properties:

• T is trace-preserving or decreasing. This is, 0 ≤ Tr (Tρ) ≤ 1 for any density matrix
ρ.

• T is completely positive. That is, not only does T map positive operators to positive
operators in the system’s Hilbert space S, but so does 1H ⊗ T for positive operators
in H ⊗ S. Here H is the Hilbert space of a second arbitrary system and 1H is its
identity operator.

Concerning the last property, it may seem that positivity of a superoperator would be
sufficient to represent a physical process. However, in practice, the considered system can
be entangled to another system before the physical process acts on it. It must still be the
case that the total state of both systems remains a physical state with a positive density
operator. This justifies the last property.

We have the following theorem called the Kraus representation theorem (see [57, page
368] for a proof):

Theorem B.0.1. Any linear quantum operation satisfying the above conditions, can be
expressed in the form

Tρ =
∑
j

KjρK†j

with

1S −
∑
j

K†jKj ≥ 0.

The above formula is known as the Kraus representation or the operator-sum representa-
tion of the linear quantum operation and the operators Kj are known as the measurement
operators. Moreover, T is trace-preserving (Tr (Tρ) = Tr (ρ) for any density operator ρ)
if, and only if,

∑
j K†jKj = 1S .
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As soon as we make the additional assumption of a trace-preserving quantum operation,
we can also prove some contraction properties. In this aim, we first define the quantum
Fidelity and quantum trace distance between two density matrices:

Definition B.0.2. Consider two well-defined density matrices ρ and σ. The quantum trace
distance D(ρ, σ) and the quantum fidelity F (ρ, σ) are then defined as follows:

D(ρ, σ) =
1

2
Tr (|ρ− σ|), F (ρ, σ) = Tr

(√
ρ1/2σρ1/2

)
,

where |A| ≡
√
A†A is the positive square root of A†A.

Remark B.0.3. One can prove that (see [57, Chapter 9]) as soon as one of the density
matrices is a projector state σ = |ψ〉 〈ψ|, the fidelity between ρ and σ is given by the
standard form

F (ρ, σ) =
√

Tr (ρσ) =
√
〈ψ| ρ |ψ〉.

We have the following contraction properties for trace-preserving quantum operations:

Theorem B.0.4. Suppose that T is a trace-preserving quantum operation. Let ρ and σ be
two well-defined density operators. Then

D(Tρ,Tσ) ≤ D(ρ, σ) and F (Tρ,Tσ) ≥ F (ρ, σ).

The proof of this theorem is beyond the scope of these notes and we refer to [57, Chapter
9] for a rigorous proof.



Appendix C

Single-frequency Averaging

We summarize here the basic result and approximations used in these notes for single-
frequency systems. One can consult [61, 31, 7] for much more elaborated results. We
emphasize a particular computational trick that simplifies notably second order calcula-
tions. This trick is a direct extension of a computation explained in [42] and done by the
soviet physicist Kapitsa for deriving the average motion of a particle in a highly oscillating
force field.

Consider the oscillating system of dimension n;

dx

dt
= εf(x, t, ε), x ∈ Rn

with f smooth and of period T versus t, where ε is a small parameter. For x bounded and
|ε| small enough, there exists a time-periodic change of variables, close to identity, of the
form

x = z + εw(z, t, ε)

with w smooth function and T -periodic versus t, such that, the differential equation in the
z frame reads:

dz

dt
= εf(z, ε) + ε2f1(z, t, ε)

with

f(z, ε) =
1

T

∫ T

0

f(z, t, ε) dt

and f1 smooth and T -periodic versus t.

Thus we can approximate on interval [0, T
ε
] the trajectories of the oscillating system

dx
dt

= εf(x, t, ε) by those of the average one dz
dt

= εf(z, ε). More precisely, if x(0) = z(0)
then x(t) = z(t) + O(|ε|) for all t ∈ [0, T

ε
]. Since this approximation is valid on intervals

of length T/ε, we say that this approximation is of order one. One also speaks of secular
approximation.
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The function w(z, t, ε) appearing in this change of variables is given by a t-primitive of
f − f̄ . If we replace x by z + εw in d

dt
x = εf we get(

Id + ε
∂w

∂z

)
d

dt
z = εf − ε∂w

∂t
= εf̄ + ε

(
f − f̄ − ∂w

∂t

)
.

Since for each z, the function
∫ t

0

(
f(z, τ, ε)− f̄(z, ε)

)
dτ is T -periodic, we set

w(z, t, ε) =

∫ t

0

(
f(z, τ, ε)− f̄(z, ε)

)
dτ + c(z, ε)

where the integration ”constant” c(z, ε) can be set arbitrarily. We will see that a clever
choice for c corresponds to w with a null time-average. We have(

Id + ε
∂w

∂z
(z, t, ε)

)
d

dt
z = εf̄(z, ε) + ε (f(z + εw(z, t, ε), t, ε)− f(z, t, ε))

and thus

d

dt
z = ε

(
Id + ε

∂w

∂z
(z, t, ε)

)−1 (
f̄(z, ε) + f(z + εw(z, t, ε), t, ε)− f(z, t, ε)

)
.

We obtain the form we were looking for, d
dt
z = εf̄ + ε2f1, with

f1(z, t, ε) =
1

ε

((
Id + ε

∂w

∂z
(z, t, ε)

)−1

− Id
)
f̄(z, ε)

+

(
Id + ε

∂w

∂z
(z, t, ε)

)−1
f(z + εw(z, t, ε), t, ε)− f(z, t, ε)

ε
.

Notice that

f1(z, t, ε) =
∂f

∂z
(z, t, ε)w(z, t, ε)− ∂w

∂z
(z, t, ε)f̄(z, ε) +O(ε).

The second order approximation is then obtained by taking the time-average of f1. Its
justification is still based on a time-periodic change of variables of type z = ζ+ε2$(ζ, t, ε),
i.e., close to identity but up-to second order in ε.

If we adjust c(z, ε) in order to have w of null time-average, then the time-average of ∂w
∂z

is also zero. Thus, up to order one terms in ε, the time-average of f1 is identical to the
time average of ∂f

∂z
w. For this particular choice of w, the second order approximation reads

d

dt
x = εf̄ + ε2∂f

∂x
w

where the symbol ”̄ ”̄ stands for time-average. The solutions of the oscillating system
d
dt
x = εf and those of the second order approximation here above remain close on time

intervals of length T
ε2

.
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A suggestive manner to compute this second order approximation and very efficient on
physical examples is due to Kapitsa [42, page 147]. One decomposes x = x̄ + δx in a
non-oscillating part x̄ of order 0 in ε and an oscillating part δx of order 1 in ε and of null
time-average. One has

d

dt
x̄+

d

dt
δx = εf(x̄+ δx, t, ε).

Since δx = O(ε), we have

f(x̄+ δx, t, ε) = f(x̄, t, ε) +
∂f

∂x
(x̄, t, ε)δx+O(ε2).

Thus
d

dt
x̄+

d

dt
δx = εf(x̄, t, ε) + ε

∂f

∂x
(x̄, t, ε)δx+O(ε3).

Since d
dt
x̄ = εf̄(x̄, ε) +O(ε2), identification of oscillating terms of null time-average and of

first order in ε provides
d

dt
(δx) = ε(f(x̄, t, ε)− f̄(x̄, ε)).

This equation can be integrated in time since x̄ is almost constant. The integration constant
is fixed by the constraint on the time-average of δx. Finally,

δx = ε

∫ t

0

(
f(x̄, τ, ε)− f̄(x̄, ε)

)
dτ + εc(x̄, ε)

is a function of (x̄, t, ε), δx = δx(x̄, t, ε), T -periodic versus t and of null time-average (good
choice of c(x̄, ε)). Let us plug this function δx(x̄, t, ε) into the differential equation for x̄,

d

dt
x̄ = εf̄(x̄, ε) + ε

∂f

∂x
(x̄, t, ε)δx(x̄, t, ε) +O(ε3),

And let us take its time-average. We get

d

dt
x̄ = εf̄(x̄, ε) + ε2f̄1(x̄, ε)

with

εf̄1(x̄, ε) =
1

T

∫ T

0

∂f

∂x
(x̄, t, ε)δx(x̄, t, ε) dt

We recover then exactly the previous second order approximation.
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Appendix D

Singular perturbation theory

Figure D.1: Slow/fast system in Tikhonov normal; under assumptions stated in theo-
rem D.0.5, the slow approximation (also called quasi-static or adiabatic elimination), con-
sists in setting directly ε to 0 in the equation defining (Σε); this yields to a differential-
algebraic system d

dt
x = f(x, z, 0) where z is an implicit function of x defined by 0 =

g(x, z, 0).

Let us start with the standard case illustrated on figure D.1 and the approximation
result known as Tikhonov theorem [39].

Theorem D.0.5. Consider the singularly perturbed system :

(Σε) :
d

dt
x = f(x, z, ε), ε

d

dt
z = g(x, z, ε)

where (x, y) belongs to an open subset of Rn × Rp, f and g are smooth functions, ε is a
small positive parameter. Assume that

• g(x, z, 0) = 0 admits a solution z = ρ(x), with ρ smooth function of x and such that
∂g
∂z

(x, ρ(x), 0) is a stable matrix (eigenvalues with strictly negative real parts).
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• the reduced slow sub-system d
dt
x = f(x, ρ(x), 0), x(0) = x0 admits a unique solu-

tion x0(t) defined for t ∈ [0, T ], 0 < T < +∞ for some T > 0.

Then, for ε > 0 small enough, (Σε) admits a unique solution (xε(t), zε(t)) defined on [0, T ]
with initial condition (xε(0), zε(0)) = (x0, z0) as soon as z0 belongs to the attraction domain
of the equilibrium ρ(x0) for the fast sub-system, ε d

dt
ζ = g(x0, ζ, 0). Moreover we have, for

any η > 0,

lim
ε→0+

(
max
t∈[η,T ]

(
‖xε(t)− x0(t)‖+ ‖zε(t)− z0(t)‖

))
= 0.

This theorem just means that the approximation of (Σε) via

(Σ0) :
d

dt
x = f(x, z, 0), 0 = g(x, z, 0)

is valid for time intervals of length of order 0 versus ε. To get approximation of higher order
and thus valid on longer time-intervals one has to construct higher order approximations.
They are based on center manifold tools [20].

Let us consider such higher order approximations when the fast dynamics is almost
linear, i.e., when g(x, z, ε) = −Az+ εh(x, z) and f is independent of ε. The system admits
thus the special form

d

dt
x = f(x, z),

d

dt
z = −1

ε
Az + h(x, z)

where x and z are respectively the slow and fast states (Tikhonov coordinates), all the
eigenvalues of the matrix A have strictly positive real parts, and ε is small strictly positive
parameter. Therefore the invariant attractive manifold admits for equation

z = εA−1h(x, 0) +O(ε2) (D.1)

and the restriction of the dynamics on this slow invariant manifold reads

d

dt
x = f(x, εA−1h(x, 0)) +O(ε2) = f(x, 0) + ε

∂f

∂z

∣∣∣∣
(x,0)

A−1h(x, 0) +O(ε2).

A Taylor expansion of the attractive invariant manifold, which would satisfy an equation
of the form z = I(x, ε), can be conducted through center manifold techniques as explained
in [20]). The second order term is then given by (see, e.g., [29]):

z = εA−1h(x, 0) + ε2A−1

(
∂h

∂z

∣∣∣∣
(x,0)

A−1h(x, 0)− A−1 ∂h

∂x

∣∣∣∣
(x,0)

f(x, 0)

)
+O(ε3), (D.2)

and so on.
Roughly speaking, an approximation of order ν in ε of the slow invariant manifold

provides an approximation on time intervals of length of order 1
εν

as sketched below:
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• z = 0 is an approximation of order 0; the slow reduced model d
dt
x = f(x, 0) is valid

on time intervals of length 1.

• z = εA−1h(x, 0) is an approximation of order 1: the slow reduced model d
dt
x =

f(x, εA−1h(x, 0)) is valid on time intervals of length 1
ε
.

• z = εA−1h(x, 0)+ε2A−1
(
∂h
∂z
|(x,0)A

−1h(x, 0)− A−1 ∂h
∂x
|(x,0)f(x, 0)

)
is an approximation

of order 2: the slow reduced model

d

dt
x = f

(
x, εA−1h(x, 0) + ε2A−1

(
∂h

∂z
|(x,0)A

−1h(x, 0)− A−1∂h

∂x
|(x,0)f(x, 0)

))
is valid on time intervals of length 1

ε2
.

Theorem D.0.5 provides a mathematically precise setting of approximation of order
0. However, we have not been able to find in the literature similar precise settings for
approximation of order 1 or 2, as sketched here above.
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Appendix E

Stability of deterministic systems of
finite dimension

Stability formalizes the following intuitive notion: An equilibrium x̄ of a dynamical system
d
dt
x = v(x) (v(x̄) = 0) is said to be stable if a small initial off-set between x and x̄ will

remain small for all time. To summarize: small causes produce small effects. The proof of
the results recalled in this appendix can be found in [39].

E.1 Stability of equilibrium

Definition E.1.1 ( Stability (in the Lyapunov sense) and instability). Take Rn (n > 0),
a time-depend C1 vector field Rn 3 x 7→ v(x, t) ∈ Rn and the differential equation d

dt
x =

v(x, t). Assume that x̄ ∈ Rn is an equilibrium (steady-state): v(x̄, t) = 0 for all t ∈ R.

The steady-state x̄ ∈ Rn is said to be stable (in the Lyapunov sense) if, and only if, for
all ε > 0, there exists η > 0 such that for any initial condition x0 satisfying ‖x0 − x̄‖ ≤ η,
the solution of d

dt
x = v(x, t) starting from x0 at t = 0, is defined for t > 0 and verifies

‖x(t)− x̄‖ ≤ ε for all t ≥ 0. If x̄ is not stable, it is said to be unstable.

Definition E.1.2 (Asymptotic stability). With assumptions of Definition E.1.1, the steady-
state x̄ is said to be locally asymptotically stable if, and only if, it is stable and there exists
ε > 0 such that any solution x(t) of d

dt
x = v(x, t), starting at t = 0 from x0 such that

‖x0 − x̄‖ ≤ ε, converges towards x̄ as t tends to +∞.

This notion of stability is illustrated on Figure E.1. When x̄ est asymptotically stable,
one also says that the system forgets its initial condition. Whenever in the Definition E.1.2,
the parameter ε can be chosen arbitrary large, x̄ is said to be globally asymptotically stable:
the attraction region of x̄ is Rn.

For autonomous systems (v independent of t), it is possible to deduce local asymptotic
stability of an equilibrium from the first order approximation of the differential system
around x̄ also called the linear tangent system at x̄.
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Figure E.1: Stability (left) and asymptotic stability (right).

Definition E.1.3 (Hyperbolic steady-state). The steady state x̄ of the C1 autonomous
system d

dt
x = v(x) is said hyperbolic if, and only if, all the eigenvalues of the Jacobian

matrix
∂v

∂x
(x̄) =

(
∂vi
∂xj

(x̄)

)
1≤i,j≤n

admit non-zero real parts.

Theorem E.1.4 (Local asymptotic stability of a hyperbolic steady-state (first Lyapunov
method)). Take Rn 3 x 7→ v(x) ∈ Rn continuously differentiable versus x. The steady-state
x̄ ∈ Rn (v(x̄) = 0) is locally asymptotically stable if all the eigenvalues of

∂v

∂x
(x̄) =

(
∂vi
∂xj

)
1≤i,j≤n

admit strictly negative real parts. If one of the eigenvalues of the Jacobian matrix ∂v
∂x

(x̄)
admit a strictly positive part, then the equilibrium x̄ is unstable (in the Lyapunov sense).

E.2 Lyapunov function and Lasalle’s invariance prin-

ciple

Let us consider the damped harmonic oscillator in the phase plane (x1, x2):

d

dt
x1 = x2,

d

dt
x2 = −γx2 − ω2x1

with parameters γ, ω > 0. Consider its energy

V (x1, x2) =
ω2

2
(x1)2 +

1

2
(x2)2
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For all solution t 7→ (x1(t), x2(t)) of the above differential system, we have

d

dt
(V (x1(t), x2(t))) =

∂V

∂x1

d

dt
x1 +

∂V

∂x2

d

dt
x2 = −2γ(x2)2 ≤ 0.

Thus t 7→ V (x1(t), x2(t)) is decreasing. Since V ≥ 0, it converges as t 7→ +∞. It is intuitive
to guess that d

dt
V will converge then to 0 and thus that x2 tends to 0 (γ > 0). It is also

natural to guess that the time derivative of x2 also converges to 0: d
dt
x2 = −γx2 − ω2x1

should converge to 0 and thus, since ω > 0, x1 tends to 0. The above heuristic arguments
could be made rigorous using compactness, uniform continuity, and Barbalat’s lemma1. It
is important to notice that, during these computations, we never use the explicit formulae
for x1(t) and x2(t) based on time exponentials. This is the main interest of such function
V called Lyapunov function: it provides precious information on solutions of differential
equations without the analytic knowledge of their time-dependencies.

Theorem E.2.1 (Lyapunov function and Lasalle invariance principle). Take Ω ⊂ Rn an
open and non-empty subset of Rn and Ω 3 x 7→ v(x) ∈ Rn continuously differentiable
function of x. Consider Ω 3 x 7→ V (x) ∈ R a continuously differentiable function of x and
assume that

1. there exits c ∈ R such that the subset Vc = {x ∈ Ω | V (x) ≤ c} of Rn is compact
(bounded and closed) and non-empty.

2. V is a decreasing time function for solutions of d
dt
x = v(x) inside Vc:

∀x ∈ Vc,
d

dt
V (x) = ∇V (x) · v(x) =

n∑
i=1

∂V

∂xi
(x) vi(x) ≤ 0

Then for any initial condition x0 ∈ Vc, the solution of d
dt
x = v(x) remains in Vc, is defined

for all t > 0 (no explosion in finite time) and converges towards the largest invariant set
included in {

x ∈ Vc |
d

dt
V (x) = 0

}
.

Such functions V decreasing along trajectories, d
dt
V ≤ 0, are called Lyapunov functions.

A subset E ⊂ Rn is said to be invariant if, and only if, any solution of d
dt
x = v(x) starting

in E remains in E for all time t where it is defined. Thus the largest invariant set considered
in Theorem E.2.1 is characterized by the over-determined system of n+ 1 scalar equations

d

dt
ξ1 = v1(ξ), . . . ,

d

dt
ξn = vn(ξ),

n∑
i=1

∂V

∂xi
(ξ) vi(ξ) = 0

1 Take h a uniformly continuous function from [0,+∞[ to R: if
∫ t

0
h(s)ds admits a limit for t tending

to ∞, then necessarily, h tends to 0 as t tends to ∞.
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and n scalar unknowns (ξ1(t), . . . , ξn(t)) ∈ Vc. To get this Lasalle invariant set, the method
consists in successive time-differentiations of the last static equation to get new static
equations. The collection of these static equations characterizes then the limit set that
captures asymptotically the trajectories starting in Vc.

When x̄ ∈ Vc is an equilibrium, ξ(t) = x̄ is a solution of this over-determined system. If
x̄ is its unique solution, then the limit set is reduced to {x̄} and x̄ is locally asymptotically
stable.

If, in the Theorem E.2.1, Ω = Rn and V tends to +∞ as ‖x‖ tends to +∞ (V is radially
unbounded) then the trajectory x(t) are bounded for all t > 0 since they are contained
in Vc with c = V (x(0)). If additionally, the equilibrium x̄ is the unique solution of the
above over-determined system, then all trajectories converge to x̄: the equilibrium is then
globally asymptotically stable.

The Lasalle’s invariance principle can be extended to almost-periodic systems.

Theorem E.2.2 (Lasalle’s invariance principle for almost periodic systems). Take Ω ⊂ Rn

an open and non-empty subset of Rn and Ω × R 3 (x, t) 7→ v(x, t) ∈ Rn a continuously
differentiable function of (x, t) that is periodic versus t. Consider Ω 3 x 7→ V (x) ∈ R a
continuously differentiable function of x. Assume that

1. there exits c ∈ R such that the subset Vc = {x ∈ Ω | V (x) ≤ c} of Rn is compact
(bounded and closed) and non-empty.

2. V is a decreasing time function for solutions of d
dt
x = v(x, t) inside Vc:

∀t ∈ R,
d

dt
V (t) =

n∑
i=1

∂V

∂xi
(x) vi(x, t) ≤ 0

Then for any initial condition x0 ∈ Vc, the solution of d
dt
x = v(x, t) remains in Vc, is defined

for all t > 0 (non explosion in finite time) and converges towards the largest invariant set
included in {

x ∈ Vc |
d

dt
V (x) = 0

}
.

Here a set S ⊂ Vc is said to be invariant for the time-periodic system d
dt
x = v(x, t) if,

for all x0 ∈ S there exists a time t0 > 0 such that the solution starting from x0 at time t0
remains in the set S for all t ≥ t0.

This invariant set is also characterized by the over-determined system:

d

dt
ξ1 = v1(ξ, t), . . . ,

d

dt
ξn = vn(ξ, t),

n∑
i=1

∂V

∂xi
(ξ) vi(ξ, t) = 0.

Finally note that, the above Theorem can be extended to almost periodic time-dependent
systems.2

2An almost periodic time function f(x, t) is equal by definition to F (x,$1t, . . . ,$pt) where the function
F is a 2π-periodic function of each of its last p arguments and the $j ’s form a set of p different pulsations.



Appendix F

Poincaré-Bendixon theory

In this Appendix, we consider a generic 2-dimensional autonomous differential equation and
we propose a few theoretical results characterizing all the possible asymptotic behaviors for
such a dynamical system. We note that, all the results that we propose in this appendix
for the case of a dynamical system on a plane can also be applied in the case of a dynamical
system on a sphere. In fact the sphere can be seen as the plane R2 where the point at
infinity has been added. Then, in Figure F.0.3, cases 1 and (2a) coincide.

Theorem F.0.3 (Poincaré). The autonomous dynamical system d
dt
x = v(x) with x ∈ R2,

can only admit a few types of possible asymptotic behaviors. Given an initial condition
x0 ∈ R2, we consider t 7→ x(t) solution of d

dt
x = v(x) starting at x0 for t = 0. Then, for

any time t ≥ 0, we can only have one of the possibilities below (see also Figure F.0.3):.

cas
e 1

case
2a

case
2b

case
2c

1

Figure F.1: The four possible asymptotic behaviors for the trajectories of an autonomous
dynamical system defined on a plane.
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1. If x(t) is not bounded, then either x(t) explodes in finite time, or if x(t) does not
explode in finite time and therefore it is defined for t > 0 and limt→∞ ‖x(t)‖ =∞.

2. If x(t) remains bounded for positive times then it is defined for all t > 0 and we can
distinguish three cases:

(a) either x(t) converges to an equilibrium point (in infinite time of x0 is not an
equilibrium point itself);

(b) or, x(t) converges towards a periodic trajectory (limit cycle);

(c) or finally, x(t) winds up around a closed curve of the plane formed by the tra-
jectories that leave from an equilbirium at t = −∞ and catches at t = +∞,
another equilibrium point (heteroclinic orbit if the two equilibria are different
and homoclinic orbit if they are identical).

In summary, whenever the trajectories remain bounded, they converge either toward a
point or towards a closed curve of the plane, the curve being tangent to the vector field
v(x). Under an additional assumption we can specify the nature of the limit:

Theorem F.0.4 (Bendixon’s criteria). Let R2 3 x 7→ v(x) ∈ R2 be a continuous and
differentiable function. We assume that div(v)(x) = ∂v1

∂x
+ ∂v2

∂x
< 0 for almost all x ∈ R2.

Let t 7→ x(t) be a solution of d
dt
x = v(x) that remains bounded for positive times t. Then,

its limit when t tends to infinity is necessarily an equilibrium point, i.e., a solution x̄ ∈ R2

of v(x̄) = 0.

In fact, by applying the Gauss theorem, one can easily prove the non-existence of
periodic, heteroclinic or homoclinic orbits. The only possible asymptotic regime is therefore
the case 2a.

We also have the following theorem:

Theorem F.0.5 (Poincaré-Bendixon). Let R2 3 x 7→ v(x) ∈ R2 be a function of class C1.
We consider the dynamical system d

dt
x = v(x). We suppose that there exists a compact set

Ω of the plane such that

• all the trajectories admitting an initial condition inside Ω remain inside Ω for all
t > 0 (Ω is positively invariant);

• either Ω does not contain any equilibrium point, or Ω contains a unique equilibrium
point x̄ such that all the eigenvalues of the linearized system around x̄ have strictly
positive real parts;

then Ω admits necessarily a periodic orbit (limit cycle).

The idea behind this theorem is that the bounded trajectories can not converge towards
a heteroclinic orbit (as there are at most one equilibrium point). Moreover as the eventual
equilibrium point x̄ is unstable in all directions, we can not have a homoclinic orbit nor a
stable equilibrium. Therefore the only remaining possibility would be a limit cycle.



Appendix G

Pontryaguin Maximum Principe

This appendix is a summary of the necessary optimality conditions called Pontryaguin
Maximum Principle (PMP) for finite dimensional systems (for tutorial exposures see [18]
or [3]).

Take a control system of the form d
dt
x = f(x, u), x ∈ Rn, u ∈ U ⊂ Rm with a cost

to maximize of the form J =
∫ T

0
c(x, u)dt (T > 0), initial condition x(0) = xa and final

condition x(T ) = xb. The functions f ∈ Rn and c ∈ R are assumed to be C1 functions of
their arguments. If the couple [0, T ] 3 t 7→ (x(t), u(t)) ∈ Rn × U is optimal, then there
exists a never vanishing and absolutely continuous function1 [0, T ] 3 t 7→ p ∈ Rn and a
constant p0 ∈]−∞, 0] such that:

(i) with H(x, p, u) = p0c(x, u) +
∑n

i=1 pifi(x, u), x and p are solutions of

d

dt
x =

∂H
∂p

(x, p, u),
d

dt
p = −∂H

∂x
(x, p, u),

(ii) for almost all t ∈ [0, T ]

H(x(t), p(t), u(t)) = H(x(t), p(t)) where H(x, p) = max
v∈U

H(x, p, v).

(iii) H(x(t), p(t)) is independent of t and its value h̄, depends on T if the final time is
fixed to T or h̄ = 0 if T is free (as for minimum time problem with U bounded and
c = −1).

Conditions (i), (ii) and (iii) form the Pontryaguin Maximum Principle (PMP). Couples
[0, T ] 3 t 7→ (x(t), u(t)) satisfying these conditions are called extremals: if p0 = 0 the
extremal is called abnormal; if p0 < 0 the extremal is called normal. Strictly abnormal

1An absolutely continuous function [0, T ] 3 t 7→ z ∈ Rm satisfies, by definition, the following condition:
for all ε > 0, there exits η > 0 such that, for any ordered sequence 0 ≤ t1 ≤ . . . ≤ tk ≤ T of arbitrary
length k fulfilling

∑k−1
i=1 |ti+1− ti| ≤ η, we have

∑k−1
i=1 |z(ti+1)−z(ti)| ≤ ε. Such functions are differentiable

versus t, for almost all t ∈ [0, T ] and, moreover we have z(t) = z(0) +
∫ t

0
z(s)ds.
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extremals are abnormal ((x, p) satisfies (i), (ii) and (iii) with p0 = 0) and not normal ((x, p)
never satisfies (i), (ii) and (iii) for p0 < 0). Abnormal extremals do not depend on the cost
c(x, u) but only on the system itself d

dt
x = f(x, u): they are strongly related to system

controllability (for driftless systems where f(x, u) is linear versus x, see [14]).
Assume that we have a normal extremal (x, u), i.e. satisfying conditions (i), (ii) and

(iii) with p0 < 0. Assume also that u 7→ H(x, p, u) is differentiable, α concave, bounded
from above, infinite at infinity and that U = Rm. Then condition (ii) is then equivalent
to ∂H

∂u
= 0. Replacing p by p/p0, PMP conditions (i), (ii) and (iii) coincide with the usual

first order stationary conditions ( † means transpose here):

d

dt
x = f,

d

dt
p = −

(
∂f

∂x

)†
p−

(
∂c

∂x

)†
,

(
∂f

∂u

)†
p+

(
∂c

∂u

)†
= 0 (G.1)

with the boundary condtions x(0) = xa, x(T ) = xb. From static equations in (G.1)
we can express generally u as a function of (x, p), denoted here by u = k(x, p). Then
H(x, p) = H(x, p, k(x, p)) and the first order stationary conditions form an Hamiltonian
system

d

dt
x =

∂H
∂p

(x, p),
d

dt
p = −∂H

∂x
(x, p)

since ∂H
∂p

= ∂H
∂p

+ ∂H
∂u

∂k
∂p

= ∂H
∂p

because ∂H
∂u
≡ 0 (idem for ∂H

∂x
). In general, this Hamiltonian

system is not integrable in the Arnol’d-Liouville sense and numerical methods are then
used.

These first order stationary conditions can be obtained directly using standard variation
calculus based on the Lagrange method. The adjoint state p is the Lagrange multipliers
associated to the constraint d

dt
x = f(x, u). Assume T given and consider the Lagrangian

L(x, ẋ, p, u) = c(x, u) +
∑n

i=1 pi(fi(x, u)− ẋi) associated to

max
u, x

f(x, u)− d
dt
x = 0

x(0) = xa, x(T ) = xb

∫ T

0

c(x, u)dt.

The first variation δL of L =
∫ T

0
L(x, ẋ, p, u)dt should vanish for any variation δx, δp and

δu such that δx(0) = δx(T ) = 0:

• δL = 0 for any δp yields to d
dt
x = f(x, u);

• δL = 0 for any δx with δx(0) = δx(T ) = 0 yields to d
dt
p = −

(
∂f
∂x

)†
p−

(
∂c
∂x

)†
• δL = 0 for any δu yields to ∂c

∂u
+
∑

i pi
∂fi
∂u

= 0

We recover the stationary conditions (G.1).



169

It is then simple to show that the stationary conditions for

max
u, x

f(x, u)− d
dt
x = 0

x(0) = xa

∫ T

0

c(x, u)dt+ l(x(T )),

where the final condition x(T ) = xb is replaced by a final cost l(x(T ) (l a C1 function),
remain unchanged except for the boundary conditions that become

x(0) = xa, p(T ) =

(
∂l

∂x

)†
(x(T )).
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Appendix H

Markov chains, martingales and
convergence theorems

This Appendix has for aim to give a very brief overview of some definitions and some theo-
rems in the theory of random processes. The stability Theorems H.0.10, H.0.11 and H.0.13
can be seen as stochastic analogues of deterministic Lyapunov function techniques.

We start the appendix by defining three types of convergence for random processes:

Definition H.0.6. Consider (Xn) a sequence of random variables defined on the probability
space (Ω,F ,P) and taking values in a metric space X . The random process Xn is said to,

• converge in probability towards the random variable X if for all ε > 0,

lim
n→∞

P (|Xn −X| > ε) = lim
n→∞

P (ω ∈ Ω | |Xn(ω)−X(ω)| > ε) = 0;

• converge almost surely towards the random variable X if

P
(

lim
n→∞

Xn = X
)

= P
(
ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)

)
= 1;

• converge in mean towards the random variable X if

lim
n→∞

E (|Xn −X|) = 0.

We can prove that the almost sure convergence and the convergence in mean imply the
convergence in probability. However no such relation can be proved between the conver-
gence in mean and the almost sure convergence in general.

Let (Ω,F ,P) be a probability space, and let F1 ⊆ F2 ⊆ · · · ⊆ F be a nondecreasing
family of sub-σ-algebras. We have the following definitions

Definition H.0.7. The sequence (Xn,Fn)∞n=1 is called a Markov process with respect to
F = (Fn)∞n=1, if for n′ > n and any measurable function f(x) with supx |f(x)| <∞,

E (f(Xn′) | Fn) = E (f(Xn′) | Xn) .
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Definition H.0.8. The sequence (Xn,Fn)∞n=1 is called respectively a supermartingale, a
submartingale or a martingale, if E (|Xn|) <∞ for n = 1, 2, · · · , and

E (Xn | Fm) ≤ Xm (P almost surely), n ≥ m,

or
E (Xn | Fm) ≥ Xm (P almost surely), n ≥ m,

or finally,
E (Xn | Fm) = Xm (P almost surely), n ≥ m.

Remark H.0.9. A time-continuous version of the above definitions can also be considered
for (Xt,Ft)t≥0, where F = (Ft)t≥0, is non decreasing family of sub-σ-alegbras of F .

The following theorem characterizes the convergence of bounded martingales:

Theorem H.0.10 (Doob’s first martingale convergence theorem). Let (Xn,Fn)n<∞ be a
submartingale such that (x+ is the positive part of x)

sup
n
E
(
X+
n

)
<∞.

Then limnXn (= X∞) exists with probability 1, and E (X+
∞) <∞.

For a proof we refer to [47, Chapter 2, Page 43].
Here, we recall two results that are often referred as the stochastic versions of the

Lyapunov stability theory and the LaSalle’s invariance principle. For detailed discussions
and proofs we refer to [41, Sections 8.4 and 8.5]. The first theorem is the following:

Theorem H.0.11 (Doob’s Inequality). Let {Xn} be a Markov chain on state space X .
Suppose that there is a non-negative function V (x) satisfying E (V (X1) | X0 = x)−V (x) =
−k(x), where k(x) ≥ 0 on the set {x : V (x) < λ} ≡ Qλ. Then

P
(

sup
∞>n≥0

V (Xn) ≥ λ | X0 = x

)
≤ V (x)

λ
.

Corollary H.0.12. Consider the same assumptions as in Theorem H.0.11. Assume more-
over that there exists x̄ ∈ X such that V (x̄) = 0 and that V (x) 6= 0 for all x different from
x̄. Then the Theorem H.0.11 implies that the Markov process Xn is stable in probability
around x̄, i.e.

lim
x→x̄

P
(

sup
n
‖Xn − x̄‖ ≥ ε | X0 = x

)
= 0, ∀ε > 0.

For the statement of the second Theorem (which can be seen as a stochastic version
of the LaSalle’s invariance principle), we need to use the language of probability measures
rather than the random processes. Therefore, we deal with the space M of probability
measures on the state space X . Let µ0 = σ be the initial probability distribution (every-
where through these notes we have dealt with the case where µ0 is a Dirac on a state ρ0 of
the state space of density matrices). Then, the probability distribution of Xn, given initial
distribution σ, is to be denoted by µn(σ). Note that for m ≥ 0, the Markov property
implies: µn+m(σ) = µn(µm(σ)).
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Theorem H.0.13 (Kushner’s invariance Theorem). Consider the same assumptions as
that of the Theorem H.0.11. Let µ0 = σ be concentrated on a state x0 ∈ Qλ (Qλ being
defined as in Theorem H.0.11), i.e. σ(x0) = 1. Assume that 0 ≤ k(Xn) → 0 in Qλ

implies that Xn → {x | k(x) = 0} ∩ Qλ ≡ Kλ. Under the conditions of Theorem H.0.11,
for trajectories never leaving Qλ, Xn converges to Kλ almost surely. Also, the associated
conditioned probability measures µ̃n tend to the largest invariant set of measures M∞ ⊂M
whose support set is in Kλ. Finally, for the trajectories never leaving Qλ, Xn converges,
in probability, to the support set of M∞.

In the simple case where the set Kλ is reduced to the equilibrium point x̄ such that
V (x̄) = 0, we have the following corollary:

Corollary H.0.14. Consider the same assumptions as in Theorem H.0.13 and assume
moreover that x̄ ∈ X is the only point in Qλ such that V (x̄) = 0 and furthermore that the
set Kλ defined in Theorem H.0.13 is reduced to {x̄}. Then the equilibrium x̄ is globally
stable in probability in the set Qλ, i.e.

x̄ is stable in probability and moreover P
(

lim
n→∞

Xn = x̄ | Xn never leaves Qλ

)
= 1.

Note that the Theorem H.0.13 is much stronger that this corollary as by the invariance
property we can reduce the limit set to a much smaller set than Kλ. Therefore, even in
the case where Kλ is not reduced to {x̄}, we may hope by the invariance property, to be
able to show the convergence (at least in probability) towards the equilibrium x̄. This is
what happens in the Section 5.1 of these notes.
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