Quantum Systems: Dynamics and Control ${ }^{1}$

Mazyar Mirrahimi ${ }^{2}$, Pierre Rouchon ${ }^{3}$, Alain Sarlette ${ }^{4}$

March 17, 2020

[^0]
Outline

1 Lindblad master equation

2 Driven and damped harmonic oscillator

3 Oscillator with thermal photon(s)

4 Sideband cooling

Outline

1 Lindblad master equation

2 Driven and damped harmonic oscillator

3 Oscillator with thermal photon(s)

4 Sideband cooling

The Lindblad master differential equation (finite dimensional case)

$$
\frac{d}{d t} \rho=-\frac{i}{\hbar}[\boldsymbol{H}, \rho]+\sum_{\nu} \boldsymbol{L}_{\nu} \rho \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \rho+\rho \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right) \triangleq \mathcal{L}(\rho)
$$

where

- \boldsymbol{H} is the Hamiltonian that could depend on t (Hermitian operator on the underlying Hilbert space \mathcal{H})
■ the \boldsymbol{L}_{ν} 's are operators on \mathcal{H} that are not necessarily Hermitian.
- Structure invariance under a time-varying change of frame $\widetilde{\rho}=\boldsymbol{U}_{t}^{\dagger} \rho \boldsymbol{U}_{t}$ with \boldsymbol{U}_{t} unitary: the new density operator $\tilde{\rho}$ obeys to a similar SME where
$\widetilde{\boldsymbol{H}}=\boldsymbol{U}_{t}^{\dagger} \boldsymbol{H} \boldsymbol{U}_{t}+i \boldsymbol{U}_{t}^{\dagger}\left(\frac{d}{d t} \boldsymbol{U}_{t}\right)$ and $\widetilde{\boldsymbol{L}}_{\nu}=\boldsymbol{U}_{t}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{U}_{t}$.
- Qualitative properties:

1 Positivity and trace conservation: if ρ_{0} is a density operator, then $\rho(t)$ remains a density operator for all $t>0$.
2 For any $t \geq 0$, the propagator $e^{t \mathcal{L}}$ is a Kraus map: exists a collection of operators ($M_{\mu, t}$) such that $\sum_{\mu} M_{\mu, t}^{\dagger} M_{\mu, t}=I$ with $e^{t \mathcal{L}}(\rho)=\sum_{\mu} M_{\mu, t} \rho M_{\mu, t}^{\dagger}$ (Kraus theorem characterizing completely positive linear maps).
3 Contraction for many distances such as the nuclear distance: take two trajectories ρ and ρ^{\prime}; for any $0 \leq t_{1} \leq t_{2}$,

$$
\operatorname{Tr}\left(\left|\rho\left(t_{2}\right)-\rho^{\prime}\left(t_{2}\right)\right|\right) \leq \operatorname{Tr}\left(\left|\rho\left(t_{1}\right)-\rho^{\prime}\left(t_{1}\right)\right|\right)
$$

where for any Hermitian operator $A,|A|=\sqrt{A^{2}}$ and $\operatorname{Tr}(|A|)$ corresponds to the sum of the absolute values of its eigenvalues.

$$
\begin{aligned}
\boldsymbol{\rho}_{k+1} & =\sum_{\mu} \boldsymbol{M}_{\mu} \boldsymbol{\rho}_{k} \boldsymbol{M}_{\mu}^{\dagger} \quad \text { with } \quad \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}=\boldsymbol{I} \\
\frac{d}{d t} \boldsymbol{\rho} & =-\frac{i}{\hbar}[\boldsymbol{H}, \boldsymbol{\rho}]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}+\boldsymbol{\rho} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)
\end{aligned}
$$

Take $d t>0$ small. Set

$$
\boldsymbol{M}_{d t, 0}=\boldsymbol{I}-d t\left(\frac{i}{\hbar} \boldsymbol{H}+\frac{1}{2} \sum_{\nu} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right), \quad \boldsymbol{M}_{d t, \nu}=\sqrt{d t} \boldsymbol{L}_{\nu}
$$

Since $\rho(t+d t)=\rho(t)+d t\left(\frac{d}{d t} \rho(t)\right)+O\left(d t^{2}\right)$, we have

$$
\boldsymbol{\rho}(t+d t)=\boldsymbol{M}_{d t, 0} \boldsymbol{\rho}(t) \boldsymbol{M}_{d t, 0}^{\dagger}+\sum_{\nu} \boldsymbol{M}_{d t, \nu} \boldsymbol{\rho}(t) \boldsymbol{M}_{d t, \nu}^{\dagger}+O\left(d t^{2}\right)
$$

Since $\boldsymbol{M}_{d t, 0}^{\dagger} \boldsymbol{M}_{d t, 0}+\sum_{\nu} \boldsymbol{M}_{d t, \nu}^{\dagger} \boldsymbol{M}_{d t, \nu}=\boldsymbol{I}+0\left(d t^{2}\right)$ the super-operator

$$
\boldsymbol{\rho} \mapsto \boldsymbol{M}_{d t, 0} \boldsymbol{\rho} \boldsymbol{M}_{d t, 0}^{\dagger}+\sum_{\nu} \boldsymbol{M}_{d t, \nu} \boldsymbol{\rho} \boldsymbol{M}_{d t, \nu}^{\dagger}
$$

can be seen as an infinitesimal Kraus map.

1 Unitary invariance: for any unitary operator $U\left(U^{\dagger} U=I\right)$, $D\left(U_{\rho} U^{\dagger}, U_{\rho} \boldsymbol{U}^{\dagger}\right)=D\left(\rho, \rho^{\prime}\right)$.
2 For any density operators ρ and ρ^{\prime},

$$
\begin{gathered}
D\left(\rho, \rho^{\prime}\right)=\underset{\substack{\text { such that }}}{ } \operatorname{Tr}\left(P\left(\rho-\rho^{\prime}\right)\right) . \\
0 \leq P=P^{\dagger} \leq I
\end{gathered}
$$

3 Triangular inequality: for any density operators ρ, ρ^{\prime} and $\rho^{\prime \prime}$

$$
D\left(\rho, \rho^{\prime \prime}\right) \leq D\left(\rho, \rho^{\prime}\right)+D\left(\rho^{\prime}, \rho^{\prime \prime}\right)
$$

Complement: Kraus maps are contractions for several "distances"5

For any Kraus map $\rho \mapsto \boldsymbol{K}(\rho)=\sum_{\mu} M_{\mu} \rho M_{\mu}^{\dagger}\left(\sum_{\mu} M_{\mu}^{\dagger} M_{\mu}=I\right)$ $d(\boldsymbol{K}(\rho), \boldsymbol{K}(\sigma)) \leq \boldsymbol{d}(\rho, \sigma)$ with

■ trace distance: $d_{t r}(\rho, \sigma)=\frac{1}{2} \operatorname{Tr}(|\rho-\sigma|)$.
■ Bures distance: $d_{B}(\rho, \sigma)=\sqrt{1-F(\rho, \sigma)}$ with fidelity $F(\rho, \sigma)=\operatorname{Tr}(\sqrt{\sqrt{\rho} \sigma \sqrt{\rho}})$.

■ Chernoff distance: $d_{C}(\rho, \sigma)=\sqrt{1-Q(\rho, \sigma)}$ where $Q(\rho, \sigma)=\min _{0 \leq s \leq 1} \operatorname{Tr}\left(\rho^{s} \sigma^{1-s}\right)$.
■ Relative entropy: $d_{S}(\rho, \sigma)=\sqrt{\operatorname{Tr}(\rho(\log \rho-\log \sigma))}$.
■ χ^{2}-divergence: $d_{\chi^{2}}(\rho, \sigma)=\sqrt{\operatorname{Tr}\left((\rho-\sigma) \sigma^{-\frac{1}{2}}(\rho-\sigma) \sigma^{-\frac{1}{2}}\right)}$.

- Hilbert's projective metric: if $\operatorname{supp}(\rho)=\operatorname{supp}(\sigma)$ $d_{h}(\rho, \sigma)=\log \left(\left\|\rho^{-\frac{1}{2}} \sigma \rho^{-\frac{1}{2}}\right\|_{\infty}\left\|\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}}\right\|_{\infty}\right)$ otherwise $d_{h}(\rho, \sigma)=+\infty$.
${ }^{5}$ A good summary in M.J. Kastoryano PhD thesis: Quantum Markov Chain Mixing and Dissipative Engineering. University of Copenhagen, December 2011.

Complement: non-commutative consensus and Hilbert's metric ${ }^{67}$

The Schrödinger approach $d_{h}(\rho, \sigma)=\log \left(\left\|\rho^{-\frac{1}{2}} \sigma \rho^{-\frac{1}{2}}\right\|_{\infty}\left\|\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}}\right\|_{\infty}\right)$

$$
\begin{aligned}
& \boldsymbol{K}(\rho)=\sum M_{\mu} \rho M_{\mu}^{\dagger}, \quad \sum M_{\mu}^{\dagger} M_{\mu}=I \\
& \frac{d}{d t} \rho=-i[H, \rho]+\sum L_{\mu} \rho L_{\mu}^{\dagger}-\frac{1}{2} L_{\mu}^{\dagger} L_{\mu} \rho-\frac{\mathbf{1}}{2} \rho L_{\mu}^{\dagger} L_{\mu}
\end{aligned}
$$

Contraction ratio: $\tanh \left(\frac{\Delta(\boldsymbol{K})}{4}\right)$ with $\Delta(\boldsymbol{K})=\max _{\rho, \sigma>0} \boldsymbol{d}_{h}(\boldsymbol{K}(\rho), \boldsymbol{K}(\sigma))$ The Heisenberg approach (dual of Schrödinger approach):
$K^{*}(A)=\sum M_{\mu}^{\dagger} A M_{\mu}, \quad K^{*}(I)=I$
$\frac{d}{d t} A=i[H, A]+\sum L_{\mu}^{\dagger} A L_{\mu}-\frac{\mathbf{I}}{2} L_{\mu}^{\dagger} L_{\mu} A-\frac{\mathbf{I}}{2} A L_{\mu}^{\dagger} L_{\mu}, \quad A=I$ steady-state.
"Contraction of the spectrum":

$$
\lambda_{\min }(\boldsymbol{A}) \leq \lambda_{\min }\left(\boldsymbol{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }\left(\boldsymbol{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }(\boldsymbol{A}) .
$$

${ }^{6}$ R. Sepulchre et al.: Consensus in non-commutative spaces. CDC 2010.
${ }^{7}$ D. Reeb et al.: Hilbert's projective metric in quantum information theory. J. Math. Phys. 52, 082201 (2011).

Outline

1 Lindblad master equation

2 Driven and damped harmonic oscillator

3 Oscillator with thermal photon(s)

4 Sideband cooling

The driven and damped classical oscillator

Dynamics in the $\left(x^{\prime}, p^{\prime}\right)$ phase plane with $\omega \gg \kappa, \sqrt{u_{1}^{2}+u_{2}^{2}}$:

$$
\frac{d}{d t} x^{\prime}=\omega p^{\prime}, \quad \frac{d}{d t} p^{\prime}=-\omega x^{\prime}-\kappa p^{\prime}-2 u_{1} \sin (\omega t)+2 u_{2} \cos (\omega t)
$$

Define the frame rotating at ω by $\left(x^{\prime}, p^{\prime}\right) \mapsto(x, p)$ with

$$
x^{\prime}=\cos (\omega t) x+\sin (\omega t) p, \quad p^{\prime}=-\sin (\omega t) x+\cos (\omega t) p
$$

Removing highly oscillating terms (rotating wave approximation), from

$$
\begin{aligned}
& \frac{d}{d t} x=-\kappa \sin ^{2}(\omega t) x+2 u_{1} \sin ^{2}(\omega t)+\left(\kappa p-2 u_{2}\right) \sin (\omega t) \cos (\omega t) \\
& \frac{d}{d t} p=-\kappa \cos ^{2}(\omega t) p+2 u_{2} \cos ^{2}(\omega t)+\left(\kappa x-2 u_{1}\right) \sin (\omega t) \cos (\omega t)
\end{aligned}
$$

we get, with $\alpha=x+i p$ and $u=u_{1}+i u_{2}$:

$$
\frac{d}{d t} \alpha=-\frac{\kappa}{2} \alpha+u
$$

With $x^{\prime}+i p^{\prime}=\alpha^{\prime}=e^{-i \omega t} \alpha$, we have $\frac{d}{d t} \alpha^{\prime}=-\left(\frac{\kappa}{2}+i \omega\right) \alpha^{\prime}+u e^{-i \omega t}$

- The Lindblad master equation:

$$
\frac{d}{d t} \boldsymbol{\rho}=\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \rho-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right) .
$$

■ Consider $\boldsymbol{\rho}=\boldsymbol{D}_{\bar{\alpha}} \boldsymbol{\xi} \boldsymbol{D}_{-\bar{\alpha}}$ with $\bar{\alpha}=2 u / \kappa$ and $\boldsymbol{D}_{\bar{\alpha}}=e^{\bar{\alpha} \boldsymbol{a}^{\dagger}-\bar{\alpha}^{*} \boldsymbol{a}}$. We get

$$
\frac{d}{d t} \boldsymbol{\xi}=\kappa\left(\boldsymbol{a} \boldsymbol{\xi} \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{\xi}-\frac{1}{2} \boldsymbol{\xi} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right)
$$

since $\boldsymbol{D}_{-\bar{\alpha}} \boldsymbol{a} \boldsymbol{D}_{\bar{\alpha}}=\boldsymbol{a}+\bar{\alpha}$.
■ Informal convergence proof with the strict Lyapunov function $V(\xi)=\operatorname{Tr}(\xi \boldsymbol{N}):$

$$
\frac{d}{d t} V(\xi)=-\kappa V(\xi) \Rightarrow V(\xi(t))=V\left(\xi_{0}\right) e^{-\kappa t}
$$

Since $\boldsymbol{\xi}(t)$ is Hermitian and non-negative, $\boldsymbol{\xi}(t)$ tends to $|0\rangle\langle 0|$ when $t \mapsto+\infty$.

The rigorous underlying convergence result

Theorem

Consider with $u \in \mathbb{C}, \kappa>0$, the following Cauchy problem

$$
\frac{d}{d t} \boldsymbol{\rho}=\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \rho\right]+\kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \rho-\frac{1}{2} \rho \boldsymbol{a}^{\dagger} \boldsymbol{a}\right), \quad \rho(0)=\rho_{0} .
$$

Assume that the initial state ρ_{0} is a density operator with finite energy $\operatorname{Tr}\left(\rho_{0} \boldsymbol{N}\right)<+\infty$. Then exists a unique solution to the Cauchy problem in the Banach space $\mathcal{K}^{1}(\mathcal{H})$, the set of trace class operators on \mathcal{H}. It is defined for all $t>0$ with $\rho(t)$ a density operator (Hermitian, non-negative and trace-class) that remains in the domain of the Lindblad super-operator

$$
\boldsymbol{\rho} \mapsto\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right) .
$$

This means that $t \mapsto \rho(t)$ is differentiable in the Banach space $\mathcal{K}^{1}(\mathcal{H})$. Moreover $\rho(t)$ converges for the trace-norm towards $|\bar{\alpha}\rangle\langle\bar{\alpha}|$ when t tends to $+\infty$, where $|\bar{\alpha}\rangle$ is the coherent state of complex amplitude $\bar{\alpha}=\frac{2 u}{\kappa}$.

Link with the classical oscillator

Lemma

Consider with $u \in \mathbb{C}, \kappa>0$, the following Cauchy problem

$$
\frac{d}{d t} \boldsymbol{\rho}=\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \rho\right]+\kappa\left(\boldsymbol{a} \rho \mathbf{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \rho-\frac{1}{2} \rho \mathbf{a}^{\dagger} \boldsymbol{a}\right), \quad \rho(0)=\rho_{0} .
$$

1 for any initial density operator ρ_{0} with $\operatorname{Tr}\left(\rho_{0} \boldsymbol{N}\right)<+\infty$, we have $\frac{d}{d t} \alpha=-\frac{\kappa}{2}(\alpha-\bar{\alpha})$ where $\alpha=\operatorname{Tr}(\rho \mathbf{a})$ and $\bar{\alpha}=\frac{2 u}{\kappa}$.
2 Assume that $\rho_{0}=\left|\beta_{0}\right\rangle\left\langle\beta_{0}\right|$ where β_{0} is some complex amplitude. Then for all $t \geq 0, \boldsymbol{\rho}(t)=|\beta(t)\rangle\langle\beta(t)|$ remains a coherent state of amplitude $\beta(t)$ solution of the following equation:

$$
\frac{d}{d t} \beta=-\frac{\kappa}{2}(\beta-\bar{\alpha}) \text { with } \beta(0)=\beta_{0} .
$$

Statement 2 relies on:

$$
\boldsymbol{a}|\beta\rangle=\beta|\beta\rangle, \quad|\beta\rangle=e^{-\frac{\beta \beta^{*}}{2}} e^{\beta \mathbf{a}^{\dagger}}|0\rangle \quad \frac{d}{d t}|\beta\rangle=\left(-\frac{1}{2}\left(\beta^{*} \dot{\beta}+\beta \dot{\beta}^{*}\right)+\dot{\beta} \mathbf{a}^{\dagger}\right)|\beta\rangle .
$$

Outline

1 Lindblad master equation

2 Driven and damped harmonic oscillator

3 Oscillator with thermal photon(s)

4 Sideband cooling

Driven and damped quantum oscillator with thermal photon(s)

Parameters $\omega \gg \kappa,|u|$ and $n_{\text {th }}>0$:

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\rho}=\left[\boldsymbol{u} \mathbf{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\left(1+n_{\mathrm{th}}\right) & \kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right) \\
& +n_{\mathrm{th}} \kappa\left(\boldsymbol{a}^{\dagger} \boldsymbol{\rho} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a} \boldsymbol{a}^{\dagger} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a} \boldsymbol{a}^{\dagger}\right)
\end{aligned}
$$

Key issue: $\lim _{t \rightarrow+\infty} \rho(t)=?$.
With $\bar{\alpha}=2 u / k$, we have

$$
\begin{aligned}
& \quad \frac{d}{d t} \boldsymbol{\rho}= \\
& \left(1+n_{\mathrm{th}}\right) \kappa\left((\boldsymbol{a}-\bar{\alpha}) \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})^{\dagger}-\frac{1}{2}(\boldsymbol{a}-\bar{\alpha})^{\dagger}(\boldsymbol{a}-\bar{\alpha}) \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})^{\dagger}(\boldsymbol{a}-\bar{\alpha})\right) \\
& +n_{\mathrm{th}} \kappa\left((\boldsymbol{a}-\bar{\alpha})^{\dagger} \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})-\frac{1}{2}(\boldsymbol{a}-\bar{\alpha})(\boldsymbol{a}-\bar{\alpha})^{\dagger} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})(\boldsymbol{a}-\bar{\alpha})^{\dagger}\right)
\end{aligned}
$$

Using the unitary change of frame $\boldsymbol{\xi}=\boldsymbol{D}_{-\bar{\alpha}} \boldsymbol{\rho} \boldsymbol{D}_{\bar{\alpha}}$ based on the displacement $\boldsymbol{D}_{\bar{\alpha}}=e^{\bar{\alpha} \boldsymbol{a}^{\dagger}-\bar{\alpha}^{\dagger} \boldsymbol{a}}$, we get the following dynamics on $\boldsymbol{\xi}$

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\xi}=\left(1+n_{\mathrm{th}}\right) \kappa\left(\boldsymbol{a} \boldsymbol{\xi} \mathbf{a}^{\dagger}-\frac{1}{2} \mathbf{a}^{\dagger} \boldsymbol{a} \boldsymbol{\xi}\right. & \left.-\frac{1}{2} \boldsymbol{\xi} \mathbf{a}^{\dagger} \boldsymbol{a}\right) \\
& +n_{\mathrm{th}} \kappa\left(\mathbf{a}^{\dagger} \boldsymbol{\xi} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a} \boldsymbol{a}^{\dagger} \boldsymbol{\xi}-\frac{1}{2} \boldsymbol{\xi} \boldsymbol{a} \boldsymbol{a}^{\dagger}\right)
\end{aligned}
$$

since $\boldsymbol{a}+\bar{\alpha}=\boldsymbol{D}_{-\bar{\alpha}} \boldsymbol{a} \boldsymbol{D}_{\bar{\alpha}}$.

Asymptotic convergence towards the thermal equilibrium

The thermal mixed state $\xi_{\text {th }}=\frac{1}{1+n_{\text {th }}}\left(\frac{n_{\text {th }}}{1+n_{\text {th }}}\right)^{\boldsymbol{N}}$ is an equilibrium of

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\xi}=\kappa\left(1+n_{\mathrm{th}}\right)\left(\mathbf{a} \boldsymbol{\xi} \mathbf{a}^{\dagger}-\frac{1}{2} \mathbf{a}^{\dagger} \boldsymbol{a} \boldsymbol{\xi}\right. & \left.-\frac{1}{2} \boldsymbol{\xi} \mathbf{a}^{\dagger} \boldsymbol{a}\right) \\
& +\kappa n_{\mathrm{th}}\left(\mathbf{a}^{\dagger} \boldsymbol{\xi} \mathbf{a}-\frac{1}{2} \mathbf{a} \mathbf{a}^{\dagger} \boldsymbol{\xi}-\frac{1}{2} \boldsymbol{\xi} \mathbf{a}^{\dagger}\right)
\end{aligned}
$$

with $\operatorname{Tr}\left(\boldsymbol{N} \xi_{\text {th }}\right)=n_{\text {th }}$. Following ${ }^{8}$, set ζ the solution of the Sylvester equation: $\boldsymbol{\xi}_{\mathrm{th}} \boldsymbol{\zeta}+\boldsymbol{\zeta} \boldsymbol{\xi}_{\mathrm{th}}=\boldsymbol{\xi}-\boldsymbol{\xi}_{\mathrm{th}}$. Then $V(\boldsymbol{\xi})=\operatorname{Tr}\left(\boldsymbol{\xi}_{\mathrm{th}} \boldsymbol{\zeta}^{2}\right)$ is a strict Lyapunov function. It is based on the following computations that can be made rigorous with an adapted Banach space for ξ :

$$
\begin{aligned}
\frac{d}{d t} V(\boldsymbol{\xi})=-\kappa\left(1+n_{\mathrm{th}}\right) \operatorname{Tr}\left([\boldsymbol{\zeta}, \boldsymbol{a}] \xi_{\mathrm{th}}[\boldsymbol{\zeta}, \mathbf{a}]^{\dagger}\right) & \\
& -\kappa n_{\mathrm{th}} \operatorname{Tr}\left(\left[\boldsymbol{\zeta}, \mathbf{a}^{\dagger}\right] \xi_{\mathrm{th}}\left[\boldsymbol{\zeta}, \mathbf{a}^{\dagger}\right]^{\dagger}\right) \leq 0 .
\end{aligned}
$$

When $\frac{d}{d t} V=0, \zeta$ commutes with $\boldsymbol{a}, \boldsymbol{a}^{\dagger}$ and \boldsymbol{N}. It is thus a constant function of \boldsymbol{N}. Since $\boldsymbol{\xi}_{\mathrm{th}} \boldsymbol{\zeta}+\boldsymbol{\zeta} \boldsymbol{\xi}_{\mathrm{th}}=\boldsymbol{\xi}-\boldsymbol{\xi}_{\mathrm{th}}$, we get $\boldsymbol{\xi}=\boldsymbol{\xi}_{\mathrm{th}}$.

[^1]
Outline

1 Lindblad master equation

2 Driven and damped harmonic oscillator

3 Oscillator with thermal photon(s)

4 Sideband cooling

The Law-Eberly Hamiltionian (cf. lect no 5)

$$
\begin{aligned}
\frac{\boldsymbol{H}}{\hbar} & =u|g\rangle\langle e|+u^{*}|e\rangle\langle g| \\
& +\bar{u}_{b}|g\rangle\langle e| \boldsymbol{a}+\bar{u}_{b}^{*}|e\rangle\langle g| \boldsymbol{a}^{\dagger} \\
& +\bar{u}_{r}|g\rangle\langle e| \boldsymbol{a}^{\dagger}+\bar{u}_{r}^{*}|e\rangle\langle g| \boldsymbol{a}
\end{aligned}
$$

Take $\bar{u}=\bar{u}_{b}=0$ and $\mathbb{C} \ni \bar{u}_{r} \neq 0$ constant with the dissipation channel $\sigma .=|g\rangle\langle e|$ with inverse qubit life time κ. The Lindblad equation reads:

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\rho}=-i\left[\bar{u}_{r}|g\rangle\langle e| \boldsymbol{a}^{\dagger}+\right. & \left.\bar{u}_{r}^{*}|e\rangle\langle g| \boldsymbol{a}, \boldsymbol{\rho}\right] \\
& +\kappa\left(|g\rangle\langle\boldsymbol{e}| \boldsymbol{\rho}|\boldsymbol{e}\rangle\langle g|-\frac{1}{2}(|e\rangle\langle\boldsymbol{e}| \boldsymbol{\rho}+\boldsymbol{\rho}|e\rangle\langle\boldsymbol{e}|)\right) .
\end{aligned}
$$

Then $\lim _{t \rightarrow+\infty} \rho(t)=|g\rangle\langle g| \otimes|0\rangle\langle 0|=|g 0\rangle\langle g 0|$.
Proof based on the fact that for any integer \bar{n}.

$$
\frac{d}{d t} \operatorname{Tr}\left(\left(|g \bar{n}\rangle\langle g \bar{n}|+\sum_{0 \leq n \leq \bar{n}-1}|n\rangle\langle n|\right) \rho\right)=\kappa\langle e \bar{n}| \rho|e \bar{n}\rangle \geq 0
$$

[^0]: ${ }^{1}$ See the web page:
 http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html
 ${ }^{2}$ INRIA Paris, QUANTIC research team
 ${ }^{3}$ Mines ParisTech, QUANTIC research team
 ${ }^{4}$ INRIA Paris, QUANTIC research team

[^1]: ${ }^{8}$ PR and A. Sarlette: Contraction and stability analysis of steady-states for open quantum systems described by Lindblad differential equations. Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, 10-13 Dec. 2013, 6568-6573.

