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Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus map K u depending on the classical control input u:

K u(ρ) =
∑
ξ

Mu,ξρM†u,ξ with
∑
ξ

M†u,ξMu,ξ = I .

Take a left stochastic matrix
[
ηy,ξ
]

(ηy,ξ ≥ 0 and
∑

y ηy,ξ ≡ 1, ∀ξ) and set
K u,y (ρ) =

∑
ξ ηy,ξMu,ξρM†u,ξ. The associated Markov chain reads:

ρk+1 =
K uk ,yk (ρk )

Tr (K uk ,yk (ρk ))
measurement yk with probability Tr (K uk ,yk (ρk )) .

Classical input u, hidden state ρ, measured output y .
Ensemble average given by K u since E

(
ρk+1

∣∣ ρk , uk
)

= K uk (ρk ).
Markov model useful for:

1 Monte-Carlo simulations of quantum trajectories (decoherence,
measurement back-action).

2 quantum filtering to get the quantum state ρk from ρ0 and (y0, . . . , yk−1)
(Belavkin quantum filter developed for diffusive models).

3 feedback design and Monte-Carlo closed-loop simulations.
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Markov process under continuous measurement

yt	

η	

Inverse setup of photon-box: photons read out a qubit.

Two major differences

measurement output taking values from a continuum of possible
outcomes

dyt =
√
ηTr

(
(L + L†)ρt

)
dt + dWt .

Time continuous dynamics.



Stochastic master equation: Markov process under continuous measurement

dρt =

(
− i
~

[H,ρt ] +
∑
ν

LνρtL
†
ν −

1
2

(L†νLνρt + ρtL
†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t ,

where Wν,t are independent Wiener processes, associated to
measured signals

dyν,t = dWν,t +
√
ην Tr

(
(Lν + L†ν)ρt

)
dt .

Wiener process Wt :

W0 = 0;

t →Wt is almost surely everywhere continuous;

For 0 ≤ s1 < t1 ≤ s2 < t2, Wt1 −Ws1 andWt2 −Ws2 are
independent random variables satisfying Wt −Ws ∼ N(0, t − s).

Average dynamics: Lindblad master equation

dE (ρt ) =(
− i

~ [H,E (ρt )] +
∑
ν LνE (ρt ) L†ν − 1

2 (L†νLνE (ρt ) + E (ρt ) L†νLν)
)

dt .



Ito stochastic calculus
Given a diffusive Stochastic Differential Equation (SDE)

dXt = F (Xt , t)dt +
∑
ν

Gν(Xt , t)dWν,t ,

we have the following chain rule:

Ito’s rule

Defining ft = f (Xt ) a C2 function of X , we have

dft =

(
∂f
∂X

∣∣∣
Xt

F (Xt , t) +
1
2

∑
ν

∂2f
∂X 2

∣∣∣
Xt

(Gν(Xt , t),Gν(Xt , t))

)
dt

+
∑
ν

∂f
∂X

∣∣∣
Xt

Gν(Xt , t)dWν,t .

Furthermore

d
dt

E (ft ) = E

(
∂f
∂X

∣∣∣
Xt

F (Xt , t) +
1
2

∑
ν

∂2f
∂X 2

∣∣∣
Xt

(Gν(Xt , t),Gν(Xt , t))

)
.



Link to partial Kraus maps (1)

dρt =

(
− i
~

[H,ρt ] +
∑
ν

LνρtL
†
ν −

1
2

(L†νLνρt + ρtL
†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t ,

equivalent to

ρt+dt =
MdytρtM

†
dyt

+
∑
ν(1− ην)LνρtL

†
νdt

Tr
(

MdytρtM
†
dyt

+
∑
ν(1− ην)LνρtL

†
νdt
)

with
Mdyt = I + (− i

~
H − 1

2
L†νLν)dt +

∑
ν

√
ηνdyν,tLν .

Moreover, defining dyt = st
√

dt = (sν,t )
√

dt :

P(st ∈ [s, s+ds] | ρt ) = Tr

(
Ms
√

dtρtM
†
s
√

dt
+
∑
ν

(1− ην)LνρtL
†
νdt

)∏
ν

e−
s2
ν
2 dsν√
2π

.



Link to partial Kraus maps (2)

P defines a probability density up to a correction of order dt2:∫
P(st ∈ [s, s + ds] | ρt ) = 1 + O(dt2).

Mean value of measured signal∫
sνP(st ∈ [s, s+ds] | ρt ) =

√
ην Tr

(
(Lν + L†ν)ρt

)√
dt+O(dt3/2).

Variance of measured signal∫
s2
ν P(st ∈ [s, s + ds] | ρt ) = 1 + O(dt).

Compatible with dyν,t = dWν,t +
√
ην Tr

(
(Lν + L†ν)ρt

)
dt .



Link to partial Kraus maps (3)

dρt =

(
− i
~

[H,ρt ] +
∑
ν

LνρtL
†
ν −

1
2

(L†νLνρt + ρtL
†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t ,

equivalent to

ρt+dt =
MdytρtM

†
dyt

+
∑
ν(1− ην)LνρtL

†
νdt

Tr
(

MdytρtM
†
dyt

+
∑
ν(1− ην)LνρtL

†
νdt
)

Indicates that the solution remains in the space of semi-definite
positive Hermitian matrices;

Provides a time-discretized numerical scheme preserving
non-negativity of ρ.

Theorem

The above master equation admits a unique solution remaining for all
t ≥ 0 in {ρ ∈ CN×N : ρ = ρ†, ρ ≥ 0, Tr (ρ) = 1}.
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Dispersive measurement of a qubit

|g〉

|e〉 κ

1

Inverse setup of photon-box: photons read out a qubit.

Approximate model

Cavity’s dynamics are removed (singular perturbation techniques) to
achieve a qubit SME:

dρt = − i
~

[H,ρt ]dt +
Γm

4
(σzρtσz − ρt )dt

+

√
ηΓm

2
(σzρt + ρtσz − 2 Tr (σzρt )ρt )dWt ,

dyt = dWt +
√
ηΓm Tr (σzρt ) dt .



Quantum Non-Demolition measurement

dρt = − i
~

[H,ρt ]dt +
Γm

4
(σzρtσz − ρt )dt

+

√
ηΓm

2
(σzρt + ρtσz − 2 Tr (σzρt )ρt )dWt ,

dyt = dWt +
√
ηΓm Tr (σzρt ) dt .

Uncontrolled case: H/~ = ωegσz/2.

Interpretation as a Markov process with Kraus operators

Mdyt = I −
(

i
ωeg

2
σz +

Γm

8
I
)

dt +

√
ηΓm

2
σzdyt ,

√
(1− η)dtL =

√
(1− η)Γmdt

2
σz .

QND measurement

Kraus operators Mdyt and
√

(1− η)dtL commute with observable σz :
qubit states |g〉〈g| and |e〉〈e| are fixed points of the measurement
process. The measurement is QND for the observable σz .



QND measurement: asymptotic behavior

Theorem

Consider the SME

dρt = − i
~

[H,ρt ]dt +
Γm

4
(σzρtσz − ρt )dt

+

√
ηΓm

2
(σzρt + ρtσz − 2 Tr (σzρt )ρt )dWt ,

with H =
ωeg

2 σz and η > 0.

For any initial state ρ0, the solution ρt converges almost surely as
t →∞ to one of the states |g〉〈g| or |e〉〈e|.
The probability of convergence to |g〉〈g| (respectively |e〉〈e|) is given by
pg = Tr (|g〉〈g|ρ0) (respectively Tr (|e〉〈e|ρ0)).

The convergence rate is given by ηΓM/2.

Proof based on the Lyapunov function V (ρ) =
√

Tr (σz 2ρ)− Tr2 (σzρ) with

d
dt

E (V (ρ)) = −ηΓM

2
E (V (ρ))

Matlab open-loop simulations: ModelQubit.m



Quantum feedback

Question: how to stabilize deterministically a single qubit state |g〉〈g|
or |e〉〈e|?
Controlled SME:

dρt = − i
~

[H,ρt ]dt +
Γm

4
(σzρtσz − ρt )dt

+

√
ηΓm

2
(σzρt + ρrσz − 2 Tr (σzρt )ρt )dWt ,

with

H =
ωeg

2
σz +

u(ρt )

2
σx ,

u(ρ) = −αTr
(
i[σx ,ρ]ρtag

)
+ β(1− Tr

(
ρρtag

)
), α, β > 0 and β2 < 8αη,

globally stabilizes the target state ρtag = |g〉〈g| or |e〉〈e|.

Matlab closed-loop simulations: FeedbackQubit.m
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