Quantum Systems: Dynamics and Control¹

Mazyar Mirrahimi², Pierre Rouchon³, Alain Sarlette⁴

March 3, 2020

¹See the web page:

http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html

²INRIA Paris, QUANTIC research team ³Mines ParisTech, QUANTIC research team ⁴INRIA Paris, QUANTIC research team

Outline

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic processes attached to quantum measurement
- Quantum Filtering

2 QND measurements and open-loop convergence

- Martingales and convergence of Markov chains
- Martingale behavior for QND measurement of photons

(ロ) (同) (三) (三) (三) (○) (○)

3 Feedback stabilization of photon number states

Outline

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic processes attached to quantum measurement
- Quantum Filtering

2 QND measurements and open-loop convergence

- Martingales and convergence of Markov chains
- Martingale behavior for QND measurement of photons

(日) (日) (日) (日) (日) (日) (日)

3 Feedback stabilization of photon number states

Recall: measurements and backaction in LKB photon box

- projective measurement: meter qubit, Hilbert space $\mathbb{C}^2 = \text{span}(|g\rangle, |e\rangle)$, detected in $\mu \in \{g, e\}$ and projected in $|\mu\rangle$ with proba. $|\langle \psi | \mu \rangle|^2$
- non-projective measurement: cavity, measured indirectly through interaction with meter qubit, undergoes with proba.

$$\mathbb{P}_{\mu|oldsymbol{
ho}} = \mathsf{Tr}\left(oldsymbol{M}_{\mu}oldsymbol{
ho}oldsymbol{M}_{\mu}^{\dagger}
ight)$$
:

 $m{
ho}_+ = m{M}_\mu m{
ho} m{M}_\mu^\dagger \,/\, \mathbb{P}_{\mu|m{
ho}} \,$ associated to meas.result μ

decoherence: interaction with environment which is not measured, e.g.

$$\rho_{+} = \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger} + \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger} \quad \text{or} \quad \rho_{+} = \boldsymbol{M}_{-1} \boldsymbol{\rho} \boldsymbol{M}_{-1}^{\dagger} + \boldsymbol{M}_{+1} \boldsymbol{\rho} \boldsymbol{M}_{+1}^{\dagger} + \boldsymbol{M}_{0} \boldsymbol{\rho} \boldsymbol{M}_{0}^{\dagger}$$

■ measurement errors: when "true" output $\mu \in \{g, e\}$ is read as $y \in \{g, e\}$ with probability $\eta_{y,\mu}$:

$$oldsymbol{
ho}_+ = \mathbb{K}_y(oldsymbol{
ho}) / \operatorname{Tr}(\mathbb{K}_y(oldsymbol{
ho}))$$
 with proba. $\operatorname{Tr}(\mathbb{K}_y(oldsymbol{
ho}))$,
where $\mathbb{K}_y(oldsymbol{
ho}) = \sum_\mu \eta_{y,\mu} oldsymbol{M}_\mu oldsymbol{
ho} oldsymbol{M}_\mu^\dagger$

These are the general forms of quantum measurement and associated evolution in discrete-time.

Projective measurement

For the system defined on Hilbert space $\mathcal{H},$ take

• an observable O (Hermitian operator) defined on \mathcal{H} :

$$oldsymbol{O} = \sum_{\mu} \lambda_{\mu} oldsymbol{P}_{\mu},$$

where λ_{μ} are the eigenvalues of **O** and **P**_{μ} is the projection operator over the associated eigenspace.

Often $\mathbf{P}_{\mu} = |\xi_{\mu}\rangle\langle\xi_{\mu}|$ rank-1 projection onto eigenstate $|\xi_{\mu}\rangle \in \mathcal{H}$.

• a quantum state given by the wave function $|\psi\rangle$ in \mathcal{H} .

Projective measurement of the physical observable $\boldsymbol{O} = \sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$ for the quantum state $|\psi\rangle$:

- 1 Probability of obtaining the value λ_{μ} is given by $\mathbb{P}_{\mu} = \langle \psi | \mathbf{P}_{\mu} | \psi \rangle$. (Note that $\sum_{\mu} \mathbb{P}_{\mu} = 1$ as $\sum_{\mu} \mathbf{P}_{\mu} = \mathbf{I}_{\mathcal{H}}$ identity operator on \mathcal{H} .)
- 2 After the measurement, the conditional (a posteriori) state $|\psi_+\rangle$ of the system, given the outcome λ_{μ} , is

$$|\psi_{+}\rangle = \frac{P_{\mu} |\psi\rangle}{\sqrt{\mathbb{P}_{\mu}}}$$
 (collapse of the wave packet).

System S of interest interacts with the meter M and the experimenter measures projectively the meter M.

Measurement process in three consecutive steps:

Initially the quantum state is separable

$$\mathcal{H}_{\mathcal{S}}\otimes\mathcal{H}_{\mathcal{M}}
i |\Psi
angle = |\psi_{\mathcal{S}}
angle\otimes|\psi_{\mathcal{M}}
angle$$

with a well defined and known state $|\psi_M\rangle$ for *M*.

- 2 Then a Schrödinger evolution (unitary operator U_{S,M}) of the composite system from |ψ_S⟩ ⊗ |ψ_M⟩ produces U_{S,M}(|ψ_S⟩ ⊗ |ψ_M⟩), entangled in general.⁵
- 3 Finally we make a projective measurement of the meter *M*: $O_M = I_S \otimes (\sum_{\mu} \lambda_{\mu} P_{\mu})$ the measured observable for the meter, usually $P_{\mu} = |\xi_{\mu}\rangle \langle \xi_{\mu}|$ a rank-1 projection in \mathcal{H}_M onto the eigenstate $|\xi_{\mu}\rangle \in \mathcal{H}_M$.

⁵A state is entangled if it cannot be written as $|\Psi\rangle = |\tilde{\psi}_S\rangle \otimes |\tilde{\psi}_M\rangle$ for some $|\tilde{\psi}_S\rangle, |\tilde{\psi}_M\rangle$. Entanglement leads to very peculiar quantum correlations.

We can always decompose in the basis of eigenstates $\{|\xi_{\mu}\rangle\}$:

$$m{U}_{S,M}(|\psi_{S}\rangle\otimes|\psi_{M}\rangle)=\sum_{\mu}m{M}_{\mu}|\psi_{S}\rangle\otimes|\xi_{\mu}\rangle$$

which define the measurement operators M_{μ} . Then $\sum_{\mu} M_{\mu}^{\dagger} M_{\mu} = I_{S}$. The set $\{M_{\mu}\}$ defines a Positive Operator Valued Measurement (POVM). Note M_{μ} includes the known value of $|\psi_{M}\rangle$.

Projective meas. of $\boldsymbol{O}_{M} = \boldsymbol{I}_{S} \otimes \left(\sum_{\mu} \lambda_{\mu} |\xi_{\mu}\rangle \langle \xi_{\mu} | \right) = \sum_{\mu} \lambda_{\mu} \tilde{\boldsymbol{P}}_{\mu}$ on quantum state $\boldsymbol{U}_{S,M}(|\psi_{S}\rangle \otimes |\psi_{M}\rangle)$ in $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$, summarized on \mathcal{H}_{S} :

1 The probability of obtaining the value
$$\lambda_{\mu}$$
 is given by
 $\mathbb{P}_{\mu} = \langle \psi_{S} | \mathbf{M}_{\mu}^{\dagger} \mathbf{M}_{\mu} | \psi_{S} \rangle$

2 After the measurement, the conditional (a posteriori) state of the system on \mathcal{H}_S , given the outcome μ , is

$$|\psi_{\mathcal{S},+}\rangle = \frac{\mathbf{M}_{\mu}|\psi_{\mathcal{S}}\rangle}{\sqrt{\mathbb{P}_{\mu}}}.$$

Stochastic processes attached to quantum measurement

To the POVM (M_{μ}) on \mathcal{H}_{S} is attached a stochastic process of quantum state $|\psi\rangle$

$$|\psi_+
angle = rac{\pmb{M}_\mu |\psi
angle}{\sqrt{\mathbb{P}_\mu}}$$
 with probability $\mathbb{P}_\mu = \langle \psi | \pmb{M}_\mu^\dagger \pmb{M}_\mu |\psi
angle$

Knowing the state |ψ⟩, the conditional expectation value for any observable A on H_S after applying the POVM is

$$\mathbb{E}\left(\langle\psi_{+}|\boldsymbol{A}|\psi_{+}\rangle\mid|\psi\rangle\right)=\langle\psi|(\sum_{\mu}\boldsymbol{M}_{\mu}^{\dagger}\boldsymbol{A}\boldsymbol{M}_{\mu})|\psi\rangle=\mathsf{Tr}\left(\boldsymbol{A}\,\mathbb{K}(|\psi\rangle\langle\psi|)\right)$$

with Kraus map $\mathbb{K}(\rho) = \sum_{\mu} \mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger}$ with $\rho = |\psi\rangle \langle \psi|$ density operator corresponding to $|\psi\rangle$.

Imperfection and errors described by left stochastic matrix (η_{y,μ}), ∑_y η_{y,ν} ≡ 1, where η_{y,μ} is the probability of detector outcome y knowing that the ideal detection should be μ. Then Bayes law yields

$$\mathbb{E}\left(\langle\psi_{+}|\boldsymbol{A}|\psi_{+}\rangle\mid|\psi\rangle,\,\boldsymbol{y}\right)=\frac{\mathsf{Tr}\left(\boldsymbol{A}\mathbb{K}_{\boldsymbol{y}}(\rho)\right)}{\mathsf{Tr}\left(\mathbb{K}_{\boldsymbol{y}}(\rho)\right)}$$

with completely positive linear maps $\mathbb{K}_{y}(\rho) = \sum_{\mu} \eta_{y,\mu} \mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger}$ depending on *y*. Probability to detect *y* knowing ρ is $\operatorname{Tr}(\mathbb{K}_{y}(\rho))$.

Stochastic Master Equation (SME) and quantum filtering

Discrete-time open quantum models are Markov processes $\rho_{k+1} = \frac{\mathbb{K}_{y_k}(\rho_k)}{\operatorname{Tr}(\mathbb{K}_{y_k}(\rho_k))}$, with proba. $\mathbb{P}_{y_k}(\rho_k) = \operatorname{Tr}(\mathbb{K}_{y_k}(\rho_k))$. Each \mathbb{K}_y is a linear completely positive map depending on meas. outcomes, $\mathbb{K}_y(\rho) = \sum_{\mu} \mathbf{K}_{y,\mu} \rho \mathbf{K}_{y,\mu}^{\dagger}$, with $\sum_{y,\mu} \mathbf{K}_{y,\mu}^{\dagger} \mathbf{K}_{y,\mu} = \mathbf{I}$.

When discarding meas. outcomes, state update follows Kraus map (quantum channel, completely positive trace-preserving map (CPTP), ensemble average)

$$\rho_{k+1} = \mathbb{K}(\rho_k) = \sum_{\mathbf{y}} \mathbb{K}_{\mathbf{y}}(\rho_k) = \sum_{\mathbf{y},\mu} \mathbf{K}_{\mathbf{y},\mu} \rho_k \mathbf{K}_{\mathbf{y},\mu}^{\dagger}.$$

Quantum filtering (Belavkin quantum filters)

data: initial quantum state ρ_0 , past measurement outcomes y_{ℓ} for $\ell \in \{0, ..., k-1\}$;

goal: estimation of ρ_k via the recurrence (quantum filter)

$$\rho_{\ell+1} = \frac{\mathbb{K}_{\boldsymbol{y}_{\ell}}(\rho_{\ell})}{\mathsf{Tr}\left(\mathbb{K}_{\boldsymbol{y}_{\ell}}(\rho_{\ell})\right)}, \quad \ell = 0, \dots, k-1.$$

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic processes attached to quantum measurement
- Quantum Filtering
- 2 QND measurements and open-loop convergence
 - Martingales and convergence of Markov chains
 - Martingale behavior for QND measurement of photons

(日) (日) (日) (日) (日) (日) (日)

3 Feedback stabilization of photon number states

LKB photon box : open-loop dynamics, dispersive interaction

Markov process: $|\psi_k\rangle \equiv |\psi\rangle_{t=k\Delta t}$, $k \in \mathbb{N}$, Δt sampling period,

$$|\psi_{k+1}\rangle = \begin{cases} \frac{M_g|\psi_k\rangle}{\sqrt{\langle\psi_k|M_g^{\dagger}M_g|\psi_k\rangle}} & \text{with } y_k = g, \text{ probability } \mathbb{P}_g = \langle\psi_k|M_g^{\dagger}M_g|\psi_k\rangle; \\ \frac{M_e|\psi_k\rangle}{\sqrt{\langle\psi_k|M_e^{\dagger}M_e|\psi_k\rangle}} & \text{with } y_k = e, \text{ probability } \mathbb{P}_e = \langle\psi_k|M_e^{\dagger}M_e|\psi_k\rangle, \end{cases}$$

with

$$M_g = \cos(\varphi_0 + N\vartheta), \quad M_e = \sin(\varphi_0 + N\vartheta).$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Markov process: density operator $\rho_k = |\psi_k\rangle \langle \psi_k|$ as state.

$$\rho_{k+1} = \begin{cases} \frac{M_g \rho_k M_g^{\dagger}}{\operatorname{Tr}(M_g \rho_k M_g^{\dagger})} & \text{with } y_k = g, \text{ probability } \mathbb{P}_g = \operatorname{Tr}\left(M_g \rho_k M_g^{\dagger}\right); \\ \frac{M_e \rho_k M_e^{\dagger}}{\operatorname{Tr}(M_e \rho_k M_e^{\dagger})} & \text{with } y_k = e, \text{ probability } \mathbb{P}_e = \operatorname{Tr}\left(M_e \rho_k M_e^{\dagger}\right), \end{cases}$$

with

$$M_g = \cos(\varphi_0 + N\vartheta), \quad M_e = \sin(\varphi_0 + N\vartheta).$$

Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators $M_{g,e}$ commute with the photon-number observable N: photon-number states $|n\rangle\langle n|$ are fixed points of the measurement process. We say that the measurement is QND for the observable N.

Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of Tr $(\rho_k |3\rangle\langle 3|)$ versus k

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

Convergence of a random process

Consider (X_k) a sequence of random variables defined on the probability space ($\Omega, \mathcal{F}, \mathbb{P}$) and taking values in a metric space \mathcal{X} . The random process X_k is said to,

1 converge in probability towards the random variable X if for all $\epsilon > 0$,

$$\lim_{k\to\infty}\mathbb{P}\left(|X_k-X|>\epsilon\right)=\lim_{k\to\infty}\mathbb{P}\left(\omega\in\Omega\mid |X_k(\omega)-X(\omega)|>\epsilon\right)=\mathsf{0};$$

2 converge almost surely towards the random variable X if

$$\mathbb{P}\left(\lim_{k o\infty}X_k=X
ight)=\mathbb{P}\left(\omega\in\Omega\mid\lim_{k o\infty}X_k(\omega)=X(\omega)
ight)=1;$$

3 converge in mean towards the random variable X if $\lim_{k\to\infty} \mathbb{E}(|X_k - X|) = 0.$

⁶see e.g. C.W. Gardiner: Handbook of stochastic methods ...[3rd ed], Springer, 2004

Markov process

The sequence $(X_k)_{k=1}^{\infty}$ is called a Markov process, if for all k and ℓ satisfying $k > \ell$ and any measurable function f(x) with $\sup_x |f(x)| < \infty$,

$$\mathbb{E}\left(f(X_k)\mid X_1,\ldots,X_\ell\right)=\mathbb{E}\left(f(X_k)\mid X_\ell\right).$$

Martingales

The sequence $(X_k)_{k=1}^{\infty}$ is called respectively a *supermartingale*, a *submartingale* or a martingale, if $\mathbb{E}(|X_k|) < \infty$ for $k = 1, 2, \cdots$, and

 $\mathbb{E}\left(X_k \mid X_1, \dots, X_\ell\right) \leq X_\ell$ (\mathbb{P} almost surely), $k \geq \ell$

or respectively

 $\mathbb{E}(X_k \mid X_1, \dots, X_\ell) \ge X_\ell$ (\mathbb{P} almost surely), $k \ge \ell$,

or finally,

 $\mathbb{E}\left(X_k \mid X_1, \dots, X_\ell\right) = X_\ell \qquad (\mathbb{P} \text{ almost surely}), \qquad k \geq \ell.$

(日) (日) (日) (日) (日) (日) (日)

Stochastic version of Lasalle invariance principle for Lyapunov function of deterministic dynamics.

H.J. Kushner invariance Theorem

Let {*X_k*} be a Markov chain on the compact state space *S*. Suppose that there exists a non-negative function *V*(*x*) satisfying $\mathbb{E}(V(X_{k+1}) | X_k = x) - V(x) = -\sigma(x)$, where $\sigma(x) \ge 0$ is a positive continuous function of *x*. Then the ω -limit set (in the sense of almost sure convergence) of *X_k* is included in the following set

$$I = \{X \mid \sigma(X) = 0\}.$$

(日) (日) (日) (日) (日) (日) (日)

Trivially, the same result holds true for V(x) bounded from above and $\mathbb{E}(V(X_{k+1}) | X_k = x) - V(x) = \sigma(x)$ with $\sigma(x) \ge 0$.

Theorem

Consider
$$M_g = \cos(\varphi_0 + N\vartheta)$$
 and $M_e = \sin(\varphi_0 + N\vartheta)$

$$\rho_{k+1} = \begin{cases} \frac{M_g \rho_k M_g^{\dagger}}{\text{Tr}(M_g \rho_k M_g^{\dagger})} & \text{with } y_k = g, \text{ probability } \mathbb{P}_g = \text{Tr}\left(M_g \rho_k M_g^{\dagger}\right);\\ \frac{M_e \rho_k M_e^{\dagger}}{\text{Tr}(M_e \rho_k M_e^{\dagger})} & \text{with } y_k = e, \text{ probability } \mathbb{P}_e = \text{Tr}\left(M_e \rho_k M_e^{\dagger}\right), \end{cases}$$

with an initial density matrix ρ_0 defined on the subspace span{ $|n\rangle \mid n = 0, 1, \cdots, n^{\max}$ }. Also, assume the non-degeneracy $\cos^2(\varphi_m) \neq \cos^2(\varphi_n) \ \forall n \neq m \in \{0, 1, \cdots, n^{\max}\}$, where $\varphi_n = \varphi_0 + n\vartheta$. Then

- for any $n \in \{0, ..., n^{\max}\}$, $\text{Tr}(\rho_k | n \rangle \langle n |) = \langle n | \rho_k | n \rangle$ is a martingale
- ρ_k converges with proba. 1 to one of the $n^{\max} + 1$ Fock states $|n\rangle\langle n|$ with $n \in \{0, \dots, n^{\max}\}$.
- the probability to converge towards the Fock state $|n\rangle\langle n|$ is given by Tr $(\rho_0|n\rangle\langle n|) = \langle n|\rho_0|n\rangle$.

Proof based on QND super-martingales

- For any function f, $V_f(\rho) = \text{Tr}(f(\mathbf{N})\rho)$ is a martingale: $\mathbb{E}(V_f(\rho_{k+1}) | \rho_k) = V_f(\rho_k)$ (basic computation).
- $V(\rho) = \sum_{n \neq m} \sqrt{\langle n | \rho | n \rangle \langle m | \rho | m \rangle} \ge 0$ is a strict super-martingale:

$$\mathbb{E}\left(V(\rho_{k+1}) \mid \rho_k\right)$$

= $\sum_{n \neq m} \left(|\cos \phi_n \cos \phi_m| + |\sin \phi_n \sin \phi_m|\right) \sqrt{\langle n|\rho|n\rangle \langle m|\rho|m\rangle}$

 $\leq rV(\rho_k)$

with
$$r = \max_{n \neq m} \left(|\cos \phi_n \cos \phi_m| + |\sin \phi_n \sin \phi_m| \right) < 1.$$

• $V(\rho) = 0$ implies that there exists *n* such that $\rho = |n\rangle \langle n|$.

Interpretation: For large *k*, $V(\rho_k)$ is very close to 0, thus ρ_k very close to $|n\rangle\langle n|$ for an a priori random *n*. Information extracted by measurement makes state "less uncertain" *a posteriori* but not more predictable *a priori*.

Theorem

Consider $\rho_{k+1} = M_g \rho_k M_g^{\dagger} + M_e \rho_k M_e^{\dagger}$ with the same definitions and assumptions as in the previous theorem. Then ρ_k converges exponentially towards $\rho = \text{diag}(\rho_0)$.

Proof: Deterministic system, one easily checks that

$$\langle n|\rho_{k+1}|n\rangle = \langle n|\rho_k|n\rangle$$

•
$$\langle n|\rho_{k+1}|m\rangle = (|\cos \phi_n \cos \phi_m| + |\sin \phi_n \sin \phi_m|) \langle n|\rho_k|m\rangle \le r \langle n|\rho_k|m\rangle$$
 with
 $r = \max_{n \neq m} (|\cos \phi_n \cos \phi_m| + |\sin \phi_n \sin \phi_m|) < 1.$

Interpretation: Diagonal ρ is equivalent to a classical probability distribution over the values of *n*. This distribution is not modified in absence of measurement results.

However, the QND measurement process for N, even without recording the output, perturbs future measurements of other observables (off-diagonal terms in the N eigenbasis).

Exercice

Consider the Markov chain $\rho_{k+1} = \mathbb{K}_{y_k}(\rho_k) / \mathbb{P}_{y,k}$ where $y_k = g$ (resp. $y_k = e$) with probability $\mathbb{P}_{g,k} = \text{Tr} \left(\boldsymbol{M}_g \rho_k \boldsymbol{M}_g^{\dagger} \right)$ (resp. $p_{e,k} = \text{Tr} \left(\boldsymbol{M}_e \rho_k \boldsymbol{M}_e^{\dagger} \right)$). The Kraus operators are now given by (resonant interaction)

$$\begin{split} \boldsymbol{M}_{g} &= \cos\left(\frac{\theta_{1}}{2}\right)\cos\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right) - \sin\left(\frac{\theta_{1}}{2}\right)\left(\frac{\sin\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right)\boldsymbol{a}^{\dagger}\\ \boldsymbol{M}_{e} &= -\sin\left(\frac{\theta_{1}}{2}\right)\cos\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}+1}\right) - \cos\left(\frac{\theta_{1}}{2}\right)\boldsymbol{a}\left(\frac{\sin\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right) \end{split}$$

with $\theta_1 = 0$. Assume the initial state to be defined on the subspace $\{|n\rangle\}_{n=0}^{n^{max}}$ and that the cavity state at step *k* is described by the density operator ρ_k .

1 Show that

$$\mathbb{E}\left(\mathsf{Tr}\left(\boldsymbol{N}\boldsymbol{\rho}_{k+1}\right) \mid \boldsymbol{\rho}_{k}\right) = \mathsf{Tr}\left(\boldsymbol{N}\boldsymbol{\rho}_{k}\right) - \mathsf{Tr}\left(\sin^{2}\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right)\boldsymbol{\rho}_{k}\right).$$

- 2 Assume that for any integer n, $\Theta \sqrt{n}/\pi$ is irrational. Then prove that almost surely ρ_k tends to the vacuum state $|0\rangle\langle 0|$ whatever its initial condition.
- 3 When $\Theta \sqrt{n}/\pi$ is rational for some integer *n*, describe the possible ω -limit sets for ρ_k .

Outline

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic processes attached to quantum measurement
- Quantum Filtering

2 QND measurements and open-loop convergence

- Martingales and convergence of Markov chains
- Martingale behavior for QND measurement of photons

(日) (日) (日) (日) (日) (日) (日)

3 Feedback stabilization of photon number states

Quantum feedback

Question: how to stabilize deterministically a given photon-number state $|\bar{n}\rangle\langle\bar{n}|$?

Controlled Markov chain:

$$\rho_{k+\frac{1}{2}} = \mathbb{M}_{y_k}(\rho_k), \qquad \rho_{k+1} = \mathbb{D}_{u_k}(\rho_{k+\frac{1}{2}}),$$

where $\mathbb{M}_{y}(\rho) = \mathbf{M}_{y}\rho\mathbf{M}_{y}^{\dagger}/\operatorname{Tr}\left(\mathbf{M}_{y}\rho\mathbf{M}_{y}^{\dagger}\right)$ and $\mathbb{D}_{u}(\rho) = \mathbf{D}_{u}\rho\mathbf{D}_{u}^{\dagger}$ with $\mathbf{D}_{u} = e^{u\mathbf{a}^{\dagger} - u^{*}\mathbf{a}}$, the displacement unitary operator of complex amplitude u.

Control Lyapunov function

Idea: $\overline{V}(\rho) = V(\rho) + \sum_{n \ge 0} f(n) \operatorname{Tr} (\rho | n \rangle \langle n |),$

Bounded quantum-state stabilizing feedback: take

$$u_{k} := \underset{|u| \leq u_{\max}}{\operatorname{argmin}} \left\{ \mathbb{E}\left(\overline{V}(\rho_{k+1}) | \rho_{k}, u_{k} = u \right) \right\}$$
$$= \underset{|u| \leq u_{\max}}{\operatorname{argmin}} \left\{ \operatorname{Tr}\left(M_{g} \rho_{k} M_{g} \right) \overline{V} \left(\mathbb{D}_{u} \left(\mathbb{M}_{g}(\rho_{k}) \right) \right) + \operatorname{Tr}\left(M_{e} \rho_{k} M_{e} \right) \overline{V} \left(\mathbb{D}_{u} \left(\mathbb{M}_{e}(\rho_{k}) \right) \right) \right\}.$$

Quantum-state feedback (stabilization around 3-photon state)

Experiment: C. Sayrin et. al., Nature 477, 73-77, 2011. Theory: I. Dotsenko et al. Physical Review A, 80: 013805-013813, 2009. H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

