
Quantum Systems: Dynamics and Control1

Mazyar Mirrahimi2, Pierre Rouchon3, Alain Sarlette4

February 25, 2020

1See the web page:
http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html

2INRIA Paris, QUANTIC research team
3Mines ParisTech, QUANTIC research team
4INRIA Paris, QUANTIC research team



Outline

1 Photon Box: a key example of indirect measurement

2 State evolution under measurement imperfections

3 Decoherence seen as unread measurements



Models of open quantum systems are based on three features5

1 Schrödinger: wave funct. |ψ〉 ∈ H or density op. ρ ∼ |ψ〉〈ψ|

d
dt
|ψ〉 = − i

~H|ψ〉, d
dt

ρ = − i
~ [H,ρ], H = H0 + uH1

2 Entanglement and tensor product for composite systems (S,M):

Hilbert space H = HS ⊗HM
Hamiltonian H = HS ⊗ IM + H int + IS ⊗ HM
observable on sub-system M only: O = IS ⊗OM .

3 Randomness and irreversibility induced by the measurement of
observable O with spectral decomp.

∑
µ λµPµ:

measurement outcome µ with proba.
Pµ = 〈ψ|Pµ|ψ〉 = Tr (ρPµ) depending on |ψ〉, ρ just before
the measurement
measurement back-action if outcome µ = y :

|ψ〉 7→ |ψ〉+ =
Py |ψ〉√
〈ψ|Py |ψ〉

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

5S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.
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Composite system built with a harmonic oscillator and a qubit.

System S corresponds to a quantized harmonic oscillator:

HS = Hc =

{ ∞∑
n=0

cn|n〉
∣∣∣∣ (cn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n
photons inside the cavity
Meter M is a qubit, a 2-level system: HM = Ha = C2, each
atom admits two energy levels and is described by a wave
function cg |g〉+ ce|e〉 with |cg |2 + |ce|2 = 1;
State of the full system |Ψ〉 ∈ HS ⊗HM = Hc ⊗Ha:

|Ψ〉 =
+∞∑
n=0

cng |n〉 ⊗ |g〉+ cne|n〉 ⊗ |e〉, cne, cng ∈ C.

Orthonormal basis: (|n〉 ⊗ |g〉, |n〉 ⊗ |e〉)n∈N.



Markov model (1)

C

B

D

R 1
R 2

B R 2

When atom exits B, |Ψ〉B of the full system is separable
|Ψ〉B = |ψ〉 ⊗ |g〉.

Just before the measurement in D, the state is in general
entangled (not separable):

|Ψ〉R2 = USM
(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me|ψ〉

)
⊗ |e〉

where USM is a unitary transformation (Schrödinger propagator)
defining the linear measurement operators Mg and Me on HS.
Since USM is unitary, M†gMg + M†eMe = I .



Markov model (2)

Just before D, the field/atom state is entangled:

Mg |ψ〉 ⊗ |g〉+ Me|ψ〉 ⊗ |e〉

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability Pµ =

〈
ψ|M†µMµ|ψ

〉
we get µ. Just after the measurement

outcome µ = y , the state becomes separable:

|Ψ〉D = 1√
Py

(My |ψ〉)⊗ |y〉 =

(
My√

〈ψ|M†
y My |ψ〉

|ψ〉

)
⊗ |y〉.

Markov process: |ψk 〉 ≡ |ψ〉t=k∆t , k ∈ N, ∆t sampling period,

|ψk+1〉 =


Mg |ψk 〉√
〈ψk |M†

g Mg |ψk〉
with yk = g, probability Pg =

〈
ψk |M†gMg |ψk

〉
;

Me|ψk 〉√
〈ψk |M†

e Me|ψk〉
with yk = e, probability Pe =

〈
ψk |M†eMe|ψk

〉
.



Dispersive case

UR1 = 1√
2

(I + |g〉〈e| − |e〉〈g|)

UR2 = 1√
2

(
I + eiη|g〉〈e| − e−iη|e〉〈g|

)
UC = |g〉〈g|e−iφ(N) + |e〉〈e|eiφ(N+I)

where φ(N) = ϑ0 + ϑN .
With η = 2(ϕ0 − ϑ0)− ϑ− π, the measurement operators Mg
and Me are the following bounded operators:

Mg = cos(ϕ0 + Nϑ), Me = sin(ϕ0 + Nϑ)

up to irrelevant global phases.
Exercise: Show that M†gMg + M†eMe = I .



Resonant case: USM = UR2UCUR1

UR1 = e−i θ1
2 σy = cos

(
θ1
2

)
+ sin

(
θ1
2

) (
|g〉〈e| − |e〉〈g|

)
and UR2 = I

and

UC = |g〉〈g| cos
(

Θ
2

√
N
)

+ |e〉〈e| cos
(

Θ
2

√
N + I

)
+ |g〉〈e|

 sin

(
Θ
2
√

N
)

√
N

a† − |e〉〈g|a

 sin

(
Θ
2
√

N
)

√
N


The measurement operators Mg and Me are the following bounded
operators:

Mg = cos
(
θ1
2

)
cos
(

Θ
2

√
N
)
− sin

(
θ1
2

) sin

(
Θ
2
√

N
)

√
N

a†

Me = − sin
(
θ1
2

)
cos
(

Θ
2

√
N + 1

)
− cos

(
θ1
2

)
a

 sin

(
Θ
2
√

N
)

√
N


Exercise: Show that M†gMg + M†eMe = I .
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Updating ρ with detection inefficiency (1)

Thus starting with ρ = |ψ〉〈ψ|, we have:

ρ+,µ = |ψ+,µ〉〈ψ+,µ| =
1

Tr
(

MµρM†µ
)MµρM†µ

when the atom collapses in µ ∈ {g,e} with proba. Tr
(

MµρM†µ
)

.

Two consecutive measurements with results µ1 then µ2:

ρ+,µ1µ2
=

Mµ2

(
Mµ1ρM†

µ1

Tr(Mµ1ρM†
µ1 )

)
M†µ2

Tr

(
Mµ2

(
Mµ1ρM†

µ1

Tr(Mµ1ρM†
µ1 )

)
M†µ2

) =
Mµ2Mµ1ρM†µ1

M†µ2

Tr
(

Mµ2Mµ1ρM†µ1
M†µ2

)
with proba.
P(µ1,µ2|ρ) = P(µ1|ρ) P(µ2|µ1,ρ) = Tr

(
Mµ2Mµ1ρM†µ1

M†µ2

)
What can we say for µ2 when µ1 is unknown?



Updating ρ with detection inefficiency (2)

Distribution of the second measurement output:

P(µ2|ρ) =
∑
µ1

Tr
(

Mµ2Mµ1ρM†µ1
M†µ2

)
= Tr

(
Mµ2ρ1M†µ2

)
with the linear Kraus map

ρ1 =
∑
µ1

Mµ1ρM†µ1
= MgρM†g + MeρM†e = K(ρ) =

∑
µ1

ρ+,µ1
Pµ1|ρ

Iterating this argument, the distribution of further measurement
outputs, knowing µ2 but not µ1, is given by just replacing

ρ+,µ1µ2
=

Mµ2ρ+,µ1
M†µ2

Tr
(

Mµ2ρ+,µ1
M†µ2

) by ρ+,µ2
=

Mµ2K(ρ)M†µ2

Tr
(

Mµ2K(ρ)M†µ2

) .
i.e. in fact just replacing ρ+,µ1

by ρ1 = K(ρ).

“True” value of µ1 is inaccessible through any future measurement.



Updating ρ with detection errors (1)

Two consecutive measurements with results µ1 then µ2:

ρ+,µ1µ2
=

Mµ2

(
Mµ1ρM†

µ1

Tr(Mµ1ρM†
µ1 )

)
M†µ2

Tr

(
Mµ2

(
Mµ1ρM†

µ1

Tr(Mµ1ρM†
µ1 )

)
M†µ2

) =
Mµ2Mµ1ρM†µ1

M†µ2

Tr
(

Mµ2Mµ1ρM†µ1
M†µ2

)
with proba.
P(µ1,µ2|ρ) = P(µ1|ρ) P(µ2|µ1,ρ) = Tr

(
Mµ2Mµ1ρM†µ1

M†µ2

)
Detection errors on first measurement:
P(y1 = e/µ1 = g) = ηe,g ∈ [0,1] the probability of erroneous
assignation to e when the atom collapses in g, and similarly
ηy1,µ1 for other values of y1 and µ1 (given by the contrast of the
Ramsey fringes).

What can we say for µ2 when y1 is known but µ1 is unknown?



Updating ρ with detection inefficiency (2)

Distribution of the second measurement output:6

P(µ2|ρ,y1) =
∑
µ1

P(µ1,µ2|ρ,y1) =
∑
µ1

P(y1|µ1,µ2,ρ)P(µ1,µ2|ρ)

Py1|ρ

=

∑
µ1

ηy1,µ1 Tr
(

Mµ2 Mµ1ρM†
µ1

M†
µ2

)
Py1|ρ

= Tr
(

Mµ2 ρ+,y1M
†
µ2

)
where Py1|ρ = Tr

(∑
µ1
ηy1,µ1Mµ1ρM†µ1

)
and we define

ρ+,y1
=
∑
µ1

ηy1,µ1 Mµ1ρM†
µ1

Py1|ρ
.

Repeating such arguments, the distribution of all future
measurement outputs is obtained by just

replacing ρ+,µ1
by ρ+,y1

6Use the Bayes law P(A|B,C) = P(B|A,C)P(A|C) /P(B|C) with
A = (µ1, µ2), B = y1 and C = ρ. In the next line, use the Markov model
P(y1|µ1,µ2,ρ) = Py1|µ1 = ηy1,µ1 .



Updating ρ with detection inefficiency (3)

The “true” value of µ1 is again inaccessible through any future
measurement.

Reformulation with linear quantum maps : set

Kg(ρ) = ηg,gMgρM†g+ηg,eMeρM†e, Ke(ρ) = ηe,gMgρM†g+ηe,eMeρM†e.

Then ρ+,y =
Ky (ρ)

Tr (Ky (ρ))
when we detect y ∈ e,g .

The probability to detect y knowing ρ is Py|ρ = Tr (Ky (ρ)).

When we neglect the measurement result, we logically get back

ρ+ =
∑

y

ρ+,y Py|ρ = Kg(ρ) + Ke(ρ) = K(ρ) = MgρM†g + MeρM†e.



LKB photon box with imperfections: Conclusion

ρ plays the role of a probability measure for all future measurement
outcomes, given all past observations and initial measure ρ0.

The pure state ρ = |ψ〉〈ψ| of rank(ρ) =1 is a special case,
implying the minimal possible uncertainty on measurements of a
quantum system.
In general, ρ becomes a mixed state (rank(ρ) >1), through
classical uncertainties.

the update ρ+ = K(ρ) when µ1 is lost, represents the law of total
probabilities

the update ρ+,y with detection errors represents the Bayes law
on probability measures

This underlies the general models for open quantum systems.
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Decoherence: the environment is like an unread meter (1)

Limit of Markovian environment: over sampling period ∆T → 0, the photon
box interacts with some external system (ancilla) which was initialized in a
possibly imprecise state; the ancilla state is never read, and reset / replaced
after the interaction.

Example: resonant interaction with weakly excited spin.

Before interaction: the spin ancilla has been reset to

cos θ1
2 |g〉± sin θ1

2 |e〉

with ± unknown (unread meas. on ancilla before interaction).

Resonant interaction with Θ� 1:

Mg,± = cos θ1
2 cos

(
Θ
2

√
N
)
∓ sin θ1

2

(
sin

(
Θ
2
√

N
)

√
N

)
a†

≈ cos θ1
2

(
1− Θ2

8 N
)
∓ Θ

2 sin θ1
2 a†

Me,± = ∓ sin θ1
2 cos

(
Θ
2

√
N + 1

)
− cos θ1

2 a

(
sin

(
Θ
2
√

N
)

√
N

)
≈ ∓ sin θ1

2

(
1− Θ2

8 (N + 1)
)
− Θ

2 cos θ1
2 a



Decoherence: the environment is like an unread meter (2)

Cavity update without ever measuring the environment ancilla:

ρ+ = 1
2 (Mg,+ρM†g,+ + Me,+ρM†e,+) + 1

2 (Mg,−ρM†g,− + Me,−ρM†e,−)

≈ M−1ρM†−1 + M+1ρM†+1 + M0ρM†0 + O(Θ3)

one photon annihilation during ∆T with probability ≈ Tr
(

M−1ρM†−1

)
and corresponding state update (backaction),

M−1 = Θ
2 cos θ1

2 a

one photon creation during ∆T with probability ≈ Tr
(

M+1ρM†+1

)
and

backaction,
M+1 = Θ

2 sin θ1
2 a†

zero photon annihilation during ∆T with probability ≈ Tr
(

M0ρM†0
)

and
backaction,

M0 = I − 1
2 (M†−1M−1 + M†+1M+1)



A standard decoherence channel: cavity decay

This result is a general model for cavity decoherence, exact in the
limit ∆T → 0:

ρ+ ≈ M−1ρM†−1 + M+1ρM†+1 + M0ρM†0

with M−1 =
√

∆T (1+nth)
Tcav

a ,

M+1 =
√

∆T nth
Tcav

a† ,

M0 = I − 1
2 (M†−1M−1 + M†+1M+1)

nth the average photons in the cavity in steady state (thermal
photons, vanishes with the environment temperature);

Tcav the expected lifetime of a single photon when nth = 0;

∆T � Tcav sampling period e.g. between consecutive atoms

(nth ≈ 0.05, Tcav = 100 ms and ∆T ≈ 100 µs for the LKB photon Box)



Experimental results 7

Valeur moyenne du nombre de photons le
long d’une longue séquence de mesure:

observation d’une trajectoire stochastique
Une trajectoire correspondant au résultat initial n=5

Sauts quantiques vers le vide dus à
l’amortissement du champ

Des mesures répétées
confirment n=5

Projection de
l’état cohérent

sur n=5

n
N

om
br

e 
m

oy
en

 d
e 

ph
ot

on
s

A partir de la probabilité Pi(n)
inférée après chaque atome, on

déduit le nombre moyen de photons:

Première observation des
trajectoires stochastiques du

champ, en très bon accord avec les
prédictions théoriques (simulations

de Monte- Carlo. Voir cours
précédents).

n = nP
i
(n)

n

! (6 "10)

See the quantum Monte Carlo simulations of the Matlab script:
RealisticModelPhotonBox.m.

7From Serge Haroche, Collège de France, notes de cours 2007/2008.
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