Quantum Systems: Dynamics and Control¹

Mazyar Mirrahimi², Pierre Rouchon³, Alain Sarlette⁴

February 18, 2020

¹See the web page:

http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html

²INRIA Paris, QUANTIC research team ³Mines ParisTech, QUANTIC research team ⁴INRIA Paris, QUANTIC research team

1 Pulse shaping with adiabatic control

2 Pulse shaping with optimal control

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1 Pulse shaping with adiabatic control

2 Pulse shaping with optimal control

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Time-adiabatic approximation without gap conditions⁵

Take m + 1 Hermitian matrices $n \times n$: H_0, \ldots, H_m . For $u \in \mathbb{R}^m$ set $H(u) := H_0 + \sum_{k=1}^m u_k H_k$. Assume that u is a slowly varying time-function: u = u(s) with $s = \epsilon t \in [0, 1]$ and ϵ a small positive parameter. Consider a solution $[0, \frac{1}{\epsilon}] \ni t \mapsto |\psi\rangle_t^{\epsilon}$ of

$$i \frac{d}{dt} |\psi\rangle_t^{\epsilon} = \boldsymbol{H}(u(\epsilon t)) |\psi\rangle_t^{\epsilon}.$$

Take $[0, 1] \ni s \mapsto P(s)$ a family of orthogonal projectors such that for each $s \in [0, 1]$, H(u(s))P(s) = E(s)P(s) where E(s) is an eigenvalue of H(u(s)). Assume that $[0, 1] \ni s \mapsto H(u(s))$ is C^2 , $[0, 1] \ni s \mapsto P(s)$ is C^2 and that, for almost all $s \in [0, 1]$, P(s) is the orthogonal projector on the eigenspace associated to the eigenvalue E(s). Then

$$\lim_{\epsilon \mapsto 0^+} \left(\sup_{t \in [0, \frac{1}{\epsilon}]} \left| \| \boldsymbol{P}(\epsilon t) | \psi \rangle_t^{\epsilon} \|^2 - \| \boldsymbol{P}(0) | \psi \rangle_0^{\epsilon} \|^2 \right| \right) = 0$$

⁵Theorem 6.2, page 175 of *Adiabatic Perturbation Theory in Quantum Dynamics*, by S. Teufel, Lecture notes in Mathematics, Springer, 2003.

Chirped control of a 2-level system (1)

$$i\frac{d}{dt}|\psi\rangle = \left(\frac{\omega_{eg}}{2}\sigma_{z} + \frac{u}{2}\sigma_{x}\right)|\psi\rangle \text{ with quasi-resonant control } (|\omega_{r} - \omega_{eg}| \ll \omega_{eg})$$

$$|e\rangle \qquad u(t) = v \left(e^{i(\omega_{r}t+\theta)} + e^{-i(\omega_{r}t+\theta)}\right)$$
where $v, \theta \in \mathbb{R}, |v|$ and $|\frac{d\theta}{dt}|$ are small and slowly varying:
$$|g\rangle \quad |v|, |\frac{d\theta}{dt}| \ll \omega_{eg}, |\frac{dv}{dt}| \ll \omega_{eg}|v|, |\frac{d^{2}\theta}{dt^{2}}| \ll \omega_{eg} |\frac{d\theta}{dt}|.$$

Passage to the interaction frame $|\psi\rangle = e^{-i\frac{\omega_{t}t+\theta}{2}\sigma_{z}}|\phi\rangle$:

$$i\frac{d}{dt}|\phi\rangle = \left(\frac{\omega_{\rm eg}-\omega_r - \frac{d}{dt}\theta}{2}\boldsymbol{\sigma_z} + \frac{ve^{2i(\omega_r t + \theta)} + v}{2}\boldsymbol{\sigma_+} + \frac{ve^{-2i(\omega_r t - \theta)} + v}{2}\boldsymbol{\sigma_-}\right)|\phi\rangle.$$

Set $\Delta_r = \omega_{eg} - \omega_r$ and $w = -\frac{d}{dt}\theta$, RWA yields following averaged Hamiltonian

$$\frac{\boldsymbol{H}_{\mathsf{chirp}}}{\hbar} = \frac{\Delta_r + w}{2} \boldsymbol{\sigma_z} + \frac{v}{2} \boldsymbol{\sigma_x}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where (v, w) are two real control inputs.

Chirped control of a 2-level system (2)

In $\frac{H_{\text{chirp}}}{\hbar} = \frac{\Delta_r + w}{2} \sigma_z + \frac{v}{2} \sigma_x$ set, for $s = \epsilon t$ varying in $[0, \pi]$, $w = a\cos(\epsilon t)$ and $v = b\sin^2(\epsilon t)$. Spectral decomposition of H_{chirp} for $s \in]0, \pi[$:

$$\Omega_{-} = -\frac{\sqrt{(\Delta_r + w)^2 + v^2}}{2} \text{ with } |-\rangle = \frac{\cos \alpha |g\rangle - (1 - \sin \alpha) |e\rangle}{\sqrt{2(1 - \sin \alpha)}}$$
$$\Omega_{+} = \frac{\sqrt{(\Delta_r + w)^2 + v^2}}{2} \text{ with } |+\rangle = \frac{(1 - \sin \alpha) |g\rangle + \cos \alpha |e\rangle}{\sqrt{2(1 - \sin \alpha)}}$$

where $\alpha \in]\frac{-\pi}{2}, \frac{\pi}{2}[$ is defined by $\tan \alpha = \frac{\Delta_r + w}{v}$. With $a > |\Delta_r|$ and b > 0

$$\begin{split} &\lim_{s\mapsto 0^+}\alpha = \frac{\pi}{2} \quad \text{implies} \quad \lim_{s\mapsto 0^+} |-\rangle_s = |g\rangle, \quad \lim_{s\mapsto 0^+} |+\rangle_s = |e\rangle \\ &\lim_{s\mapsto \pi^-}\alpha = -\frac{\pi}{2} \quad \text{implies} \quad \lim_{s\mapsto \pi^-} |-\rangle_s = -|e\rangle, \quad \lim_{s\mapsto \pi^-} |+\rangle_s = |g\rangle. \end{split}$$

Adiabatic approximation: the solution of $i\hbar \frac{d}{dt} |\phi\rangle = \mathbf{H}_{chirp}(\epsilon t) |\phi\rangle$ starting from $|\phi\rangle_0 = |g\rangle$ reads

 $|\phi\rangle_t = e^{i\vartheta_t}|-\rangle_{s=\epsilon t}, \quad t \in [0, \frac{\pi}{\epsilon}], \text{ with } \vartheta_t \text{ time-varying global phase.}$

At $t = \frac{\pi}{\epsilon}$, $|\psi\rangle$ coincides with $|e\rangle$ up to a global phase: robustness versus Δ_r , *a* and *b* (ensemble controllability).

Stimulated Raman Adiabatic Passage (STIRAP) (1)

$$\begin{split} \frac{\pmb{H}}{\hbar} &= \omega_g |g\rangle \langle g| + \omega_e |e\rangle \langle e| + \omega_f |f\rangle \langle f| \\ &+ u\mu_{gf} \big(|g\rangle \langle f| + |f\rangle \langle g| \big) \\ &+ u\mu_{ef} \big(|e\rangle \langle f| + |f\rangle \langle e| \big). \end{split}$$

plitudes u_{af} and u_{ef} .

Put $i\frac{d}{dt}|\psi\rangle = H|\psi\rangle$ in the interaction frame:

$$|\psi\rangle = e^{-it(\omega_g|g\rangle\langle g|+\omega_e|e\rangle\langle e|+\omega_f|f\rangle\langle f|)}|\phi\rangle$$

Rotation Wave Approximation yields $i\hbar \frac{d}{dt} |\phi\rangle = H_{\text{rwa}} |\phi\rangle$ with

$$\frac{\boldsymbol{H}_{\mathsf{rwa}}}{\hbar} = \frac{\Omega_{gf}}{2} (|\boldsymbol{g}\rangle\langle f| + |\boldsymbol{f}\rangle\langle \boldsymbol{g}|) + \frac{\Omega_{ef}}{2} (|\boldsymbol{e}\rangle\langle f| + |\boldsymbol{f}\rangle\langle \boldsymbol{e}|)$$

with slowly varying Rabi pulsations $\Omega_{af} = \mu_{af} u_{af}$ and $\Omega_{ef} = \mu_{ef} U_{ef}.$ ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Stimulated Raman Adiabatic Passage (STIRAP) (2)

$$\begin{split} \text{Spectral decomposition: as soon as } \Omega_{gf}^2 + \Omega_{ef}^2 &> 0, \\ \frac{\Omega_{gf}(|g\rangle\langle f| + |f\rangle\langle g|)}{2} + \frac{\Omega_{ef}(|e\rangle\langle f| + |f\rangle\langle e|)}{2} \text{ admits 3 distinct eigenvalues,} \\ \Omega_- &= -\frac{\sqrt{\Omega_{gf}^2 + \Omega_{ef}^2}}{2}, \quad \Omega_0 = 0, \quad \Omega_+ = \frac{\sqrt{\Omega_{gf}^2 + \Omega_{ef}^2}}{2}. \end{split}$$

They correspond to the following 3 eigenvectors,

$$\begin{split} |-\rangle &= \frac{\Omega_{gt}}{\sqrt{2(\Omega_{gt}^2 + \Omega_{et}^2)}} |g\rangle + \frac{\Omega_{ef}}{\sqrt{2(\Omega_{gt}^2 + \Omega_{et}^2)}} |e\rangle - \frac{1}{\sqrt{2}} |f\rangle \\ |0\rangle &= \frac{-\Omega_{et}}{\sqrt{\Omega_{gt}^2 + \Omega_{et}^2}} |g\rangle + \frac{\Omega_{gt}}{\sqrt{\Omega_{gt}^2 + \Omega_{et}^2}} |e\rangle \\ |+\rangle &= \frac{\Omega_{gt}}{\sqrt{2(\Omega_{gt}^2 + \Omega_{et}^2)}} |g\rangle + \frac{\Omega_{et}}{\sqrt{2(\Omega_{gt}^2 + \Omega_{et}^2)}} |e\rangle + \frac{1}{\sqrt{2}} |f\rangle. \end{split}$$

For $\epsilon t = s \in [0, \frac{3\pi}{2}]$ and $\bar{\Omega}_g, \bar{\Omega}_e > 0$, the adiabatic control

 $\Omega_{gf}(s) = \left\{ \begin{array}{ll} 0, & \text{for } s \in [0, \frac{\pi}{2}]; \\ \bar{\Omega}_g \cos^2 s, & \text{for } s \in [\frac{\pi}{2}, \frac{3\pi}{2}]; \end{array} \right., \quad \Omega_{ef}(s) = \left\{ \begin{array}{ll} \bar{\Omega}_e \sin^2 s, & \text{for } s \in [0, \pi]; \\ 0, & \text{for } s \in [\pi, \frac{3\pi}{2}]. \end{array} \right.$

provides the passage from $|g\rangle$ at t = 0 to $|e\rangle$ at $\epsilon t = \frac{3\pi}{2}$.

Exercice

Design an adiabatic passage $s \mapsto (\Omega_{gf}(s), \Omega_{ef}(s))$ from $|g\rangle$ to $\frac{-|g\rangle+|e\rangle}{\sqrt{2}}$, up to a global phase.

• Consider the following classical combinatorial problem. For a large integer n > 0 and a collection $(\lambda_{i,j})_{1 < i,j < n}$ of real numbers, find the argument \bar{x} of the minimum for

$$\{-1,+1\}^n \ni x \mapsto \Lambda(x) = \sum_{1 \le i,j \le n} \lambda_{i,j} x_i x_j.$$

• Assume that we have a *n*-qubit (wave function $|\psi\rangle$ in $(\mathbb{C}^2)^{\otimes n} \equiv \mathbb{C}^{2^n}$) with a scalar control *u* and with Hamiltonian

$$\boldsymbol{H}(\boldsymbol{u}) = \sum_{1 \leq i,j \leq n} \lambda_{i,j} \boldsymbol{\sigma}_{\boldsymbol{z}}^{(i)} \boldsymbol{\sigma}_{\boldsymbol{z}}^{(j)} + \boldsymbol{u} \sum_{1 \leq i \leq n} \boldsymbol{\sigma}_{\boldsymbol{x}}^{(i)}.$$

• Consider a smooth decreasing function f on [0, 1] with $f(0) \gg \max_{1 \le i,j \le n} |\lambda_{i,j}|$ and f(1) = 0. Assume that, for any $u \in [0, f(0)]$, the smallest eigenvalue of H_u is not degenerate.

• By the adiabatic theorem, for $\epsilon > 0$ small enough, the solution of

 $i \frac{d}{dt} |\psi\rangle = \boldsymbol{H}(f(\epsilon t)) |\psi\rangle$ starting from $|\psi\rangle_0 = \left(\frac{|g\rangle - |e\rangle}{\sqrt{2}}\right)^{\otimes n}$ is close at time $t = 1/\epsilon$ to the separable state $|q_1\rangle \otimes |q_2\rangle \otimes \ldots \otimes |q_n\rangle$ where $|q_i\rangle = |g\rangle$ (resp $|e\rangle$) when $\bar{x}_i = -1$ (resp. $\bar{x}_i = +1$).

• The measure of σ_z for each qubit gives then the solution \bar{x} of such a combinatorial problem.

1 Pulse shaping with adiabatic control

2 Pulse shaping with optimal control

Goal: transfer the population from $|\psi_i\rangle$ to $|\psi_f\rangle$ for

$$i\frac{d}{dt}|\psi\rangle = \left(\boldsymbol{H}_0 + \sum_{k=1}^m u_k(t)\boldsymbol{H}_1\right)|\psi\rangle.$$

Derived from the unitary operator $\boldsymbol{U}_{u}(t)$, generated by the above Schrödinger equation, we set the functional

$$u([0,T]) \mapsto F(u) = \left| \langle \psi_{\mathsf{end}} | \boldsymbol{U}_{u}(T) | \psi_{\mathsf{ini}} \rangle \right|^{2}.$$

We wish to reach the maximum of this functional.

Gradient ascent pulse engineering (GRAPE)

We discretize the problem

$$|\psi_{j,\mathrm{end}}\rangle = \pmb{U}_{j+1}^{\dagger}\cdots \pmb{U}_{N}^{\dagger}|\psi_{\mathrm{end}}\rangle, \qquad |\psi_{j,\mathrm{ini}}\rangle = \pmb{U}_{j}\cdots \pmb{U}_{1}|\psi_{\mathrm{ini}}\rangle$$

We have (up to second terms in Δt):

 $\frac{\partial F}{\partial u_k(j)} \approx -i\Delta t \Big(\langle \psi_{j,\text{end}} | \boldsymbol{H}_k | \psi_{j,\text{ini}} \rangle \langle \psi_{j,\text{ini}} | \psi_{j,\text{end}} \rangle - \langle \psi_{j,\text{ini}} | \boldsymbol{H}_k | \psi_{j,\text{end}} \rangle \langle \psi_{j,\text{end}} | \psi_{j,\text{ini}} \rangle \Big).$

GRAPE algorithm

- Start with an initial control guess u_k(j) (important because of local maxima).
- 2 Calculate for all j, $|\psi_{j,\text{ini}}\rangle = U_j \cdots U_1 |\psi_{\text{ini}}\rangle$.
- 3 Calculate for all j, $|\psi_{j,\text{end}}\rangle = \boldsymbol{U}_{j+1}^{\dagger} \cdots \boldsymbol{U}_{N}^{\dagger} |\psi_{\text{end}}\rangle$.
- 4 Evaluate ∂F/∂u_k(j) and update the m × N control amplitudes u_k(j) according to

$$u_k(j) \rightarrow u_k(j) + \epsilon \frac{\partial F}{\partial u_k(j)}$$

with $\epsilon > 0$ and small enough.

5 Go to step 2.

Algorithm terminates if the change in functional is smaller than a threshold.

Limited control amplitudes: we add a penalty functional parameterized by $\alpha_k > 0$ with k = 1, ..., m. Functional *F* is replaced by $F + F_{pen}$ with

$$F_{\text{pen}} = -\frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{m} \alpha_k u_k^2(j) \Delta t, \quad \text{with } \frac{\partial F_{\text{pen}}}{\partial u_k(j)} = -\alpha_k u_k(j) \Delta t.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Another approach: two optimal control problems

For given *T*, $|\psi_{ini}\rangle$ and $|\psi_{end}\rangle$, find the open-loop control $[0, T] \ni t \mapsto u(t)$ such that

$$\min_{\substack{u_k \in L^2([0, T], \mathbb{R}) \\ i\frac{d}{dt} |\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k) |\psi\rangle \\ |\psi\rangle_{t=0} = |\psi_{\text{ini}}\rangle, |\langle\psi_{\text{end}}|\psi\rangle|_{t=T}^2 = 1 } \frac{\frac{1}{2} \int_0^T \left(\sum_{k=1}^m u_k^2\right) dt}{|\psi|_{t=1}^2} dt$$

Since the initial and final constraints are difficult to satisfy simultaneously from a numerical point of view, consider the second problem where the final constraint is penalized with $\alpha > 0$:

$$\min_{\substack{u_k \in L^2([0,T],\mathbb{R}) \\ |\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k) |\psi\rangle \\ |\psi\rangle_{t=0} = |\psi_{\text{ini}}\rangle} \frac{\frac{1}{2} \int_0^T \left(\sum_{k=1}^m u_k^2 \right) + \frac{\alpha}{2} \left(1 - |\langle \psi_{\text{end}} |\psi\rangle|_T^2\right)$$

First order stationary conditions

For two-points problem, the first order stationary conditions read:

$$\begin{cases} i\frac{d}{dt}|\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|\psi\rangle, \ t \in (0, T) \\ i\frac{d}{dt}|p\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|p\rangle, \ t \in (0, T) \\ u_k = -\Im\left(\langle p|H_k|\psi\rangle\right), k = 1, \dots, m, \ t \in (0, T) \\ |\psi\rangle_{t=0} = |\psi_{\text{ini}}\rangle, \ |\langle\psi_{\text{end}}|\psi\rangle|_{t=T}^2 = 1 \end{cases}$$

For the relaxed problem, the first order stationary conditions read:

$$\begin{cases} i\frac{d}{dt}|\psi\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|\psi\rangle, \ t \in (0,T) \\ i\frac{d}{dt}|p\rangle = (H_0 + \sum_{k=1}^m u_k H_k)|p\rangle, \ t \in (0,T) \\ u_k = -\Im\left(\langle p|H_k|\psi\rangle\right), k = 1, \dots, m, \ t \in (0,T) \\ |\psi\rangle_{t=0} = |\psi_{\text{ini}}\rangle, \ |p\rangle_{t=T} = -\alpha \langle \psi_{\text{end}}|\psi\rangle_{t=T} \ |\psi_{\text{end}}\rangle. \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Take an L^2 control $[0, T] \ni t \mapsto u(t)$ (dim(u) = 1 here) and denote by

• $|\psi_u\rangle$ the solution of forward system $i\frac{d}{dt}|\psi\rangle = (H_0 + uH_1)|\psi\rangle$ starting from $|\psi_{ini}\rangle$.

• $|p_u\rangle$ the adjoint associated to u, i.e. the solution of the backward system $i\frac{d}{dt}|p_u\rangle = (H_0 + uH_1)|p_u\rangle$ with $|p_u\rangle_T = -\alpha P|\psi_u\rangle_T$, P projector on $|\psi_{end}\rangle$, $P|\phi\rangle \equiv \langle \psi_{end}|\phi\rangle |\psi_{end}\rangle$.

$$J(u) = \frac{1}{2} \int_0^T u^2 + \frac{\alpha}{2} (1 - |\langle \psi_{\text{end}} | \psi_u \rangle|_T^2).$$

Starting from an initial guess $u^0 \in L^2([0, T], \mathbb{R})$, the monotone scheme generates a sequence of controls $u^{\nu} \in L^2([0, T], \mathbb{R})$, $\nu = 1, 2, \ldots$, such that the cost $J(u^{\nu})$ is decreasing, $J(u^{\nu+1}) \leq J(u^{\nu})$.

⁶D. Tannor, V. Kazakov, and V. Orlov. *Time Dependent Quantum Molecular Dynamics*, chapter Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds, pages 347–360. Plenum, 1992.

Assume that, at step ν , we have computed the control u^{ν} , the associated quantum state $|\psi^{\nu}\rangle = |\psi_{u^{\nu}}\rangle$ and its adjoint $|p^{\nu}\rangle = |p_{u^{\nu}}\rangle$. We get their new time values $u^{\nu+1}$, $|\psi^{\nu+1}\rangle$ and $|p^{\nu+1}\rangle$ in two steps:

1 Imposing $u^{\nu+1} = -\Im \left(\langle p^{\nu} | H_1 | \psi^{\nu+1} \rangle \right)$ is just a feedback; one get $u^{\nu+1}$ just by a forward integration of the nonlinear Schrödinger equation,

$$i\frac{d}{dt}|\psi\rangle = (H_0 - \Im\left(\langle p^{\nu} | H_1 | \psi\rangle\right) H_1) |\psi\rangle, \quad |\psi\rangle_0 = |\psi_{\text{ini}}\rangle,$$

that provides $[0, T] \ni t \mapsto |\psi^{\nu+1}\rangle$ and the new control $u^{\nu+1}$. **2** Backward integration from t = T to t = 0 of

$$irac{d}{dt}|p
angle = \left(H_0 + u^{
u+1}(t)H_1
ight)|p
angle, \quad |p
angle_T = -lpha \left\langle\psi_{ ext{end}}|\psi^{
u+1}
ight
angle_T|\psi_{ ext{end}}
angle$$

yields to the new adjoint trajectory $[0, T] \ni t \mapsto |p^{\nu+1}\rangle$.

Why $J(u^{\nu+1}) \le J(u^{\nu})$?

Because we have the identity for any open-loop controls uand v ($P = |\psi_{end}\rangle\langle\psi_{end}|$)

$$\begin{aligned} J(u) - J(v) &= -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | P | \psi_u - \psi_v \rangle \right)_T \\ &+ \frac{1}{2} \left(\int_0^T (u - v) \left(u + v + 2\Im \left(\langle p_v | H_1 | \psi_u \rangle \right) \right) \right). \end{aligned}$$

If $u = -\Im(\langle p_v | H_1 | \psi_u \rangle)$ for all $t \in [0, T)$, we have

$$J(u)-J(v) = -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | \boldsymbol{P} | \psi_u - \psi_v \rangle \right)_T - \frac{1}{2} \left(\int_0^T (u-v)^2 \right)$$

and thus
$$J(u) \leq J(v)$$
.
Take $v = u^{\nu}$, $u = u^{\nu+1}$: then $|p_v\rangle = |p^{\nu}\rangle$, $|\psi_v\rangle = |\psi^{\nu}\rangle$, $|p_u\rangle = |p^{\nu+1}\rangle$ and $|\psi_u\rangle = |\psi^{\nu+1}\rangle$.

Monotone numerical scheme for the relaxed problem (4)

Proof of

$$J(u) - J(v) = -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | P | \psi_u - \psi_v \rangle \right)_T + \frac{1}{2} \left(\int_0^T (u - v) \left(u + v + 2\Im \left(\langle p_v | H_1 | \psi_u \rangle \right) \right) \right).$$

Start with

$$J(u)-J(v) = -\frac{\alpha \left(\langle \psi_u - \psi_v | P | \psi_u - \psi_v \rangle_T + \langle \psi_u - \psi_v | P | \psi_v \rangle_T + \langle \psi_v | P | \psi_u - \psi_v \rangle_T\right)}{2} + \int_0^T \frac{(u-v)(u+v)}{2}.$$

 $\text{Hermitian product of } i \frac{d}{dt} (|\psi_u\rangle - |\psi_v\rangle) = (H_0 + vH_1) (|\psi_u\rangle - |\psi_v\rangle) + (u - v)H_1 |\psi_u\rangle \text{ with } |\rho_v\rangle:$

$$\left\langle \rho_{\mathbf{v}} \left| \frac{d(\psi_{U} - \psi_{\mathbf{v}})}{dt} \right\rangle = \left\langle \rho_{\mathbf{v}} \left| \frac{H_{0} + \mathbf{v}H_{1}}{i} \right| \psi_{U} - \psi_{\mathbf{v}} \right\rangle + \left\langle \rho_{\mathbf{v}} \left| \frac{(u - v)H_{1}}{i} \right| \psi_{U} \right\rangle.$$

Integration by parts (use $|\psi_{\nu}\rangle_{0} = |\psi_{u}\rangle_{0}$, $|\rho_{\nu}\rangle_{T} = -\alpha P |\psi_{\nu}\rangle_{T}$ and $\frac{d}{dt}\langle \rho_{\nu}| = -\langle \rho_{\nu}|\left(\frac{H_{0}+\nu H_{1}}{l}\right)$):

$$\begin{split} \int_{0}^{T} \left\langle \rho_{\mathbf{v}} \left| \frac{d(\psi_{u} - \psi_{\mathbf{v}})}{dt} \right\rangle &= \left\langle \rho_{\mathbf{v}} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle_{T} - \left\langle \rho_{\mathbf{v}} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle_{0} - \int_{0}^{T} \left\langle \frac{d\rho_{\mathbf{v}}}{dt} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle \\ &= -\alpha \left\langle \psi_{\mathbf{v}} \right| P |\psi_{u} - \psi_{\mathbf{v}} \rangle_{T} + \int_{0}^{T} \left\langle \rho_{\mathbf{v}} \left| \frac{H_{0} + \nu H_{1}}{i} \right| \psi_{u} - \psi_{\mathbf{v}} \right\rangle \right\rangle \end{split}$$

Thus
$$-\alpha \langle \psi_{\mathbf{v}} | P | \psi_{u} - \psi_{\mathbf{v}} \rangle_{T} = \int_{0}^{T} \left\langle p_{\mathbf{v}} \left| \frac{(u-v)H_{1}}{l} \right| \psi_{u} \right\rangle$$
 and
 $\alpha \Re \left(\langle \psi_{\mathbf{v}} | P | \psi_{u} - \psi_{\mathbf{v}} \rangle_{T} \right) = -\int_{0}^{T} \Im \left(\langle p_{\mathbf{v}} | (u-v)H_{1} | \psi_{u} \rangle \right)$. Finally we have

$$J(u) - J(v) = -\frac{\alpha}{2} \left(\langle \psi_u - \psi_v | P | \psi_u - \psi_v \rangle \right)_T + \frac{1}{2} \left(\int_0^T (u - v) \left(u + v + 2\Im \left(\langle p_v | H_1 | \psi_u \rangle \right) \right) \right).$$