Quantum Systems: Dynamics and Control ${ }^{1}$

Mazyar Mirrahimi ${ }^{2}$, Pierre Rouchon ${ }^{3}$, Alain Sarlette ${ }^{4}$

February 18, 2020

[^0]
Outline

1 Pulse shaping with adiabatic control

2 Pulse shaping with optimal control

Outline

1 Pulse shaping with adiabatic control

2 Pulse shaping with optimal control

Time-adiabatic approximation without gap conditions ${ }^{5}$

Take $m+1$ Hermitian matrices $n \times n: \boldsymbol{H}_{0}, \ldots, \boldsymbol{H}_{m}$. For $u \in \mathbb{R}^{m}$ set $\boldsymbol{H}(u):=\boldsymbol{H}_{0}+\sum_{k=1}^{m} u_{k} \boldsymbol{H}_{k}$. Assume that u is a slowly varying time-function: $u=u(s)$ with $s=\epsilon t \in[0,1]$ and ϵ a small positive parameter. Consider a solution $\left[0, \frac{1}{\epsilon}\right] \ni t \mapsto|\psi\rangle_{t}^{\epsilon}$ of

$$
i \frac{d}{d t}|\psi\rangle_{t}^{\epsilon}=\boldsymbol{H}(u(\epsilon t))|\psi\rangle_{t}^{\epsilon}
$$

Take $[0,1] \ni s \mapsto \boldsymbol{P}(s)$ a family of orthogonal projectors such that for each $s \in[0,1], \boldsymbol{H}(u(s)) \boldsymbol{P}(s)=E(s) \boldsymbol{P}(s)$ where $E(s)$ is an eigenvalue of $\boldsymbol{H}(u(s))$. Assume that $[0,1] \ni s \mapsto \boldsymbol{H}(u(s))$ is $C^{2},[0,1] \ni s \mapsto \boldsymbol{P}(s)$ is C^{2} and that, for almost all $s \in[0,1]$, $\boldsymbol{P}(s)$ is the orthogonal projector on the eigenspace associated to the eigenvalue $E(s)$. Then

$$
\left.\left.\lim _{\epsilon \mapsto 0^{+}}\left(\sup _{t \in\left[0, \frac{1}{\epsilon}\right]}|\| \boldsymbol{P}(\epsilon t)| \psi\right\rangle_{t}^{\epsilon}\left\|^{2}-\right\| \boldsymbol{P}(0)|\psi\rangle_{0}^{\epsilon} \|^{2} \right\rvert\,\right)=0
$$

${ }^{5}$ Theorem 6.2, page 175 of Adiabatic Perturbation Theory in Quantum Dynamics, by S. Teufel, Lecture notes in Mathematics, Springer, 2003.

Chirped control of a 2-level system (1)

$$
\begin{aligned}
& i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}^{2}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{u}{2} \sigma_{\boldsymbol{x}}\right)|\psi\rangle \text { with quasi- } \\
& \text { resonant } \operatorname{control}\left(\left|\omega_{r}-\omega_{\mathrm{eg}}\right| \ll \omega_{\mathrm{eg}}\right) \\
& \quad u(t)=v\left(e^{i\left(\omega_{r} t+\theta\right)}+e^{-i\left(\omega_{r} t+\theta\right)}\right) \\
& \text { where } v, \theta \in \mathbb{R},|v| \text { and }\left|\frac{d \theta}{d t}\right| \text { are small and } \\
& \text { slowly varying: } \\
& |v|,\left|\frac{d \theta}{d t}\right| \ll \omega_{\mathrm{eg}},\left|\frac{d v}{d t}\right| \ll \omega_{\mathrm{eg}}|v|,\left|\frac{d^{2} \theta}{d t^{2}}\right| \ll \omega_{\mathrm{eg}}\left|\frac{d \theta}{d t}\right| .
\end{aligned}
$$

Passage to the interaction frame $|\psi\rangle=e^{-i \frac{\omega_{r} t+\theta}{2} \sigma_{z}}|\phi\rangle$:

$$
i \frac{d}{d t}|\phi\rangle=\left(\frac{\omega_{\mathrm{eg}}-\omega_{r}-\frac{d}{d t} \theta}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{v e^{2 i\left(\omega_{r} t+\theta\right)}+v}{2} \boldsymbol{\sigma}_{+}+\frac{v e^{-2 i\left(\omega_{r} t-\theta\right)}+v}{2} \boldsymbol{\sigma}_{-}\right)|\phi\rangle
$$

Set $\Delta_{r}=\omega_{\mathrm{eg}}-\omega_{r}$ and $w=-\frac{d}{d t} \theta$, RWA yields following averaged Hamiltonian

$$
\frac{\boldsymbol{H}_{\text {chirp }}}{\hbar}=\frac{\Delta_{r}+w}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{v}{2} \sigma_{\boldsymbol{X}}
$$

where (v, w) are two real control inputs.

Chirped control of a 2-level system (2)

$\ln \frac{H_{\text {chirp }}}{\hbar}=\frac{\Delta_{r}+w}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{v}{2} \sigma_{\boldsymbol{x}}$ set, for $s=\epsilon t$ varying in $[0, \pi], w=\operatorname{acos}(\epsilon t)$ and $v=b \sin ^{2}(\epsilon t)$. Spectral decomposition of $\boldsymbol{H}_{\text {chirp }}$ for $\left.s \in\right] 0, \pi[$:

$$
\begin{array}{r}
\Omega_{-}=-\frac{\sqrt{\left(\Delta_{r}+w\right)^{2}+v^{2}}}{2} \text { with }|-\rangle=\frac{\cos \alpha|g\rangle-(1-\sin \alpha)|e\rangle}{\sqrt{2(1-\sin \alpha)}} \\
\Omega_{+}=\frac{\sqrt{\left(\Delta_{r}+w\right)^{2}+v^{2}}}{2} \text { with }|+\rangle=\frac{(1-\sin \alpha)|g\rangle+\cos \alpha|e\rangle}{\sqrt{2(1-\sin \alpha)}}
\end{array}
$$

where $\alpha \in] \frac{-\pi}{2}, \frac{\pi}{2}\left[\right.$ is defined by $\tan \alpha=\frac{\Delta_{r}+w}{v}$. With $a>\left|\Delta_{r}\right|$ and $b>0$

$$
\begin{aligned}
& \lim _{s \rightarrow 0^{+}} \alpha=\frac{\pi}{2} \quad \text { implies } \quad \lim _{s \mapsto 0^{+}}|-\rangle_{s}=|g\rangle, \quad \lim _{s \mapsto 0^{+}}|+\rangle_{s}=|e\rangle \\
& \lim _{s \mapsto \pi^{-}} \alpha=-\frac{\pi}{2} \quad \text { implies } \lim _{s \mapsto \pi^{-}}|-\rangle_{s}=-|e\rangle, \quad \lim _{s \mapsto \pi^{-}}|+\rangle_{s}=|g\rangle .
\end{aligned}
$$

Adiabatic approximation: the solution of $i \hbar \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {chirp }}(\epsilon t)|\phi\rangle$ starting from $|\phi\rangle_{0}=|g\rangle$ reads

$$
|\phi\rangle_{t}=e^{i \vartheta_{t}}|-\rangle_{s=\epsilon t}, \quad t \in\left[0, \frac{\pi}{\epsilon}\right], \text { with } \vartheta_{t} \text { time-varying global phase. }
$$

At $t=\frac{\pi}{\epsilon},|\psi\rangle$ coincides with $|e\rangle$ up to a global phase: robustness versus Δ_{r}, a and b (ensemble controllability).

Stimulated Raman Adiabatic Passage (STIRAP) (1)

Put $i \frac{d}{d t}|\psi\rangle=H|\psi\rangle$ in the interaction frame:

$$
|\psi\rangle=e^{-i t\left(\omega_{g}|g\rangle\langle g|+\omega_{e}|e\rangle\langle e|+\omega_{f}|f\rangle\langle f|\right)}|\phi\rangle .
$$

Rotation Wave Approximation yields $i \hbar \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {rwa }}|\phi\rangle$ with

$$
\frac{\boldsymbol{H}_{\mathrm{rwa}}}{\hbar}=\frac{\Omega_{g f}}{2}(|g\rangle\langle f|+|f\rangle\langle g|)+\frac{\Omega_{e f}}{2}(|e\rangle\langle f|+|f\rangle\langle e|)
$$

with slowly varying Rabi pulsations $\Omega_{g f}=\mu_{g f} u_{g f}$ and
$\Omega_{e f}=\mu_{e f} u_{e f}$.

Stimulated Raman Adiabatic Passage (STIRAP) (2)

Spectral decomposition: as soon as $\Omega_{g f}^{2}+\Omega_{e f}^{2}>0$,
$\frac{\Omega_{g f}(|g\rangle\langle f|+|f\rangle\langle g|)}{2}+\frac{\Omega_{e f}(|e\rangle\langle f|+|f\rangle\langle e|)}{2}$ admits 3 distinct eigenvalues,

$$
\Omega_{-}=-\frac{\sqrt{\Omega_{g t}^{2}+\Omega_{e f}^{2}}}{2}, \quad \Omega_{0}=0, \quad \Omega_{+}=\frac{\sqrt{\Omega_{g t}^{2}+\Omega_{e f}^{2}}}{2} .
$$

They correspond to the following 3 eigenvectors,

For $\epsilon t=s \in\left[0, \frac{3 \pi}{2}\right]$ and $\bar{\Omega}_{g}, \bar{\Omega}_{e}>0$, the adiabatic control
$\Omega_{g f}(s)=\left\{\begin{array}{ll}0, & \text { for } s \in\left[0, \frac{\pi}{2}\right] ; \\ \bar{\Omega}_{g} \cos ^{2} s, & \text { for } s \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right] ;\end{array}, \quad \Omega_{e f}(s)= \begin{cases}\bar{\Omega}_{e} \sin ^{2} s, & \text { for } s \in[0, \pi] ; \\ 0, & \text { for } s \in\left[\pi, \frac{3 \pi}{2}\right] .\end{cases}\right.$
provides the passage from $|g\rangle$ at $t=0$ to $|e\rangle$ at $\epsilon t=\frac{3 \pi}{2}$.

Exercice

Design an adiabatic passage $s \mapsto\left(\Omega_{g f}(s), \Omega_{e f}(s)\right)$ from $|g\rangle$ to $\frac{-|g\rangle+|e\rangle}{\sqrt{2}}$, up to a global phase.

Take, e.g., $s=\epsilon t \in[0, \pi]$ and $\bar{\Omega}>0$, and set
$\Omega_{g f}(s)=\frac{\bar{\Omega}}{2} \sin s-\frac{\bar{\Omega}}{4} \sin 2 s$
$\Omega_{e f}(s)=\bar{\Omega} \sin s$

Results from $|0\rangle=\frac{-\Omega_{e f}}{\sqrt{\Omega_{g f}^{2}+\Omega_{e f}^{2}}}|g\rangle+\frac{\Omega_{g f}}{\sqrt{\Omega_{g f}^{2}+\Omega_{e f}^{2}}}|e\rangle$

Principle of quantum annealing

- Consider the following classical combinatorial problem. For a large integer $n>0$ and a collection $\left(\lambda_{i, j}\right)_{1 \leq i, j \leq n}$ of real numbers, find the argument \bar{x} of the minimum for

$$
\{-1,+1\}^{n} \ni x \mapsto \Lambda(x)=\sum_{1 \leq i, j \leq n} \lambda_{i, j} x_{i} x_{j} .
$$

- Assume that we have a n-qubit (wave function $|\psi\rangle$ in $\left(\mathbb{C}^{2}\right)^{\otimes n} \equiv \mathbb{C}^{2^{n}}$) with a scalar control u and with Hamiltonian

$$
\boldsymbol{H}(u)=\sum_{1 \leq i, j \leq n} \lambda_{i, j} \sigma_{\boldsymbol{z}}^{(i)} \sigma_{\boldsymbol{z}}^{(j)}+u \sum_{1 \leq i \leq n} \sigma_{\boldsymbol{x}}^{(i)}
$$

- Consider a smooth decreasing function f on $[0,1]$ with $f(0) \gg \max _{1 \leq i, j \leq n}\left|\lambda_{i, j}\right|$ and $f(1)=0$. Assume that, for any $u \in[0, f(0)]$, the smallest eigenvalue of \boldsymbol{H}_{u}^{-}is not degenerate.
- By the adiabatic theorem, for $\epsilon>0$ small enough, the solution of $\imath \frac{d}{d t}|\psi\rangle=\boldsymbol{H}(f(\epsilon t))|\psi\rangle$ starting from $|\psi\rangle_{0}=\left(\frac{|g\rangle-|e\rangle}{\sqrt{2}}\right)^{\otimes n}$ is close at time $t=1 / \epsilon$ to the separable state $\left|q_{1}\right\rangle \otimes\left|q_{2}\right\rangle \otimes \ldots \otimes\left|q_{n}\right\rangle$ where $\left|q_{i}\right\rangle=|g\rangle($ resp $|e\rangle)$ when $\bar{x}_{i}=-1$ (resp. $\bar{x}_{i}=+1$).
- The measure of $\sigma_{\boldsymbol{z}}$ for each qubit gives then the solution \bar{x} of such a combinatorial problem.

Outline

1 Pulse shaping with adiabatic control

2 Pulse shaping with optimal control

Gradient ascent pulse engineering (GRAPE)

Goal: transfer the population from $\left|\psi_{i}\right\rangle$ to $\left|\psi_{f}\right\rangle$ for

$$
i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{0}+\sum_{k=1}^{m} u_{k}(t) \boldsymbol{H}_{1}\right)|\psi\rangle .
$$

Derived from the unitary operator $\boldsymbol{U}_{u}(t)$, generated by the above Schrödinger equation, we set the functional

$$
\left.u([0, T]) \mapsto F(u)=\left|\left\langle\psi_{\text {end }}\right| \boldsymbol{U}_{u}(T)\right| \psi_{\text {ini }}\right\rangle\left.\right|^{2}
$$

We wish to reach the maximum of this functional.

Gradient ascent pulse engineering (GRAPE)

We discretize the problem

$\left.F(u)=\left|\left\langle\psi_{\text {end }}\right| \boldsymbol{U}_{N} \boldsymbol{U}_{N-1} \cdots \boldsymbol{U}_{1}\right| \psi_{\text {ini }}\right\rangle\left.\right|^{2}, \quad U_{j}=\exp \left(-i \Delta t\left(\boldsymbol{H}_{0}+\sum_{k=1}^{m} u_{k}(j) \boldsymbol{H}_{k}\right)\right)$
Defining

$$
\left|\psi_{j, \text { end }}\right\rangle=\boldsymbol{U}_{j+1}^{\dagger} \cdots \boldsymbol{U}_{N}^{\dagger}\left|\psi_{\text {end }}\right\rangle, \quad\left|\psi_{j, \text { ini }}\right\rangle=\boldsymbol{U}_{j} \cdots \boldsymbol{U}_{1}\left|\psi_{\text {ini }}\right\rangle
$$

We have (up to second terms in Δt):
$\frac{\partial F}{\partial u_{k}(j)} \approx-i \Delta t\left(\left\langle\psi_{j, \text { end }}\right| \boldsymbol{H}_{k}\left|\psi_{j, \text { ini }}\right\rangle\left\langle\psi_{j, \text { ini }} \mid \psi_{j, \text { end }}\right\rangle-\left\langle\psi_{j, \text { ini }}\right| \boldsymbol{H}_{k}\left|\psi_{j, \text { end }}\right\rangle\left\langle\psi_{j, \text { end }} \mid \psi_{j, \text { nii }}\right\rangle\right)$.

GRAPE algorithm

1 Start with an initial control guess $u_{k}(j)$ (important because of local maxima).
2 Calculate for all $j,\left|\psi_{j, \text { ini }}\right\rangle=\boldsymbol{U}_{j} \cdots \boldsymbol{U}_{1}\left|\psi_{\text {ini }}\right\rangle$.
3 Calculate for all $j,\left|\psi_{j \text {, end }}\right\rangle=\boldsymbol{U}_{j+1}^{\dagger} \cdots \boldsymbol{U}_{N}^{\dagger}\left|\psi_{\text {end }}\right\rangle$.
4 Evaluate $\frac{\partial F}{\partial u_{k}(j)}$ and update the $m \times N$ control amplitudes $u_{k}(j)$ according to

$$
u_{k}(j) \rightarrow u_{k}(j)+\epsilon \frac{\partial F}{\partial u_{k}(j)} .
$$

with $\epsilon>0$ and small enough.
5 Go to step 2.
Algorithm terminates if the change in functional is smaller than a threshold.
Limited control amplitudes: we add a penalty functional parameterized by $\alpha_{k}>0$ with $k=1, \ldots, m$. Functional F is replaced by $F+F_{\text {pen }}$ with

$$
F_{\mathrm{pen}}=-\frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{m} \alpha_{k} u_{k}^{2}(j) \Delta t, \quad \text { with } \frac{\partial F_{\mathrm{pen}}}{\partial u_{k}(j)}=-\alpha_{k} u_{k}(j) \Delta t .
$$

Another approach: two optimal control problems

For given $T,\left|\psi_{\text {ini }}\right\rangle$ and $\left|\psi_{\text {end }}\right\rangle$, find the open-loop control $[0, T] \ni t \mapsto u(t)$ such that

$$
\begin{aligned}
& \min _{\substack{u_{k} \in L^{2}([0, T], \mathbb{R}) \\
i \frac{d}{d t}|\psi\rangle=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right)|\psi\rangle \\
|\psi\rangle_{t=0}=\left|\psi_{\text {ini }}\right\rangle,\left|\left\langle\psi_{\text {end }} \mid \psi\right\rangle\right|_{t=T}^{2}=1}} \frac{1}{2} \int_{0}^{T}\left(\sum_{k=1}^{m} u_{k}^{2}\right) \\
&
\end{aligned}
$$

Since the initial and final constraints are difficult to satisfy simultaneously from a numerical point of view, consider the second problem where the final constraint is penalized with $\alpha>0$:

$$
\begin{aligned}
& \min _{\substack{ \\
u_{k} \in L^{2}([0, T], \mathbb{R}) \\
i \frac{d}{d t}|\psi\rangle=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right)|\psi\rangle \\
|\psi\rangle_{t=0}=\left|\psi_{\text {ini }}\right\rangle}}^{\frac{1}{2} \int_{0}^{T}\left(\sum_{k=1}^{m} u_{k}^{2}\right)+\frac{\alpha}{2}\left(1-\left|\left\langle\psi_{\text {end }} \mid \psi\right\rangle\right|_{T}^{2}\right)} \\
& i=1
\end{aligned}
$$

For two-points problem, the first order stationary conditions read:

$$
\left\{\begin{array}{c}
i \frac{d}{d t}|\psi\rangle=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right)|\psi\rangle, t \in(0, T) \\
i \frac{d}{d t}|p\rangle=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right)|p\rangle, t \in(0, T) \\
u_{k}=-\Im\left(\langle p| H_{k}|\psi\rangle\right), k=1, \ldots, m, \quad t \in(0, T) \\
|\psi\rangle_{t=0}=\left|\psi_{\text {ini }}\right\rangle,\left|\left\langle\psi_{\text {end }} \mid \psi\right\rangle\right|_{t=T}^{2}=1
\end{array}\right.
$$

For the relaxed problem, the first order stationary conditions read:

$$
\left\{\begin{array}{c}
i \frac{d}{d t}|\psi\rangle=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right)|\psi\rangle, t \in(0, T) \\
i \frac{d}{d t}|p\rangle=\left(H_{0}+\sum_{k=1}^{m} u_{k} H_{k}\right)|p\rangle, t \in(0, T) \\
u_{k}=-\Im\left(\langle p| H_{k}|\psi\rangle\right), k=1, \ldots, m, t \in(0, T) \\
|\psi\rangle_{t=0}=\left|\psi_{\text {ini }}\right\rangle,|p\rangle_{t=T}=-\alpha\left\langle\psi_{\text {end }} \mid \psi\right\rangle_{t=T}\left|\psi_{\text {end }}\right\rangle .
\end{array}\right.
$$

Monotone numerical scheme for the relaxed problem $(1)^{6}$

Take an L^{2} control $[0, T] \ni t \mapsto u(t)(\operatorname{dim}(u)=1$ here) and denote by

■ $\left|\psi_{u}\right\rangle$ the solution of forward system $i \frac{d}{d t}|\psi\rangle=\left(H_{0}+u H_{1}\right)|\psi\rangle$ starting from $\left|\psi_{\text {ini }}\right\rangle$.
$\square\left|p_{u}\right\rangle$ the adjoint associated to u, i.e. the solution of the backward system $i \frac{d}{d t}\left|p_{u}\right\rangle=\left(H_{0}+u H_{1}\right)\left|p_{u}\right\rangle$ with $\left|p_{u}\right\rangle_{T}=-\alpha P\left|\psi_{u}\right\rangle_{T}, P$ projector on $\left|\psi_{\text {end }}\right\rangle$, $P|\phi\rangle \equiv\left\langle\psi_{\text {end }} \mid \phi\right\rangle\left|\psi_{\text {end }}\right\rangle$.
$\square J(u)=\frac{1}{2} \int_{0}^{T} u^{2}+\frac{\alpha}{2}\left(1-\left|\left\langle\psi_{\text {end }} \mid \psi_{u}\right\rangle\right|_{T}^{2}\right)$.
Starting from an initial guess $u^{0} \in L^{2}([0, T], \mathbb{R})$, the monotone scheme generates a sequence of controls $u^{\nu} \in L^{2}([0, T], \mathbb{R})$, $\nu=1,2, \ldots$, such that the cost $J\left(u^{\nu}\right)$ is decreasing, $J\left(u^{\nu+1}\right) \leq J\left(u^{\nu}\right)$.
${ }^{6}$ D. Tannor, V. Kazakov, and V. Orlov. Time Dependent Quantum Molecular Dynamics, chapter Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds, pages 347-360. Plenum, 1992.

Monotone numerical scheme for the relaxed problem (2)

Assume that, at step ν, we have computed the control u^{ν}, the associated quantum state $\left|\psi^{\nu}\right\rangle=\left|\psi_{u^{\nu}}\right\rangle$ and its adjoint $\left|p^{\nu}\right\rangle=\left|p_{u^{\nu}}\right\rangle$. We get their new time values $u^{\nu+1},\left|\psi^{\nu+1}\right\rangle$ and $\left|p^{\nu+1}\right\rangle$ in two steps:
1 Imposing $u^{\nu+1}=-\Im\left(\left\langle p^{\nu}\right| H_{1}\left|\psi^{\nu+1}\right\rangle\right)$ is just a feedback; one get $u^{\nu+1}$ just by a forward integration of the nonlinear Schrödinger equation,

$$
i \frac{d}{d t}|\psi\rangle=\left(H_{0}-\Im\left(\left\langle p^{\nu}\right| H_{1}|\psi\rangle\right) H_{1}\right)|\psi\rangle, \quad|\psi\rangle_{0}=\left|\psi_{\text {ini }}\right\rangle
$$

that provides $[0, T] \ni t \mapsto\left|\psi^{\nu+1}\right\rangle$ and the new control $u^{\nu+1}$.
2 Backward integration from $t=T$ to $t=0$ of

$$
i \frac{d}{d t}|p\rangle=\left(H_{0}+u^{\nu+1}(t) H_{1}\right)|p\rangle, \quad|p\rangle_{T}=-\alpha\left\langle\psi_{\text {end }} \mid \psi^{\nu+1}\right\rangle_{T}\left|\psi_{\text {end }}\right\rangle
$$

yields to the new adjoint trajectory $[0, T] \ni t \mapsto\left|p^{\nu+1}\right\rangle$.

Why $J\left(u^{\nu+1}\right) \leq J\left(u^{\nu}\right)$?
■ Because we have the identity for any open-loop controls u and $v\left(P=\left|\psi_{\text {end }}\right\rangle\left\langle\psi_{\text {end }}\right|\right)$

$$
\begin{aligned}
& J(u)-J(v)=-\frac{\alpha}{2}\left(\left\langle\psi_{u}-\psi_{v}\right| P\left|\psi_{u}-\psi_{v}\right\rangle\right)_{T} \\
&+\frac{1}{2}\left(\int_{0}^{T}(u-v)\left(u+v+2 \Im\left(\left\langle p_{v}\right| H_{1}\left|\psi_{u}\right\rangle\right)\right)\right) .
\end{aligned}
$$

■ If $u=-\Im\left(\left\langle p_{v}\right| H_{1}\left|\psi_{u}\right\rangle\right)$ for all $t \in[0, T)$, we have

$$
J(u)-J(v)=-\frac{\alpha}{2}\left(\left\langle\psi_{u}-\psi_{v}\right| P\left|\psi_{u}-\psi_{v}\right\rangle\right)_{T}-\frac{1}{2}\left(\int_{0}^{T}(u-v)^{2}\right)
$$

and thus $J(u) \leq J(v)$.
■ Take $v=u^{\nu}, u=u^{\nu+1}$: then $\left|p_{v}\right\rangle=\left|p^{\nu}\right\rangle,\left|\psi_{v}\right\rangle=\left|\psi^{\nu}\right\rangle$, $\left|p_{u}\right\rangle=\left|p^{\nu+1}\right\rangle$ and $\left|\psi_{u}\right\rangle=\left|\psi^{\nu+1}\right\rangle$.

Monotone numerical scheme for the relaxed problem (4)

Proof of

$$
J(u)-J(v)=-\frac{\alpha}{2}\left(\left\langle\psi_{u}-\psi_{v}\right| P\left|\psi_{u}-\psi_{v}\right\rangle\right)_{T}+\frac{1}{2}\left(\int_{0}^{T}(u-v)\left(u+v+2 \Im\left(\left\langle p_{v}\right| H_{1}\left|\psi_{u}\right\rangle\right)\right)\right) .
$$

Start with

Hermitian product of $i \frac{d}{d t}\left(\left|\psi_{u}\right\rangle-\left|\psi_{v}\right\rangle\right)=\left(H_{0}+v H_{1}\right)\left(\left|\psi_{u}\right\rangle-\left|\psi_{v}\right\rangle\right)+(u-v) H_{1}\left|\psi_{u}\right\rangle$ with $\left|p_{v}\right\rangle$:

$$
\left\langle p_{v} \left\lvert\, \frac{d\left(\psi_{u}-\psi_{v}\right)}{d t}\right.\right\rangle=\left\langle p_{v}\right| \frac{H_{0}+v H_{1}}{i}\left|\psi_{u}-\psi_{v}\right\rangle+\left\langle p_{v}\right| \frac{(u-v) H_{1}}{i}\left|\psi_{u}\right\rangle
$$

Integration by parts (use $\left|\psi_{v}\right\rangle_{0}=\left|\psi_{u}\right\rangle_{0},\left|p_{v}\right\rangle_{T}=-\alpha P\left|\psi_{v}\right\rangle_{T}$ and $\frac{d}{d t}\left\langle p_{v}\right|=-\left\langle p_{v}\right|\left(\frac{H_{0}+v H_{1}}{i}\right)$):

$$
\begin{aligned}
\int_{0}^{T}\left\langle p_{v} \left\lvert\, \frac{d\left(\psi_{u}-\psi_{v}\right)}{d t}\right.\right\rangle=\left\langle p_{v} \mid \psi_{u}-\psi_{v}\right\rangle_{T} & -\left\langle p_{v} \mid \psi_{u}-\psi_{v}\right\rangle_{0}-\int_{0}^{T}\left\langle\left.\frac{d p_{v}}{d t} \right\rvert\, \psi_{u}-\psi_{v}\right\rangle \\
& =-\alpha\left\langle\psi_{v}\right| P\left|\psi_{u}-\psi_{v}\right\rangle_{T}+\int_{0}^{T}\left\langle p_{v}\right| \frac{H_{0}+v H_{1}}{i}\left|\psi_{u}-\psi_{v}\right\rangle
\end{aligned}
$$

Thus $-\alpha\left\langle\psi_{v}\right| P\left|\psi_{u}-\psi_{v}\right\rangle_{T}=\int_{0}^{T}\left\langle p_{v}\right| \frac{(u-v) H_{1}}{i}\left|\psi_{u}\right\rangle$ and $\alpha \Re\left(\left\langle\psi_{v}\right| P\left|\psi_{u}-\psi_{v}\right\rangle_{T}\right)=-\int_{0}^{T} \Im\left(\left\langle p_{v}\right|(u-v) H_{1}\left|\psi_{u}\right\rangle\right)$. Finally we have

$$
J(u)-J(v)=-\frac{\alpha}{2}\left(\left\langle\psi_{u}-\psi_{v}\right| P\left|\psi_{u}-\psi_{v}\right\rangle\right)_{T}+\frac{1}{2}\left(\int_{0}^{T}(u-v)\left(u+v+2 \Im\left(\left\langle p_{v}\right| H_{1}\left|\psi_{u}\right\rangle\right)\right)\right) .
$$

[^0]: ${ }^{1}$ See the web page:
 http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html
 ${ }^{2}$ INRIA Paris, QUANTIC research team
 ${ }^{3}$ Mines ParisTech, QUANTIC research team
 ${ }^{4}$ INRIA Paris, QUANTIC research team

