Quantum Systems: Dynamics and Control ${ }^{1}$

Mazyar Mirrahimi ${ }^{2}$, Pierre Rouchon ${ }^{3}$, Alain Sarlette ${ }^{4}$

January 28th, 2020

[^0]
Outline

1 Spin-1/2 systems

2 Spin/spring systems

Recall: the three basic features of quantum models ${ }^{5}$

1 Schrödinger: wave funct. $|\psi\rangle \in \mathcal{H}$ or density op. $\rho \sim|\psi\rangle\langle\psi|$

$$
\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} \boldsymbol{H}|\psi\rangle, \quad \frac{d}{d t} \rho=-\frac{i}{\hbar}[\boldsymbol{H}, \rho], \quad \boldsymbol{H}=\boldsymbol{H}_{0}+u \boldsymbol{H}_{1}
$$

2 Entanglement and tensor product for composite systems (S, M):
■ Hilbert space $\mathcal{H}=\mathcal{H}_{S} \otimes \mathcal{H}_{M}$
■ Hamiltonian $\boldsymbol{H}=\boldsymbol{H}_{S} \otimes \boldsymbol{I}_{M}+\boldsymbol{H}_{\text {int }}+\boldsymbol{I}_{S} \otimes \boldsymbol{H}_{M}$
■ observable on sub-system M only: $\boldsymbol{O}=\boldsymbol{I}_{\boldsymbol{S}} \otimes \boldsymbol{O}_{M}$.
3 Randomness and irreversibility induced by the measurement of observable \boldsymbol{O} with spectral decomp. $\sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$:

■ measurement outcome μ with proba.
$\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{P}_{\mu}|\psi\rangle=\operatorname{Tr}\left(\rho \boldsymbol{P}_{\mu}\right)$ depending on $|\psi\rangle, \rho$ just before the measurement

- measurement back-action if outcome $\mu=y$:

$$
|\psi\rangle \mapsto|\psi\rangle_{+}=\frac{\boldsymbol{P}_{y}|\psi\rangle}{\sqrt{\langle\psi| \boldsymbol{P}_{y}|\psi\rangle}}, \quad \rho \mapsto \rho_{+}=\frac{\boldsymbol{P}_{y} \rho \boldsymbol{P}_{y}}{\operatorname{Tr}\left(\rho \boldsymbol{P}_{y}\right)}
$$

${ }^{5}$ S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006.

2-level system (spin-1/2)

The simplest quantum system: a ground state $|g\rangle$ of energy ω_{g}; an excited state $|e\rangle$ of energy ω_{e}. The quantum state $|\psi\rangle \in \mathbb{C}^{2}$ is a linear superposition $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and obeys to the Schrödinger equation (ψ_{g} and ψ_{e} depend on t).
Schrödinger equation for the uncontrolled 2-level system $(\hbar=1)$:

$$
\imath \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle=\left(\omega_{e}|e\rangle\langle e|+\omega_{g}|g\rangle\langle g|\right)|\psi\rangle
$$

where \boldsymbol{H}_{0} is the Hamiltonian, a Hermitian operator $\boldsymbol{H}_{0}^{\dagger}=\boldsymbol{H}_{0}$.
Energy is defined up to a constant: \boldsymbol{H}_{0} and $\boldsymbol{H}_{0}+\varpi(t) \boldsymbol{I}, \varpi(t) \in \mathbb{R}$ arbitrary, correspond to the same physical system. If $|\psi\rangle$ satisfies $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle$ then $|\chi\rangle=e^{-i \vartheta(t)}|\psi\rangle$ with $\frac{d}{d t} \vartheta=\varpi$ obeys to
$i \frac{d}{d t}|\chi\rangle=\left(\boldsymbol{H}_{0}+\varpi \boldsymbol{I}\right)|\chi\rangle$. Thus for any $\vartheta,|\psi\rangle$ and $e^{-i \vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time. Indeed, it is unobservable, it has no impact on measurement results nor dynamics.

The controlled 2-level system

Take origin of energy such that ω_{g} (resp. ω_{e}) becomes $-\frac{\omega_{e}-\omega_{g}}{2}$ (resp. $\frac{\omega_{e}-\omega_{g}}{2}$) and set $\omega_{\text {eg }}=\omega_{e}-\omega_{g}$
The solution of $i \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)|\psi\rangle$ is

$$
|\psi\rangle_{t}=\psi_{g 0} e^{\frac{i \omega_{\mathrm{eg}} t}{2}}|g\rangle+\psi_{e 0} e^{\frac{-i \omega_{\mathrm{eg}} t}{2}}|e\rangle .
$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the systems follows the controlled Hamiltonian

$$
\boldsymbol{H}(t)=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{u(t)}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+\frac{u(t)}{2}(|e\rangle\langle g|+|g\rangle\langle e|)
$$

The controlled Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}\right)|\psi\rangle$ reads:

$$
i \frac{d}{d t}\binom{\psi_{e}}{\psi_{g}}=\frac{\omega_{\mathrm{eg}}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}+\frac{u(t)}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{e}}{\psi_{g}} .
$$

with the 3 Pauli Matrices ${ }^{6}$

$$
\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\boldsymbol{z}}=|e\rangle\langle e|-|g\rangle\langle g|
$$

${ }^{6}$ They correspond, up to multiplication by i, to the 3 imaginary quaternions.

$$
\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\mathbf{z}}=|e\rangle\langle e|-|g\rangle\langle g|
$$

$$
\sigma_{x}^{2}=I, \quad \sigma_{x} \sigma_{y}=i \sigma_{z}, \quad\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, \quad \text { circular permutation } \ldots
$$

■ Since for any $\theta \in \mathbb{R}, e^{i \theta \sigma_{x}}=\cos \theta+i \sin \theta \sigma_{x}$ (idem for σ_{y} and $\sigma_{\boldsymbol{z}}$), the solution of $i \frac{d}{d t}|\psi\rangle=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\mathbf{Z}}|\psi\rangle$ is

$$
|\psi\rangle_{t}=e^{\frac{-i \omega_{\mathrm{eg} t}}{2} \boldsymbol{\sigma}_{\mathbf{z}}}|\psi\rangle_{0}=\left(\cos \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{I}-i \sin \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{\sigma}_{\mathbf{z}}\right)|\psi\rangle_{0}
$$

■ For $\alpha, \beta=\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \alpha \neq \beta$ we have

$$
\sigma_{\alpha} e^{i \theta \sigma_{\beta}}=e^{-i \theta \sigma_{\beta}} \sigma_{\alpha}, \quad\left(e^{i \theta \sigma_{\alpha}}\right)^{-1}=\left(e^{i \theta \sigma_{\alpha}}\right)^{\dagger}=e^{-i \theta \sigma_{\alpha}}
$$

and also $e^{-\frac{i \theta}{2} \sigma_{\alpha}} \sigma_{\beta} e^{i \theta} \sigma_{\alpha}=e^{-i \theta \sigma_{\alpha}} \sigma_{\beta}=\sigma_{\beta} e^{i \theta \sigma_{\alpha}}$
■ Similarly to the harmonic oscillator, energy annihilation and creation operators: $\sigma_{-}=|g\rangle\langle e|, \sigma_{+}=\sigma_{-}^{\dagger}=|e\rangle\langle g|$

Density matrix and Bloch Sphere

Consider the density operator $\rho=|\psi\rangle\langle\psi|$. Thus ρ is an Hermitian operator, ≥ 0, that satisfies $\operatorname{Tr}(\rho)=1, \rho^{2}=\rho$ and obeys to the Liouville equation:

$$
\frac{d}{d t} \rho=-i[\boldsymbol{H}, \rho] .
$$

For a two level system $|\psi\rangle=\psi_{g}|g\rangle+\psi_{\boldsymbol{e}}|e\rangle$ and

$$
\rho=\frac{I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}}{2}
$$

where $(x, y, z)=\left(2 \Re\left(\psi_{g} \psi_{e}^{*}\right), 2 \Im\left(\psi_{g} \psi_{e}^{*}\right),\left|\psi_{e}\right|^{2}-\left|\psi_{g}\right|^{2}\right) \in \mathbb{R}^{3}$

$$
=\left(\operatorname{Tr}\left(\sigma_{\boldsymbol{x}} \rho\right), \operatorname{Tr}\left(\sigma_{\boldsymbol{y}} \rho\right), \operatorname{Tr}\left(\sigma_{\boldsymbol{z}} \rho\right)\right)
$$

The Bloch vector $\vec{M}=(x, y, z)$ evolves on the unit sphere \mathbb{S}^{2} of $\mathbb{R}^{3}=\operatorname{span}\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right)$, called the the Bloch Sphere, since $\operatorname{Tr}\left(\rho^{2}\right)=x^{2}+y^{2}+z^{2}=1$. The Liouville equation with $\boldsymbol{H}=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{u}{2} \sigma_{\boldsymbol{X}}$ corresponds to

$$
\frac{d}{d t} \vec{M}=\left(u \vec{e}_{x}+\omega_{\mathrm{eg}} \overrightarrow{\mathrm{e}}_{z}\right) \times \vec{M}
$$

Consider $\boldsymbol{H}=\left(u \sigma_{\boldsymbol{x}}+v \sigma_{\boldsymbol{y}}+w \sigma_{\boldsymbol{z}}\right) / 2$ with $(u, v, w) \in \mathbb{R}^{3}$.
1 For (u, v, w) constant and non zero, compute the solutions of

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle, \quad \frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H} \boldsymbol{U} \text { with } \boldsymbol{U}_{0}=\boldsymbol{I}
$$

in term of $|\psi\rangle_{0}, \sigma=\left(u \sigma_{\boldsymbol{x}}+v \sigma_{\boldsymbol{y}}+w \sigma_{\boldsymbol{z}}\right) / \sqrt{u^{2}+v^{2}+w^{2}}$ and $\omega=\sqrt{u^{2}+v^{2}+w^{2}}$. Indication: use the fact that $\sigma^{2}=I$.
2 Assume that, (u, v, w) depends on t according to $(u, v, w)(t)=\omega(t)(\bar{u}, \bar{v}, \bar{w})$ with $(\bar{u}, \bar{v}, \bar{w}) \in \mathbb{R}^{3} /\{0\}$ constant of length 1. Compute the solutions of

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}(t)|\psi\rangle, \quad \frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H}(t) \boldsymbol{U} \text { with } \boldsymbol{U}_{0}=\boldsymbol{I}
$$

in term of $|\psi\rangle_{0}, \bar{\sigma}=\bar{u} \sigma_{\mathbf{x}}+\bar{v} \sigma_{\boldsymbol{y}}+\bar{w} \sigma_{\mathbf{z}}$ and $\theta(t)=\int_{0}^{t} \omega$.
3 Explain why (u, v, w) colinear to the constant vector $(\bar{u}, \bar{v}, \bar{w})$ is crucial, for the computations in previous question.

Summary: 2-level system, i.e. a qubit (spin-half system)

■ Hilbert space:
$\mathcal{H}_{M}=\mathbb{C}^{2}=\left\{\psi_{g}|g\rangle+\psi_{e}|e\rangle, \psi_{g}, \psi_{e} \in \mathbb{C}\right\}$.

- Operators and commutations:
$\sigma_{-}=|g\rangle\langle e|, \sigma_{+}=\sigma_{-}^{\dagger}=|e\rangle\langle g|$
$\sigma_{\boldsymbol{x}}=\sigma_{\mathbf{-}}+\sigma_{\boldsymbol{+}}=|g\rangle\langle e|+|e\rangle\langle g| ;$
$\sigma_{y}=i \sigma_{-}-i \sigma_{+}=i|g\rangle\langle e|-i|e\rangle\langle g| ;$
$\sigma_{z}=\sigma_{+} \sigma_{-}-\sigma_{\cdot} \sigma_{+}=|e\rangle\langle e|-|g\rangle\langle g| ;$
$\sigma_{x}{ }^{2}=I, \sigma_{x} \sigma_{y}=i \sigma_{z},\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, \ldots$

■ Hamiltonian: $\boldsymbol{H}_{M}=\omega_{q} \sigma_{\boldsymbol{z}} / 2+\boldsymbol{u}_{q} \boldsymbol{\sigma}_{\boldsymbol{x}}$.

Outline

1 Spin-1/2 systems

2 Spin/spring systems

2-level system lives on \mathbb{C}^{2} with $\boldsymbol{H}_{q}=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}$ oscillator lives on $L^{2}(\mathbb{R}, \mathbb{C}) \sim I^{2}(\mathbb{C})$ with

$$
\begin{array}{r}
\boldsymbol{H}_{c}=-\frac{\omega_{c}}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega_{c}}{2} x^{2} \sim \omega_{c}\left(\boldsymbol{N}+\frac{l}{2}\right) \\
\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a} \text { and } \boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P} \sim \frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)
\end{array}
$$

The composite system lives on the tensor product $\mathbb{C}^{2} \otimes L^{2}(\mathbb{R}, \mathbb{C}) \sim \mathbb{C}^{2} \otimes I^{2}(\mathbb{C})$ with spin-spring Hamiltonian

$$
\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}} \otimes \boldsymbol{I}_{c}+\omega_{c} \boldsymbol{I}_{q} \otimes\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+i \frac{\Omega}{2} \sigma_{\mathbf{x}} \otimes\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)
$$

with the typical scales $\Omega \ll \omega_{c}, \omega_{\text {eg }}$ and $\left|\omega_{c}-\omega_{\text {eg }}\right| \ll \omega_{c}, \omega_{\text {eg }}$. Shortcut notations:

$$
\boldsymbol{H}=\underbrace{\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}}_{\boldsymbol{H}_{q}}+\underbrace{\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{I}}{2}\right)}_{\boldsymbol{H}_{c}}+\underbrace{i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)}_{\boldsymbol{H}_{\text {int }}}
$$

The spin-spring PDE

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\mathbf{x}}\left(\mathbf{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds to two coupled scalar PDE's:

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{e}
\end{aligned}
$$

since $\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}, \boldsymbol{a}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $|\psi\rangle=\left(\psi_{e}(x, t), \psi_{g}(x, t)\right)$, $\psi_{g}(., t), \psi_{e}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\left\|\psi_{g}\right\|^{2}+\left\|\psi_{e}\right\|^{2}=1$.

Exercise: write the PDE for the controlled Hamiltonian

$$
\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{l}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)+u_{c}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)+u_{q} \sigma_{\boldsymbol{x}}
$$

where $u_{c}, u_{q} \in \mathbb{R}$ are local control inputs associated to the oscillator and qubit, respectively.

The spin-spring ODE's

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds also to an infinite set of ODE's

$$
\begin{aligned}
i \frac{d}{d t} \psi_{e, n} & =\left((n+1 / 2) \omega_{c}+\omega_{\mathrm{eg}} / 2\right) \psi_{e, n}+i \frac{\Omega}{2}\left(\sqrt{n} \psi_{g, n-1}-\sqrt{n+1} \psi_{g, n+1}\right) \\
i \frac{d}{d t} \psi_{g, n} & =\left((n+1 / 2) \omega_{c}-\omega_{\mathrm{eg}} / 2\right) \psi_{g, n}+i \frac{\Omega}{2}\left(\sqrt{n} \psi_{e, n-1}-\sqrt{n+1} \psi_{e, n+1}\right)
\end{aligned}
$$

$$
\text { where }|\psi\rangle=\sum_{n=0}^{+\infty} \psi_{g, n}|g, n\rangle+\psi_{e, n}|e, n\rangle, \psi_{g, n}, \psi_{e, n} \in \mathbb{C} .
$$

Exercise: write the infinite set of ODE's for

$$
\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{1}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)+u_{c}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)+u_{q} \sigma_{\boldsymbol{x}}
$$

where $u_{c}, u_{q} \in \mathbb{R}$ are local control inputs associated to the oscillator and qubit, respectively.

$$
\boldsymbol{H} \approx \boldsymbol{H}_{\text {disp }}=\frac{\omega_{e g}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)-\frac{\chi}{2} \boldsymbol{\sigma}_{\mathbf{z}}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right) \quad \text { with } \chi=\frac{\Omega^{2}}{2\left(\omega_{c}-\omega_{\mathrm{eg}}\right)}
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{1}{2}\left(\omega_{c}-\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{1}{2}\left(\omega_{c}+\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}
\end{aligned}
$$

The propagator, the t-dependant unitary operator \boldsymbol{U} solution of $i \frac{d}{d t} \boldsymbol{U}=\boldsymbol{H} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$, reads:

$$
\begin{aligned}
\boldsymbol{U}(t)=e^{i \omega_{\mathrm{eg}} t / 2} \exp & \left(-i\left(\omega_{c}+\chi / 2\right) t\left(\boldsymbol{N}+\frac{l}{2}\right)\right) \otimes|g\rangle\langle g| \\
& +e^{-i \omega_{\mathrm{eg}} t / 2} \exp \left(-i\left(\omega_{c}-\chi / 2\right) t\left(\boldsymbol{N}+\frac{l}{2}\right)\right) \otimes|e\rangle\langle\boldsymbol{e}|
\end{aligned}
$$

Exercise: write the infinite set of ODE's attached to the dispersive Hamiltonian $\boldsymbol{H}_{\text {disp }}$.

Resonant case: approximate Hamiltonian for $\omega_{c}=\omega_{\mathrm{eg}}=\omega$.

The Hamiltonian becomes (Jaynes-Cummings Hamiltonian):

$$
\boldsymbol{H} \approx \boldsymbol{H}_{J C}=\frac{\omega}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega\left(\boldsymbol{N}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right) .
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega}{2} \psi_{e}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega}{2} \psi_{g}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+i \frac{\Omega}{2 \sqrt{2}}\left(x-\frac{\partial}{\partial x}\right) \psi_{e}
\end{aligned}
$$

Exercise: Write the infinite set of ODE's attached to the Jaynes-Cummings Hamiltonian \boldsymbol{H}.

Jaynes-Cummings propagator

Exercise: For $\boldsymbol{H}_{J C}=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{N}+\frac{1}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \boldsymbol{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right)$ show that the propagator, the t-dependant unitary operator \boldsymbol{U} solution of $i \frac{d}{d t} \boldsymbol{U}=\boldsymbol{H}_{J C} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$, reads
$\boldsymbol{U}(t)=e^{-i \omega t\left(\frac{\sigma_{2}}{2}+\boldsymbol{N}+\frac{1}{2}\right)} e^{\frac{\Omega t}{2}\left(\sigma \cdot \mathbf{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)}$ where for any angle θ,

$$
\begin{aligned}
& e^{\theta\left(\sigma \cdot \mathbf{a}^{\dagger}-\sigma_{+} \mathbf{a}\right)}=|g\rangle\langle g| \otimes \cos (\theta \sqrt{\boldsymbol{N}})+|e\rangle\langle e| \otimes \cos (\theta \sqrt{\boldsymbol{N}+\boldsymbol{I}}) \\
&-\sigma_{+} \otimes \mathbf{a} \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}}+\boldsymbol{\sigma} \cdot \otimes \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}} \mathbf{a}^{\dagger}
\end{aligned}
$$

Hint: show that

$$
\begin{aligned}
{\left[\frac{\sigma_{\mathbf{z}}}{2}+\boldsymbol{N}, \boldsymbol{\sigma} \cdot \boldsymbol{\cdot}^{\dagger}-\sigma_{+} \boldsymbol{a}\right] } & =0 \\
\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)^{2 k} & =(-1)^{k}\left(|g\rangle\langle g| \otimes \boldsymbol{N}^{k}+|\boldsymbol{e}\rangle\langle\boldsymbol{e}| \otimes(\boldsymbol{N}+\boldsymbol{I})^{k}\right) \\
\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)^{2 k+1} & =(-1)^{k}\left(\boldsymbol{\sigma} \otimes \boldsymbol{N}^{k} \mathbf{a}^{\dagger}-\sigma_{+} \otimes \boldsymbol{a} \boldsymbol{N}^{k}\right)
\end{aligned}
$$

and compute the series defining the exponential of an operator.

[^0]: ${ }^{1}$ See the web page:
 http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html
 ${ }^{2}$ INRIA Paris, QUANTIC research team
 ${ }^{3}$ Mines ParisTech, QUANTIC research team
 ${ }^{4}$ INRIA Paris, QUANTIC research team

