Quantum Systems: Dynamics and Control ${ }^{1}$

Mazyar Mirrahimi ${ }^{2}$, Pierre Rouchon ${ }^{3}$, Alain Sarlette ${ }^{4}$

January 21, 2020

[^0]
Outline

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Outline of the lectures and reference books

4 Quantum harmonic oscillator: spring model

Controlling quantum degrees of freedom

Some applications

■ Nuclear Magnetic Resonance (NMR) applications;
■ Quantum chemical synthesis;
■ High resolution measurement devices (e.g. atomic/optic clocks);
■ Quantum communication;
■ Quantum computation .
Physics Nobel prize 2012

Serge Haroche

David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems.

Nuclear Magnetic Resonance

■ Control of an ensemble of spins with a dispersion (uncertainty) in parameters (frequency, coupling strengths);

- Time-optimal control to beat the relaxation of the spins;

■...

Improving the contrast in Magnetic Resonance Imaging (MRI).

Atomic clocks

SI second is defined to be "the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom".

Figure: http://ft.nist.gov/ofm/smallclock/OverallDesign.htm

The goal is to modulate the laser frequencies to reach the maximum transmission (minimum absorbtion).

Quantum communication

- Secure communication enforced by laws of quantum physics;

Quantum teleportation between two canary islands. Courtesy of X. Ma et. al. Nature (2012)

- Quantum repeaters for long-distance ($>100 \mathrm{~km}$) communication: requires a quantum memory where quantum information is stabilized (protected) against various noise sources.

Technologies for quantum simulation and computation ${ }^{5}$

© OBrien

© S. Kuhr

© Blatt \& Wineland

Requirement:
Scalable modular architecture
Control software from the very beginning.

[^1]
Quantum computation: towards quantum electronics

D-Wave machine: machines to solve certain huge-dimensional optimization problems (state space of dimension 2^{100}).

Major challenge: Fragility of quantum information versus external noise.

Quantum error correction

We protect quantum information by stabilizing a manifold of quantum states.

Outline

1 Quantum systems：some examples and applications

2 LKB Photon Box

3 Outline of the lectures and reference books

4 Quantum harmonic oscillator：spring model

The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB): group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

Stabilization of a quantum state with exactly $n=0,1,2,3, \ldots$ photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.
H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
${ }^{6}$ Courtesy of Igor Dotsenko. Sampling period $\Delta t \approx 80 \mu s$.

Experimental closed-loop data

Stabilization around 3-photon state

C. Sayrin et. al., Nature 477, 73-77, Sept. 2011.

Decoherence due to finite photon life time around 70 ms)

Detection efficiency 40\% Detection error rate 10\% Delay 4 sampling periods

Model includes cavity decoherence, measurement imperfections, delays (Bayes law).
Truncation to 9 photons

Models of open quantum systems are based on three features ${ }^{7}$

1 Schrödinger: wave funct. $|\psi\rangle \in \mathcal{H}$ or density op. $\rho \sim|\psi\rangle\langle\psi|$

$$
\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} \boldsymbol{H}|\psi\rangle, \quad \frac{d}{d t} \rho=-\frac{i}{\hbar}[\boldsymbol{H}, \rho], \quad \boldsymbol{H}=\boldsymbol{H}_{0}+u \boldsymbol{H}_{1}
$$

2 Entanglement and tensor product for composite systems (S, M):
■ Hilbert space $\mathcal{H}=\mathcal{H}_{S} \otimes \mathcal{H}_{M}$
■ Hamiltonian $\boldsymbol{H}=\boldsymbol{H}_{S} \otimes \boldsymbol{I}_{M}+\boldsymbol{H}_{\text {int }}+\boldsymbol{I}_{S} \otimes \boldsymbol{H}_{M}$
■ observable on sub-system M only: $\boldsymbol{O}=\boldsymbol{I}_{\boldsymbol{S}} \otimes \boldsymbol{O}_{M}$.
3 Randomness and irreversibility induced by the measurement of observable \boldsymbol{O} with spectral decomp. $\sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$:

■ measurement outcome μ with proba.
$\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{P}_{\mu}|\psi\rangle=\operatorname{Tr}\left(\rho \boldsymbol{P}_{\mu}\right)$ depending on $|\psi\rangle, \rho$ just before the measurement
■ measurement back-action if outcome $\mu=y$:

$$
|\psi\rangle \mapsto|\psi\rangle_{+}=\frac{\boldsymbol{P}_{y}|\psi\rangle}{\sqrt{\langle\psi| \boldsymbol{P}_{y}|\psi\rangle}}, \quad \rho \mapsto \rho_{+}=\frac{\boldsymbol{P}_{y} \rho \boldsymbol{P}_{y}}{\operatorname{Tr}\left(\rho \boldsymbol{P}_{y}\right)}
$$

${ }^{7}$ S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006.

■ System S corresponds to a quantized harmonic oscillator:

$$
\mathcal{H}_{S}=\mathcal{H}_{c}=\left\{\sum_{n=0}^{\infty} c_{n}|n\rangle \mid\left(c_{n}\right)_{n=0}^{\infty} \in I^{2}(\mathbb{C})\right\}
$$

where $|n\rangle$ represents the Fock state associated to exactly n photons inside the cavity
■ Meter M is a qu-bit, a 2-level system (idem $1 / 2$ spin system) : $\mathcal{H}_{M}=\mathcal{H}_{a}=\mathbb{C}^{2}$, each atom admits two energy levels and is described by a wave function $c_{g}|g\rangle+c_{e}|e\rangle$ with $\left|c_{g}\right|^{2}+\left|c_{e}\right|^{2}=1$; atoms leaving B are all in state $|g\rangle$
■ State of the full system $|\Psi\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{M}=\mathcal{H}_{c} \otimes \mathcal{H}_{a}$:

$$
|\Psi\rangle=\sum_{n=0}^{+\infty} c_{n g}|n\rangle \otimes|g\rangle+c_{n e}|n\rangle \otimes|e\rangle, \quad c_{n e}, c_{n g} \in \mathbb{C}
$$

Ortho-normal basis: $(|n\rangle \otimes|g\rangle,|n\rangle \otimes|e\rangle)_{n \in \mathbb{N}}$.

The Markov model (1)

■ When atom comes out $B,|\Psi\rangle_{B}$ of the full system is separable $|\Psi\rangle_{B}=|\psi\rangle \otimes|g\rangle$.
\square Just before the measurement in D, the state is in general entangled (not separable):

$$
|\Psi\rangle_{R_{2}}=\boldsymbol{U}_{S M}(|\psi\rangle \otimes|g\rangle)=\left(\boldsymbol{M}_{g}|\psi\rangle\right) \otimes|g\rangle+\left(\boldsymbol{M}_{\boldsymbol{e}}|\psi\rangle\right) \otimes|\boldsymbol{e}\rangle
$$

where $\boldsymbol{U}_{S M}$ is a unitary transformation (Schrödinger propagator) defining the linear measurement operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} on \mathcal{H}_{s}. Since $\boldsymbol{U}_{S M}$ is unitary, $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{\boldsymbol{e}}=\boldsymbol{I}$.

Just before D, the field/atom state is entangled:

$$
\boldsymbol{M}_{g}|\psi\rangle \otimes|g\rangle+\boldsymbol{M}_{e}|\psi\rangle \otimes|\boldsymbol{e}\rangle
$$

Denote by $\mu \in\{g, e\}$ the measurement outcome in detector D : with probability $\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}|\psi\rangle$ we get μ. Just after the measurement outcome $\mu=y$, the state becomes separable:

$$
|\Psi\rangle_{D}=\frac{1}{\sqrt{\mathbb{P}_{y}}}\left(\boldsymbol{M}_{y}|\psi\rangle\right) \otimes|\boldsymbol{y}\rangle=\left(\frac{\boldsymbol{M}_{\boldsymbol{y}}}{\sqrt{\langle\psi| \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y}|\psi\rangle}}|\psi\rangle\right) \otimes|\boldsymbol{y}\rangle .
$$

Markov process: $\left|\psi_{k}\right\rangle \equiv|\psi\rangle_{t=k \Delta t}, k \in \mathbb{N}, \Delta t$ sampling period,

$$
\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=e, \text { probability } \mathbb{P}_{e}=\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle .\end{cases}
$$

Outline

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Outline of the lectures and reference books

4 Quantum harmonic oscillator: spring model

Reference books

1 Cohen-Tannoudji, C.; Diu, B. \& Laloë, F.: Mécanique Quantique Hermann, Paris, 1977, I\& II (quantum physics: a well known and tutorial textbook)
2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006. (quantum physics: spin/spring systems, decoherence, Schrödinger cats, entanglement.)
3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I\& II. Imperial College Press, 2009. (quantum physics, measurement and contro)
4 Barnett, S. M. \& Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford University Press, 2003. (mathematical physics: many useful operator formulae for spin/spring systems)
5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976. (mathematical physics: functional analysis aspects when the Hilbert space is of infinite dimension)
6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability, Markov processes, stochastic differential equations and lto calculus.)
7 M. Nielsen, I. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000. (tutorial introduction with a computer science and communication view point)

Outline of the lectures

Jan21 (PR) Introduction: motivating applications; LKB photon-box as prototype of open quantum system; spring system (harmonic oscillator, spectral decomposition, annihilation/creation operators, coherent state and displacement).

Jan28 (AS) spin system (qubit, Pauli matrices); composite spin/spring system (tensor product, resonant/dispersive interaction, underlying PDE's).
Feb04 (PR) Averaging and rotating waves approximation (first/second order perturbation expansion, asymptotic stability)
Feb11 (AS) Open-loop control via averaging techniques (Rabi oscillations for a qubit, Law-Eberly method for a spin/spring system)

Feb18 (PR) Adiabatic control (qubit with Bloch vector coordinates, STIRAP) and optimal control (monotone numerical algorithm).
Feb25 (AS) Measurement back-action, POVM and discrete-time model of open quantum system: LKB photon box, measurement imperfection, why density operator instead of wave-function, Kraus map (quantum channel).

Mar03 (AS) Discrete-time open-quantum systems: LKB photon box, (QND) measurement, open-loop asymptotic behavior, measurement-based feedback, Lyapunov stabilization, quantum filtering.
Mar10 (PR) Continuous-time open-quantum system: Ito calculus, homodyne (QND) measurement, open-loop asymptotic behaviour, Lyapunov stabilization, quantum filtering.
Mar17 (PR) Decoherence as unread measurements performed by the environment: continuous-time formulation, Lindblad differential equation (damped harmonic oscillator, convergence and asymptotic stability, Wigner function and PDE formulations).
Mar24 (AS) Stabilization by reservoir engineering as tailored decoherence. Application: quantum error correction by measurement-based feedback and by reservoir engineering. Outlook on related math.techniques (adiabatic elimination).

Outline

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Outline of the lectures and reference books

4 Quantum harmonic oscillator: spring model

Harmonic oscillator

Classical Hamiltonian formulation of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x$

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right) .
$$

Electrical oscillator:
Mechanical oscillator

LC oscillator:
Frictionless spring: $\frac{d^{2}}{d t^{2}} x=-\frac{k}{m} x$.

$$
\frac{d}{d t} I=\frac{V}{L}, \frac{d}{d t} V=-\frac{l}{C}, \quad\left(\frac{d^{2}}{d t^{2}} I=-\frac{1}{L C} I\right) .
$$

Quantum regime

$k_{B} T \ll \hbar \omega$ where $\hbar \simeq 1.054 \cdot 10^{-34} \mathrm{Js}$ and $k_{B} \simeq 1.38 \cdot 10^{-23} \mathrm{~J} / K$. Typically for the photon box experiment in these lectures, $\omega=51 \mathrm{GHz}$ and $T=0.8 \mathrm{~K}$.

Harmonic oscillator ${ }^{8}$: quantization and correspondence principle

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right) .
$$

Quantization: probability wave function $|\psi\rangle_{t} \sim(\psi(x, t))_{x \in \mathbb{R}}$ with $|\psi\rangle_{t} \sim \psi(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ obeys to the Schrödinger equation (from now on we always assume units such that $\hbar=1$)

$$
i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H}=\omega\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}
$$

where \boldsymbol{H} results from \mathbb{H} by replacing x by position operator $\sqrt{2} \boldsymbol{X}$ and p by momentum operator $\sqrt{2} \boldsymbol{P}=-i \frac{\partial}{\partial x}$. \boldsymbol{H} is a Hermitian operator on $L^{2}(\mathbb{R}, \mathbb{C})$, with its domain to be given.

PDE model: $i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\frac{\omega}{2} x^{2} \psi(x, t), \quad x \in \mathbb{R}$.
${ }^{8}$ Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique Quantique, volume I\& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.

Oxford University Press, 2003.

Harmonic oscillator: annihilation and creation operators

Average position $\langle\boldsymbol{X}\rangle_{t}=\langle\psi| \boldsymbol{X}|\psi\rangle$ and momentum $\langle\boldsymbol{P}\rangle_{t}=\langle\psi| \boldsymbol{P}|\psi\rangle$:

$$
\langle\boldsymbol{X}\rangle_{t}=\frac{1}{\sqrt{2}} \int_{-\infty}^{+\infty} x|\psi|^{2} d x, \quad\langle\boldsymbol{P}\rangle_{t}=-\frac{i}{\sqrt{2}} \int_{-\infty}^{+\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x .
$$

Annihilation \boldsymbol{a} and creation operators \boldsymbol{a}^{\dagger} (domains to be given):

$$
\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right), \quad \boldsymbol{a}^{\dagger}=\boldsymbol{X}-i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)
$$

Commutation relationships:

$$
[\boldsymbol{X}, \boldsymbol{P}]=\frac{i}{2} \boldsymbol{I}, \quad\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \quad \boldsymbol{H}=\omega\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right) .
$$

Set $\boldsymbol{X}_{\lambda}=\frac{1}{2}\left(e^{-i \lambda} \boldsymbol{a}+\boldsymbol{e}^{i \lambda} \mathbf{a}^{\dagger}\right)$ for any angle λ :

$$
\left[\boldsymbol{X}_{\lambda}, \boldsymbol{X}_{\lambda+\frac{\pi}{2}}\right]=\frac{i}{2} \boldsymbol{I}
$$

Harmonic oscillator: spectral decomposition and Fock states

Spectrum of Hamiltonian $\boldsymbol{H}=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}$:
$E_{n}=\omega\left(n+\frac{1}{2}\right), \psi_{n}(x)=\left(\frac{1}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} e^{-x^{2} / 2} H_{n}(x), H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$.

Spectral decomposition of $\mathbf{a}^{\dagger} \boldsymbol{a}$ using $\left[\mathbf{a}, \boldsymbol{a}^{\dagger}\right]=1$:
■ If $|\psi\rangle$ is an eigenstate associated to eigenvalue λ, then $\mathbf{a}|\psi\rangle$ and $\mathbf{a}^{\dagger}|\psi\rangle$ are also eigenstates associated to $\lambda-1$ and $\lambda+1$.

- $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is semi-definite positive.
- The ground state $\left|\psi_{0}\right\rangle$ is necessarily associated to eigenvalue 0 and is given by the Gaussian function $\psi_{0}(x)=\frac{1}{\pi^{1 / 4}} \exp \left(-x^{2} / 2\right)$.

Harmonic oscillator: spectral decomposition and Fock states

$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=1$: spectrum of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is non-degenerate and is \mathbb{N}.
Fock state with n photons (phonons): the eigenstate of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ associated to the eigenvalue $n\left(|n\rangle \sim \psi_{n}(x)\right)$:

$$
\mathbf{a}^{\dagger} \boldsymbol{a}|n\rangle=n|n\rangle, \quad \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \quad \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle .
$$

The ground state $|0\rangle$ is called 0 -photon state or vacuum state.
The operator \boldsymbol{a} (resp. \boldsymbol{a}^{\dagger}) is the annihilation (resp. creation) operator since it transfers $|n\rangle$ to $|n-1\rangle$ (resp. $|n+1\rangle$) and thus decreases (resp. increases) the quantum number n by one unit.

Hilbert space of quantum system: $\mathcal{H}=\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in R^{2}(\mathbb{C})\right\} \sim L^{2}(\mathbb{R}, \mathbb{C})$.
Domain of \boldsymbol{a} and $\mathbf{a}^{\dagger}:\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in h^{1}(\mathbb{C})\right\}$.
Domain of \boldsymbol{H} or $\mathbf{a}^{\dagger} \boldsymbol{a}:\left\{\sum_{n} c_{n}|\eta\rangle \mid\left(c_{n}\right) \in h^{2}(\mathbb{C})\right\}$.

$$
h^{k}(\mathbb{C})=\left\{\left.\left(c_{n}\right) \in I^{2}(\mathbb{C})\left|\sum n^{k}\right| c_{n}\right|^{2}<\infty\right\}, \quad k=1,2 .
$$

Harmonic oscillator: displacement operator

Quantization of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x-\omega \sqrt{2} u,\left(\mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)+\sqrt{2} u x\right)$

$$
\boldsymbol{H}=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+u\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)
$$

The associated controlled PDE

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\left(\frac{\omega}{2} x^{2}+\sqrt{2} u x\right) \psi(x, t)
$$

Glauber displacement operator \boldsymbol{D}_{α} (unitary) with $\alpha \in \mathbb{C}$:

$$
\boldsymbol{D}_{\alpha}=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \boldsymbol{a}}=e^{2 i \Im \alpha \boldsymbol{X}-2 i \Re \alpha \boldsymbol{P}}
$$

From Baker-Campbell Hausdorf formula, for all operators \boldsymbol{A} and \boldsymbol{B},

$$
e^{\boldsymbol{A}} \boldsymbol{B} e^{-\boldsymbol{A}}=\boldsymbol{B}+[\boldsymbol{A}, \boldsymbol{B}]+\frac{1}{2!}[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]+\frac{1}{3!}[\boldsymbol{A},[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]]+\ldots
$$

we get the Glauber formula ${ }^{9}$ when $[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]=[\boldsymbol{B},[\boldsymbol{A}, \boldsymbol{B}]]=0$:

$$
e^{\boldsymbol{A}+\boldsymbol{B}}=e^{\boldsymbol{A}} e^{\boldsymbol{B}} e^{-\frac{1}{2}[\boldsymbol{A}, \boldsymbol{B}]}
$$

${ }^{9}$ Take s derivative of $e^{s(A+B)}$ and of $e^{s A} e^{s B} e^{-\frac{s^{2}}{2}[A, B]}$.

Harmonic oscillator: identities resulting from Glauber formula

With $\boldsymbol{A}=\alpha \mathbf{a}^{\dagger}$ and $\boldsymbol{B}=-\alpha^{*} \boldsymbol{a}$, Glauber formula gives:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \boldsymbol{a}^{\dagger}} e^{-\alpha^{*} \boldsymbol{a}}=e^{+\frac{|\alpha|^{2}}{2}} e^{-\alpha^{*} \boldsymbol{a}} e^{\alpha \boldsymbol{a}^{\dagger}} \\
& \boldsymbol{D}_{-\alpha} \boldsymbol{a} \boldsymbol{D}_{\alpha}=\boldsymbol{a}+\alpha \boldsymbol{I} \text { and } \boldsymbol{D}_{-\alpha} \boldsymbol{a}^{\dagger} \boldsymbol{D}_{\alpha}=\boldsymbol{a}^{\dagger}+\alpha^{*} \boldsymbol{I}
\end{aligned}
$$

With $\boldsymbol{A}=2 i \Im \alpha \boldsymbol{X} \sim i \sqrt{2} \Im \alpha x$ and $\boldsymbol{B}=-2 \Re \neq \boldsymbol{P} \sim-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}$, Glauber formula gives ${ }^{10}$:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} e^{-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}} \\
& \left(\boldsymbol{D}_{\alpha}|\psi\rangle\right)_{x, t}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} \psi(x-\sqrt{2} \Re \alpha, t)
\end{aligned}
$$

Exercise: Prove that, for any $\alpha, \beta, \epsilon \in \mathbb{C}$, we have ${ }^{11}$

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha+\beta}=e^{\frac{\alpha^{*} \beta-\alpha \beta^{*}}{2}} \boldsymbol{D}_{\alpha} \boldsymbol{D}_{\beta} \\
& \boldsymbol{D}_{\alpha+\epsilon} \boldsymbol{D}_{-\alpha}=\left(1+\frac{\alpha \epsilon^{*}-\alpha^{*} \epsilon}{2}\right) \boldsymbol{I}+\epsilon \boldsymbol{a}^{\dagger}-\epsilon^{*} \boldsymbol{a}+\boldsymbol{O}\left(|\epsilon|^{2}\right) \\
& \left(\frac{d}{d t} \boldsymbol{D}_{\alpha}\right) \boldsymbol{D}_{-\alpha}=\left(\frac{\alpha \frac{d}{d t} \alpha^{*}-\alpha^{*} \frac{d}{d t} \alpha}{2}\right) \boldsymbol{I}+\left(\frac{d}{d t} \alpha\right) \boldsymbol{a}^{\dagger}-\left(\frac{d}{d t} \alpha^{*}\right) \boldsymbol{a} .
\end{aligned}
$$

[^2]
Harmonic oscillator: lack of controllability

Take $|\psi\rangle$ solution of the controlled Schrödinger equation
$i \frac{d}{d t}|\psi\rangle=\left(\omega\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)+u\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)|\psi\rangle$. Set $\langle\boldsymbol{a}\rangle=\langle\psi| \mathbf{a}|\psi\rangle$. Then

$$
\frac{d}{d t}\langle\boldsymbol{a}\rangle=-i \omega\langle\boldsymbol{a}\rangle-i u
$$

From $\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}$, we have $\langle\boldsymbol{a}\rangle=\langle\boldsymbol{X}\rangle+i\langle\boldsymbol{P}\rangle$ where $\langle\boldsymbol{X}\rangle=\langle\psi| \boldsymbol{X}|\psi\rangle \in \mathbb{R}$ and $\langle\boldsymbol{P}\rangle=\langle\psi| \boldsymbol{P}|\psi\rangle \in \mathbb{R}$. Consequently

$$
\frac{d}{d t}\langle\boldsymbol{X}\rangle=\omega\langle\boldsymbol{P}\rangle, \quad \frac{d}{d t}\langle\boldsymbol{P}\rangle=-\omega\langle\boldsymbol{X}\rangle-u
$$

Consider the change of frame $|\psi\rangle=e^{-i \theta_{t}} \boldsymbol{D}_{\langle\boldsymbol{a}\rangle_{t}}|\chi\rangle$ with

$$
\theta_{t}=\int_{0}^{t}\left(\omega|\langle\boldsymbol{a}\rangle|^{2}+u \Re(\langle\boldsymbol{a}\rangle)\right), \quad D_{\langle\mathbf{a}\rangle_{t}}=e^{\langle\boldsymbol{a}\rangle_{t} \mathbf{a}^{\dagger}-\langle\boldsymbol{a}\rangle_{t}^{*} \boldsymbol{a}}
$$

Then $|\chi\rangle$ obeys to autonomous Schrödinger equation ${ }^{12}$

$$
i \frac{d}{d t}|\chi\rangle=\omega\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)|\chi\rangle
$$

The dynamics of $|\psi\rangle$ can be decomposed into two parts:

- a controllable part of dimension two for $\langle\boldsymbol{a}\rangle$
\ldots an uncontrollable part of infinite dimension for $|\chi\rangle$.
${ }^{12}$ The time-varying change of frame $|\psi\rangle=\boldsymbol{U}|\chi\rangle$ where $\frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{A} \boldsymbol{U}$ with $\boldsymbol{A}^{\dagger} \equiv \boldsymbol{A}$, transforms $\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle$ into $|\chi\rangle=-i\left(\boldsymbol{U}^{\dagger}(\boldsymbol{H}-\boldsymbol{A}) \boldsymbol{U}\right)|\chi\rangle$.

Coherent states

$$
|\alpha\rangle=\boldsymbol{D}_{\alpha}|0\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{+\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \quad \alpha \in \mathbb{C}
$$

are the states reachable from vacuum set. They are also the eigenstate of $\boldsymbol{a}: \mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle$.
A widely known result in quantum optics ${ }^{13}$: classical currents and sources (generalizing the role played by u) only generate classical light (quasi-classical states of the quantized field generalizing the coherent state introduced here) We just propose here a control theoretic interpretation in terms of reachable set from vacuum.

[^3]
Summary for the quantum harmonic oscillator

■ Hilbert space:

$$
\mathcal{H}=\left\{\sum_{n \geq 0} \psi_{n}|n\rangle,\left(\psi_{n}\right)_{n \geq 0} \in I^{2}(\mathbb{C})\right\} \equiv L^{2}(\mathbb{R}, \mathbb{C})
$$

■ Quantum state space:
$\mathbb{D}=\left\{\rho \in \mathcal{L}(\mathcal{H}), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\}$.
■ Operators and commutations:
$\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle ;$
$\boldsymbol{N}=\boldsymbol{a}^{\dagger} \mathbf{a}, \boldsymbol{N}|n\rangle=n|n\rangle ;$
$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \boldsymbol{a} f(\boldsymbol{N})=f(\boldsymbol{N}+\boldsymbol{I}) \mathbf{a} ;$
$\boldsymbol{D}_{\alpha}=\boldsymbol{e}^{\alpha \boldsymbol{a}^{\dagger}-\alpha^{\dagger}} \boldsymbol{a}$.
$\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right),[\boldsymbol{X}, \boldsymbol{P}]=\boldsymbol{I} / 2$.
■ Hamiltonian: $\boldsymbol{H} / \hbar=\omega_{c} \mathbf{a}^{\dagger} \boldsymbol{a}+\boldsymbol{u}_{c}\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)$. (associated classical dynamics:

$$
\left.\frac{d x}{d t}=\omega_{c} p, \frac{d p}{d t}=-\omega_{c} x-\sqrt{2} u_{c}\right) .
$$

■ Classical pure state \equiv coherent state $|\alpha\rangle$

$$
\begin{aligned}
& \alpha \in \mathbb{C}:|\alpha\rangle=\sum_{n \geq 0}\left(e^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}}\right)|n\rangle ;|\alpha\rangle \equiv \frac{1}{\pi^{1 / 4}} e^{r \sqrt{2} x \Im \alpha} e^{-\frac{(x-\sqrt{2} \Re \alpha)^{2}}{2}} \\
& \boldsymbol{a}|\alpha\rangle=\alpha|\alpha\rangle, \boldsymbol{D}_{\alpha}|0\rangle=|\alpha\rangle .
\end{aligned}
$$

Control of quantum harmonic oscillator: LKB photon-box

Simple schematic of LKB experiment for control of cavity field

[^0]: ${ }^{1}$ See the web page:
 http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html
 ${ }^{2}$ INRIA Paris, QUANTIC research team
 ${ }^{3}$ Mines ParisTech, QUANTIC research team
 ${ }^{4}$ INRIA Paris, QUANTIC research team

[^1]: ${ }^{5}$ Courtesy of Walter Riess, IBM Research - Zurich.

[^2]: ${ }^{10}$ Note that the operator $e^{-r \partial / \partial x}$ corresponds to a translation of x by r.
 ${ }^{11}$ Use the formula $\frac{d}{d t} \boldsymbol{E}(t)=\left(\int_{0}^{1} e^{\boldsymbol{s} \boldsymbol{A}(t)}\left(\frac{d}{d t} \boldsymbol{A}(t)\right) e^{-s \boldsymbol{A}(t)} d s\right) \boldsymbol{E}(t)$ where $\boldsymbol{E}(t)=e^{\boldsymbol{A}(t)}$ for any operator $\boldsymbol{A}(t)$ depending smoothly on t.

[^3]: ${ }^{13}$ See complement $B_{I I I}$, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.

