Flat systems, equivalence trajectory generation

Pierre Rouchon École des Mines de Paris, pierre.rouchon@cas.ensmp.fr

CIMPA school Castro Urdiales, September 2006 Motion planning: controllability.

$$[0,T] \ni t \mapsto u_r(t)$$
$$x(T) = q$$

Difficult problem because it requires, in general, the integration of

$$\frac{d}{dt}x = f(x, u(t)).$$

1

Compute Δu , $u = u_r + \Delta u$, such that $\Delta x = x - x_r$ tends to 0.

Outline (flatness and ODE)

Linear systems: the Brunovsky canonical form

Static feedback linearization.

Inversion and the structure algorithm.

Differential flatness.

Examples of engineering interest.

Linear time-invariant systems

$$\frac{dx}{dt} = Ax + Bu$$

Controllability: Kalman-criterion, Brunovsky canonical form.

Interpretation in terms of free modules (torsion-free implies free for such modules).

Non trivial example: two oscillators in parallel.

Similar results for time-varying systems

$$\frac{d}{dt}x = A(t)y + B(t)u$$

with A(t) and B(t) meromorphic functions of t.

Two linear simple examples

A single oscillator :

$$\frac{d^2}{dt^2}x = -\omega^2(x-u)$$

(trajectory, motion planing, tracking, feedback,).

A less simple example: two oscillators in parallel.

Two oscillators (see the video)

Dynamics

$$\frac{d^2}{dt^2}x_1 = \omega_1^2(u - x_1), \quad \frac{d^2}{dt^2}x_2 = \omega_2^2(u - x_2).$$

Main trick: Brunovsky output via u elimination:

$$\omega_2^2 \frac{d^2}{dt^2} x_1 - \omega_1^2 \frac{d^2}{dt^2} x_2 = \omega_1^2 \omega_2^2 (x_2 - x_1).$$

Controllable when $\omega_1 \neq \omega_2$ with Brunovsky (flat) output $y = \omega_2^2 x_1 - \omega_1^2 x_2$.

For linear SISO system
$$z(s) = \frac{P(s)}{Q(s)}u(s)$$
 (z is the output, $s = \frac{d}{dt}$):
 $z(s) = P(s)y(s), \quad u(s) = Q(s)y(s).$

Since *P* and *Q* have no common divisor, exist *R* and *S* such that PR + QS = 1, i.e., y = Ry + Su is the "flat" output.

We have then

$$(x_1, x_2, u) =$$
 linear combination of $(y, \ddot{y}, y^{(4)})$.

· 、

Steady-state to steady-state steering via y with the following shape (take, e.g., a polynomial of degree 9):

$$\dot{y} = \ddot{y} = y^{(3)} = y^{(4)} = 0$$
 for $t = 0$
 $\dot{y} = \ddot{y} = y^{(3)} = y^{(4)} = 0$ for $t = T$

Nonlinear control systems

The simplest non linear robot:

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin\theta + u$$

The nonlinear inverted pendulum.

$$\frac{d}{dt}(\dot{D}\cos\theta + l\dot{\theta}) = g\sin\theta - \dot{D}\dot{\theta}\sin\theta.$$

Static feedback linearization

The nonlinear version of Brunovsky Canonical form.

The Lie Brackets characterization.

Typical examples: fully actuated robots; exothermic chemical reactors.

Lie Bracket characterization of static feedback linearization

Definition: $\frac{d}{dt}x = f(x, u)$ is static-feedback linearizable, iff, exists a change of variables $z = \phi(x)$ and a static invertible feedback v = k(x, u) that made the equations linear: $\frac{d}{dt}z = Az + Bv$ with (A, B) controllable (local definition when f(0, 0) = 0).

Proposition: $\frac{d}{dt}x = f(x, u)$ static feedback linearizable, iff, the extended system $\frac{d}{dt}x = f(x, u)$, $\frac{d}{dt}u = \overline{u}$ is static feedback linearizable.

Proof of the proposition when dim(u) = 1.

If $x = \phi(z_1, ..., z_n)$ and u = k(z, v) transform $\frac{d}{dt}x = f(x, u)$ into the controllable system $\frac{d}{dt}z = Az + Bv$ then $(x, u) = (\phi(z), k(z, v))$ and $\bar{u} = \frac{\partial k}{\partial z}(Az + Bv) + \frac{\partial k}{\partial v}\bar{v}$ transform the extended system into $\frac{d}{dt}z = Az + Bv$, $\frac{d}{dt}v = \bar{v}$.

If $(x, u) = (\phi(z, v), \psi(z, v))$ and $\overline{u} = k(z, v, \overline{v})$ transform the extended system into $z_1^{(n)} = v$, $\frac{d}{dt}v = \overline{v}$ (Brunovsky form) then for all (z, v, \overline{v}) , we have $(z = (z_1, \dots, z_{n-1}, z_n), \dot{z} = (z_2, \dots, z_n, v))$

$$\frac{\partial \phi}{\partial z}(z,v) \cdot (z_2,\ldots,z_n,v) + \frac{\partial \phi}{\partial v}(z,v)\overline{v} \equiv f(\phi(z,v),\psi(z,v)).$$

thus ϕ is independent of v: $x = \phi(z)$ and $u = \psi(z, v)$ transform $\frac{d}{dt}x = f(x, u)$ into $z_1^{(n)} = v$.

11

Theorem (Jakubczyk and Respondek, 1980):

$$\frac{d}{dt}x = f(x) + g_1(x)u_1 + \ldots + g_m(x)u_m$$

is feedback linearizable around the equilibrium (x = 0, u = 0) iff, the vector space depending on x (distributions) $E_i(x)$, $i = 1, \dots, n-1$ defined here below are of constant rank versus x, involutive (stable by Lie-Bracket) and the rank of $E_{n-1}(x)$ is $n = \dim(x)$.

$$E_0(x) = \operatorname{span}\{g_1(x), \dots, g_m(x)\},\$$
$$E_i(x) = \operatorname{span}\{E_{i-1}(x), [f, E_{i-1}](x)\} \quad i \ge 1$$

where $[f, g_i] = Df \cdot g_i - Dg_i \cdot f$ is the Lie-Bracket of the two vector fields f and g_i .

Example: $\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin\theta + u$.

A simple exothermic batch reactor.

Dynamics:

$$\frac{d}{dt}x_1 = -k_0 \exp(-E/R\theta) (x_1)^{\alpha}$$
$$\frac{d}{dt}\theta = k \exp(-E/R\theta) (x_1)^{\alpha} + u.$$

13

Modeling: mass and energy balance, Arhenius kinetics.

$$\frac{d}{dt}(Vx_1) = -Vr(x,\theta)$$
$$\frac{d}{dt}(Vx_2) = Vr(x,\theta)$$
$$\frac{d}{dt}(V\rho C_p\theta) = V\Delta Hr(x,\theta) + Q$$
$$r(x,\theta) = k_0 \exp(-E/R\theta) (x_1)^{\alpha}$$
Set $k = \frac{\Delta H}{\rho C_p}$ and $u = \frac{Q}{V\rho C_p}$ to obtain
$$\frac{d}{dt}x_1 = -k_0 \exp(-E/R\theta) (x_1)^{\alpha}$$
$$\frac{d}{dt}\theta = k \exp(-E/R\theta) (x_1)^{\alpha} + u.$$

14

Explicit description of batch trajectories

Instead of fixing the initial condition $x_1(0) = x_1^0$, $\theta(0) = \theta^0$, the control $t \mapsto u(t)$ and integrating

$$\frac{d}{dt}x_1 = -k_0 \exp(-E/R\theta) (x_1)^{\alpha}$$
$$\frac{d}{dt}\theta = k \exp(-E/R\theta) (x_1)^{\alpha} + u(t)$$

take the system in the reverse way and assume that x_1 is a known time function

$$t \mapsto x_1 = y(t).$$

Then you bypass integration.

The inverse system has no dynamics

Set $x_1 = y(t)$ and compute θ and u knowing that

$$\frac{d}{dt}x_1 = -k_0 \exp(-E/R\theta) (x_1)^{\alpha}$$
$$\frac{d}{dt}\theta = k \exp(-E/R\theta) (x_1)^{\alpha} + u.$$

The mass conservation gives the temperature θ ,

$$\exp(-E/R\theta) = -\frac{\frac{d}{dt}y}{k_0y^{\alpha}} =$$
function of $(y, \dot{y}),$

and energy balance gives exchanger duty u,

$$u = \frac{d}{dt}\theta + \frac{\frac{d}{dt}y}{k} =$$
function of (y, \dot{y}, \ddot{y})

Explicit description.

The system

$$\frac{d}{dt}x_1 = -k_0 \exp(-E/R\theta) (x_1)^{\alpha}, \quad \frac{d}{dt}\theta = k \exp(-E/R\theta) (x_1)^{\alpha} + u$$

and the system

$$x_1 = y, \quad \theta =$$
function of $(y, \dot{y}), \quad u =$ function of (y, \dot{y}, \ddot{y})

represent the same object. It is just another presentation of the dynamics with an additional variable y and its derivatives. Dynamics admitting representation similar to the second system are called flat and the additional quantity y is then the flat output.

For the batch reactor, this is the simplest way to use the fact that the system is linearizable via static feedback and change of coordinates.

Motion planning for the batch reactor

The initial condition

$$p = (x_1^0, \theta^0)$$

and final condition

$$q = (x_1^T, \theta^T)$$

provide initial and final positions and velocities for y:

$$y(0) = x_1^0 \qquad \frac{d}{dt}y(0) = -k_0 \exp(-E/R\theta^0) (x_1^0)^\alpha$$
$$y(T) = x_1^T \qquad \frac{d}{dt}y(T) = -k_0 \exp(-E/R\theta^T) (x_1^T)^\alpha$$

and in between y(t) is free for t > 0 and t < T.

Motion planning for the batch reactor

Take $t \mapsto y^r(t)$ with such initial and final constraints. Compute u^r as

$$u^r =$$
function of $(y^r, \dot{y}^r, \ddot{y}^r)$

Then the solution of the initial value problem

is

$$\frac{d}{dt}x_1 = -k_0 \exp(-E/R\theta) (x_1)^{\alpha}, \quad x_1(0) = x_1^0$$
$$\frac{d}{dt}\theta = k \exp(-E/R\theta) (x_1)^{\alpha} + u^r(t), \quad \theta(0) = \theta^0$$

$$x_1(t) = y^r(t), \quad \theta(t) =$$
function of $(y^r(t), \dot{y}^r(t))$
and thus reaches $q = (x_1^T, \theta^T)$ at time T .

Tracking for the batch reactor

The reference trajectory defined via $t \mapsto y^r(t)$:

 $x_1^r = y^r$, $\theta^r =$ function of (y^r, \dot{y}^r) , $u^r =$ function of $(y^r, \dot{y}^r, \ddot{y}^r)$

The change of variable:

$$(x_1,\theta) \longleftrightarrow (y,\dot{y}).$$

The linearizing control:

$$u =$$
function of $(y, \dot{y}, v) = u^r + \Delta u$

The stable closed-loop error dynamics:

$$\ddot{y} = v = \ddot{y}^r - 2\xi\omega_0(\dot{y} - \dot{y}^r) - \omega_0^2(y - y^r)$$

with $\xi > 0$ and $\omega_0 > 0$ design parameters.

Fully actuated mechanical systems

The computed torque method for

$$\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{q}} \right] = \frac{\partial L}{\partial q} + M(q)u$$

consists in setting $t \mapsto q(t)$ to obtain u as a function of q, \dot{q} and \ddot{q} .

(Fully actuated: dim $q = \dim u$ and M(q) invertible).

Flat systems (Fliess-et-al, 1992,...,1999)

A basic definition extending remark of Isidori-Moog-DeLuca (CDC86) on dynamic feedback linearization (Charlet-Lévine-Marino (1989)):

$$\frac{d}{dt}x = f(x, u)$$

is flat, iff, exist $m = \dim(u)$ output functions $y = h(x, u, \dots, u^{(p)})$, $\dim(h) = \dim(u)$, such that the inverse of $u \mapsto y$ has no dynamics, i.e.,

$$x = \Lambda\left(y, \dot{y}, \dots, y^{(q)}\right), \quad u = \Upsilon\left(y, \dot{y}, \dots, y^{(q+1)}\right).$$

Behind this: an equivalence relationship exchanging trajectories (absolute equivalence of Cartan and dynamic feedback: Shadwick (1990), Sluis (1992), Nieuwstadt-et-al (1994), ...).

Inversion and structure algorithm on a academic system

Assume $t \mapsto y(t)$ is known and compute u and x. Similar computations for singular extremal and state constraint in optimal control. Notion of I/O order and more generally of the structure at infinity. Notion of zero dynamics.

Equivalence and flatness (extrinsic point of view)

Elimination of u from the n state equations $\frac{d}{dt}x = f(x, u)$ provides an under-determinate system of n - m equations with n unknowns

$$F\left(x,\frac{d}{dt}x\right) = 0.$$

An endogenous transformation $x \mapsto z$ is defined by

$$z = \Phi(x, \dot{x}, \dots, x^{(p)}), \quad x = \Psi(z, \dot{z}, \dots, z^{(q)})$$

(nonlinear analogue of uni-modular matrices, the "integral free" transformations of Hilbert).

Two systems are equivalents, iff, exists an endogenous transformation exchanging the equations.

A system equivalent to the trivial equation $z_1 = 0$ with $z = (z_1, z_2)$ is flat with z_2 the flat output.

$2k\pi$ the juggling robot (Lenoir-et-al CDC98) (video)

5 degrees of freedom($\theta_1, \theta_2, \theta_3$) and the direction \vec{SH} . 3 motors.

Huygens isochronous pendulum

Since

$$\vec{T}/m = \ddot{H} - \vec{g}$$
 and $\vec{T} / / \vec{HS}$

we have S via

$$\overrightarrow{HS} / / \ddot{H} - \vec{g}$$
 and $HS = l$.

Planning the inversion trajectory Any smooth trajectory connecting the stable to the unstable equilibrium is such that $\ddot{H}(t) = \vec{g}$ for at least one time *t*. During the motion there is a switch from the stable root to the unstable root (singularity crossing when $\ddot{H} = \vec{g}$)

Crossing smoothly the singularity $\ddot{H} = \vec{g}$

The geometric path followed by H is a half-circle of radius l of center O:

$$H(t) = 0 + l \begin{bmatrix} \sin \theta(s) \\ -\cos \theta(s) \end{bmatrix} \text{ with } \theta(s) = \mu(s)\pi, \quad s = t/T \in [0, 1]$$

where T is the transition time and $\mu(s)$ a sigmoid function of the form:

Time scaling and dilation of $\ddot{H} - \vec{g}$

Denote by ' derivation with respect to s. From

$$H(t) = 0 + l \begin{bmatrix} \sin \theta(s) \\ -\cos \theta(s) \end{bmatrix}, \quad \theta(s) = \mu(t/T)\pi$$

we have

$$\ddot{H} = H''/T^2.$$

Changing *T* to αT yields to a dilation of factor $1/\alpha^2$ of the closed geometric path described by $\ddot{H} - \vec{g}$ for $t \in [0, T]$ ($\ddot{H}(0) = \ddot{H}(T) = 0$), the dilation center being $-\vec{g}$.

The inversion time is obtained when this closed path passes through 0. This construction holds true for generic μ .

Outline (flatness and PDE)

- Pendulum dynamics.
- Water in a moving box
- Heat equation
- Quantum particle in a moving box
- Conclusion

One linearized pendulum

Newton equation with $y = u + l_1 \theta_1$:

$$\frac{d^2y}{dt^2} = -g\theta_1 = \frac{g}{l_1}(y-u).$$

Computed torque method:

$$\theta_1 = -\frac{\ddot{y}}{g}, \quad u = y - l_1 \theta_1.$$
Two linearized pendulums in series

Brunovsky (flat) output $y = u + l_1\theta_1 + l_2\theta_2$:

$$\theta_2 = -\frac{\ddot{y}}{g}, \quad \theta_1 = -\frac{m_1(\breve{y} - \breve{l}_2\theta_2)}{(m_1 + m_2)g} + \frac{m_2}{m_1 + m_2}\theta_2$$

and $u = y - l_1 \theta_1 - l_2 \theta_2$ is a linear combination of $(y, y^{(2)}, y^{(4)})$.

n pendulums in series

Brunovsky (flat) output $y = u + l_1\theta_1 + \ldots + l_n\theta_n$:

$$u = y + a_1 y^{(2)} + a_2 y^{(4)} + \ldots + a_n y^{(2n)}.$$

When n tends to ∞ the system tends to a partial differential equation.

The heavy chain (Petit-R 2001).

$$U(t)$$

$$z = L$$

$$X(z,t)$$

$$\frac{\partial^{2}X}{\partial t^{2}} = \frac{\partial}{\partial z} \left(gz\frac{\partial X}{\partial z}\right)$$

$$X(L,t) = U(t)$$

Flat output y(t) = X(0, t) with

$$U(t) = \frac{1}{2\pi} \int_0^{2\pi} y\left(t - 2\sqrt{L/g} \sin\zeta\right) d\zeta$$

With the same flat output, for a discrete approximation (n pendulums in series, n large) we have

$$u(t) = y(t) + a_1 \ddot{y}(t) + a_2 y^{(4)}(t) + \ldots + a_n y^{(2n)}(t),$$

for a continuous approximation (the heavy chain) we have

$$U(t) = \frac{1}{2\pi} \int_0^{2\pi} y\left(t + 2\sqrt{L/g} \sin\zeta\right) d\zeta.$$

Why? Because formally

$$y(t+2\sqrt{L/g}\,\sin\zeta) = y(t) + \ldots + \frac{\left(2\sqrt{L/g}\,\sin\zeta\right)^n}{n!}\,y^{(n)}(t) + \ldots$$

But integral formula is preferable (divergence of the series...).

The general solution of the PDE

$$\frac{\partial^2 X}{\partial t^2} = \frac{\partial}{\partial z} \left(g z \frac{\partial X}{\partial z} \right)$$

is

$$X(z,t) = \frac{1}{2\pi} \int_0^{2\pi} y\left(t - 2\sqrt{z/g} \, \sin\zeta\right) \, d\zeta$$

where $t \mapsto y(t)$ is any time function.

Proof: replace $\frac{d}{dt}$ by *s*, the Laplace variable, to obtain a singular second order ODE in *z* with bounded solutions. Symbolic computations and operational calculus on

$$s^2 X = \frac{\partial}{\partial z} \left(g z \frac{\partial X}{\partial z} \right).$$

Symbolic computations in the Laplace domain

Thanks to
$$x = 2\sqrt{\frac{z}{g}}$$
, we get
 $x\frac{\partial^2 X}{\partial x^2}(x,t) + \frac{\partial X}{\partial x}(x,t) - x\frac{\partial^2 X}{\partial t^2}(x,t) = 0.$

Use Laplace transform of X with respect to the variable t

$$x\frac{\partial^2 \hat{X}}{\partial x^2}(x,s) + \frac{\partial \hat{X}}{\partial x}(x,s) - xs^2 \hat{X}(x,s) = 0.$$

This is a the Bessel equation defining J_0 and Y_0 :

$$\hat{X}(z,s) = a(s) J_0(2is\sqrt{z/g}) + b(s) Y_0(2is\sqrt{z/g}).$$

Since we are looking for a bounded solution at z = 0 we have b(s) = 0and (remember that $J_0(0) = 1$):

$$\widehat{X}(z,s) = J_0(2is\sqrt{z/g})\widehat{X}(0,s).$$

$$\widehat{X}(z,s) = J_0(2\imath s \sqrt{z/g}) \widehat{X}(0,s).$$

Using Poisson's integral representation of J_0

$$J_0(\zeta) = \frac{1}{2\pi} \int_0^{2\pi} \exp(\imath \zeta \sin \theta) \, d\theta, \quad \zeta \in \mathbb{C}$$

we have

$$J_0(2is\sqrt{x/g}) = \frac{1}{2\pi} \int_0^{2\pi} \exp(2s\sqrt{x/g}\sin\theta) \ d\theta.$$

In terms of Laplace transforms, this last expression is a combination of delay operators:

$$X(z,t) = \frac{1}{2\pi} \int_0^{2\pi} y(t+2\sqrt{z/g}\sin\theta) \ d\theta$$

with y(t) = X(0, t).

42

Explicit parameterization of the heavy chain

The general solution of

$$\frac{\partial^2 X}{\partial t^2} = \frac{\partial}{\partial z} \left(g z \frac{\partial X}{\partial z} \right), \quad U(t) = X(L,t)$$

reads

$$X(z,t) = \frac{1}{2\pi} \int_0^{2\pi} y(t+2\sqrt{z/g}\sin\theta) \ d\theta$$

There is a one to one correspondence between the (smooth) solutions of the PDE and the (smooth) functions $t \mapsto y(t)$.

The following maps exchange the trajectories:

$$\begin{cases} x(t) = X(0,t) \\ u(t) = X(0,t) + \frac{l}{g} \frac{\partial^2 X}{\partial t^2}(0,t) \end{cases} \begin{cases} X(z,t) = \frac{1}{2\pi} \int_0^{2\pi} x \left(t - 2\sqrt{z/g} \sin \zeta \right) d\zeta \\ U(t) = \frac{1}{2\pi} \int_0^{2\pi} x \left(t - 2\sqrt{L/g} \sin \zeta \right) d\zeta \end{cases}$$

The Towed Cable Flight Control System, Murray (1996)

Heavy chain with a variable section

The general solution of

$$\begin{cases} \frac{\tau'(z)}{g} & \frac{\partial^2 X}{\partial t^2} = \frac{\partial}{\partial z} \left(\tau(z) \frac{\partial X}{\partial z} \right) \\ X(L,t) = u(t) \end{cases}$$

where $\tau(z) \ge 0$ is the tension in the rope, can be parameterized by an arbitrary time function y(t), the position of the free end of the system y = X(0, t), via delay and advance operators with **compact** support (Paley-Wiener theorem). The Indian rope.

-

$$\frac{\partial}{\partial z} \left(g z \frac{\partial X}{\partial z} \right) + \frac{\partial^2 X}{\partial t^2} = 0$$

$$X(L,t) = U(t)$$
The equation becomes elliptic and the Cauchy problem is not well posed in the sense of Hadamard. Nevertheless formulas are still valid with a complex time and y holomorphic
$$X(z,t) = \frac{1}{2\pi} \int_0^{2\pi} y \left(t - (2\sqrt{z/g} \sin \zeta) \sqrt{-1} \right) d\zeta.$$

47

$$\frac{\partial h}{\partial t} + \frac{\partial (hv)}{\partial x} = 0, \quad \frac{\partial v}{\partial t} + \ddot{D} + v \frac{\partial v}{\partial x} = -g \frac{\partial h}{\partial x}$$

with $v(t, -l) = v(t, l) = 0.$

The nonlinear dynamics is controllable (Coron 2002) but the tangent linearization is not controllable (Petit-R, 2002).

1D tank: tangent linearization.

Assumptions: $h = \overline{h} + H$, $|H| \ll \overline{h}$; $|\ddot{D}| \ll g$, $|v| \ll c = \sqrt{g\overline{h}}$.

$$\frac{\partial^2 H}{\partial t^2} = g\bar{h}\frac{\partial^2 H}{\partial x^2}, \qquad \qquad \frac{\partial H}{\partial x}(t,-l) = \frac{\partial H}{\partial x}(t,l) = -\frac{1}{g}\ddot{D}(t)$$

49

Non controllable system

Since $H = \phi(t + x/c) + \psi(t - x/c)$, with ϕ and ψ arbitrary, one gets $\begin{cases} \phi'(t + \Delta) - \psi'(t - \Delta) = -c\ddot{D}(t)/g \\ \phi'(t - \Delta) - \psi'(t + \Delta) = -c\ddot{D}(t)/g \end{cases}$

with $2\Delta = l/c$. Elimination of D yields

$$\phi'(t+\Delta) + \psi'(t+\Delta) = \phi'(t-\Delta) + \psi'(t-\Delta).$$

So the quantity $\pi(t) = \phi(t) + \psi(t)$ satisfies an autonomous equation (torsion element of the underlying module, Fliess, Mounier, ...)

$$\pi(t+2\Delta)=\pi(t).$$

The system is not controllable.

Trajectories passing through a steady-state

Since $\pi(t) = \phi(t) + \psi(t) \equiv 0$ we have

$$\phi'(t + \Delta) + \phi'(t - \Delta) = -c\ddot{D}(t)/g$$

thus

$$\phi(t) = -\left(\frac{c}{2g}\right)y'(t), \quad D(t) = (y(t+\Delta) + y(t-\Delta))/2$$

and

$$\begin{cases} H(t,x) = \frac{1}{2} \sqrt{\frac{\overline{h}}{g}} \left[y'(t+x/c) - y'(t-x/c) \right] \\ D(t) = \frac{1}{2} \left[y(t+\Delta) + y(t-\Delta) \right] \end{cases}$$

with $t \mapsto y(t)$ an arbitrary time function.

Physical interpretation of *y*

The tumbler in movement: 2D cylindrical tank

Modelling the 2D tank

The liquid occupies a cylinder with vertical edges with the 2D domain Ω as horizontal section. The tangent linear equations are:

$$\frac{\partial^2 H}{\partial t^2} = g\bar{h}\Delta H \quad \text{in }\Omega$$
$$\nabla H \cdot \vec{n} = -\frac{\ddot{D}(t)}{g} \cdot \vec{n} \quad \text{on }\partial\Omega$$

with $D = (D_1, D_2)$, \vec{n} the normal to $\partial \Omega$.

2D Tank, circular shape.

Steady-state motion planning results from a symbolic computations in polar coordinates:

$$H(t, x_1, x_2) = \frac{1}{\pi} \sqrt{\bar{h}/g} \int_0^{2\pi} \left[\cos \zeta \ y_1' \left(t - \frac{x_1 \cos \zeta + x_2 \sin \zeta}{c} \right) \right. \\ \left. + \sin \zeta \ y_2' \left(t - \frac{x_1 \cos \zeta + x_2 \sin \zeta}{c} \right) \right] d\zeta$$
$$D_1(t) = \frac{1}{\pi} \int_0^{2\pi} \left[\cos^2 \zeta \ y_1 \left(t - \frac{l \cos \zeta}{c} \right) \right] d\zeta$$
$$D_2(t) = \frac{1}{\pi} \int_0^{2\pi} \left[\sin^2 \zeta \ y_2 \left(t - \frac{l \sin \zeta}{c} \right) \right] d\zeta$$

with $t \mapsto y_1(t)$ and $t \mapsto y_2(t)$ as you want.

Compartmental approximation of the heat equation

$$\theta_1$$
 θ_2 θ_3 λ

Energy balance equations

$$\begin{cases} \frac{d}{dt}\theta_1 = (\theta_2 - \theta_1) \\ \frac{d}{dt}\theta_2 = (\theta_1 - \theta_2) + (\theta_3 - \theta_2) \\ \frac{d}{dt}\theta_3 = (\theta_2 - \theta_3) + (u - \theta_3). \end{cases}$$

Linear system controllable with $y = \theta_1$ as Brunovsky or flat output: it can be transformed via linear change of coordinates and linear static feedback into $y^{(3)} = v$.

Compartmental approximation of the heat equation (end)

An arbitrary number n of compartments yields

$$\begin{cases} \dot{\theta}_1 = (\theta_2 - \theta_1) \\ \dot{\theta}_2 = (\theta_1 - \theta_2) + (\theta_3 - \theta_2) \\ \vdots \\ \dot{\theta}_i = (\theta_{i-1} - \theta_i) + (\theta_{i+1} - \theta_i) \\ \vdots \\ \dot{\theta}_{n-1} = (\theta_{n-2} - \theta_{n-1}) + (\theta_n - \theta_{n-1}) \\ \dot{\theta}_n = (\theta_{n-1} - \theta_n) + (u - \theta_n). \end{cases}$$

 $y = \theta_1$ remains the Brunovsky output: via linear change of coordinates and linear static feedback we have $y^{(n)} = v$.

When *n* tends to infinity we recover $\partial_t \theta = \partial_x^2 \theta$

Heat equation

$$\partial_t \theta(x,t) = \partial_x^2 \theta(x,t), \quad x \in [0,1]$$

 $\partial_x \theta(0,t) = 0 \qquad \theta(1,t) = u(t).$

58

Series solutions

Set, formally

$$\theta = \sum_{i=0}^{\infty} a_i(t) \frac{x^i}{i!}, \quad \partial_t \theta = \sum_{i=0}^{\infty} \frac{da_i}{dt} \left(\frac{x^i}{i!}\right), \quad \partial_x^2 \theta = \sum_{i=0}^{\infty} a_{i+2} \left(\frac{x^i}{i!}\right)$$

d $\partial_t \theta = \partial_x^2 \theta$ reads $da_i/dt = a_{i+2}$. Since $a_1 = \partial_x \theta(0, t) = 0$ ar

and $\partial_t \theta = \partial_x^2 \theta$ reads $da_i/dt = a_{i+2}$. Since $a_1 = \partial_x \theta(0, t) = 0$ and $a_0 = \theta(0, t)$ we have

$$a_{2i+1} = 0, \quad a_{2i} = a_0^{(i)}$$

Set $y := a_0 = \theta(0, t)$ we have

$$\theta(x,t) = \sum_{i=0}^{\infty} y^{(i)}(t) \left(\frac{x^{2i}}{(2i)!}\right)$$

Symbolic computations: s := d/dt, $s \in \mathbb{C}$

The general solution of $\theta'' = s\theta$ reads (' := d/dx)

$$\theta = \cosh(x\sqrt{s}) a(s) + \frac{\sinh(x\sqrt{s})}{\sqrt{s}} b(s)$$

The boundary condition $\theta(1) = u$ and $\theta'(0) = 0$ reads

$$u = \cosh(\sqrt{s}) a(s) + \frac{\sinh(\sqrt{s})}{\sqrt{s}} b(s), \quad b = 0$$

Since $y = \theta(0) = a$ we have

$$\theta(x,s) = \cosh(x\sqrt{s}) \ y(s) = \left(\sum_{i\geq 0} \frac{x^{2i}}{(2i)!} s^i\right) \ y(s).$$

The general solution parameterized via $t \mapsto y(t) \in \mathbb{R}, C^{\infty}(y(t)) := \theta(0,t)$

$$\theta(x,t) = \sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2i)!} x^{2i}$$
$$u(t) = \sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2i)!}.$$

Convergence issue.

Gevrey function of order α

A C^{∞} time function $[0,T] \ni t \mapsto y(t)$ is of Gevrey order α when, $\exists C, D > 0, \quad \forall t \in [0,T], \forall i \ge 0, \quad |y^{(i)}(t)| \le CD^i \Gamma(1 + (\alpha + 1)i)$ where Γ is the classical gamma function with $n! = \Gamma(n+1), \forall n \in \mathbb{N}$.

Analytic functions correspond to Gevrey functions of order \leq 0. When $\alpha > 0$, the class of α -order functions contains non-zero functions with compact supports. Prototype of such functions:

$$t \mapsto y(t) = \begin{cases} e^{-\left(\frac{1}{t(1-t)}\right)^{\frac{1}{\alpha}}} & \text{if } t \in]0, 1[\\ 0 & \text{otherwise.} \end{cases}$$

Operators P(s) as entire functions of *s*, order at infinity

 $\mathbb{C} \ni s \mapsto P(s) = \sum_{i \ge 0} a_i s^i$ is an entire function when the radius of convergence is infinite. If its order at infinity is $\sigma > 0$ and its type is finite, i.e., $\exists M, K > 0$ such that $\forall s \in \mathbb{C}, |P(s)| \le M \exp(K|s|^{\sigma})$, then

$$\exists A, B > 0 \mid \forall i \ge 0, \quad |a_i| \le A \frac{B^i}{\Gamma(i/\sigma + 1)}$$

 $\cosh(\sqrt{s})$ and $\sinh(\sqrt{s})/\sqrt{s}$ are entire functions (order $\sigma = 1/2$, type 1).

Take P(s) of order σ with s = d/dt. Then P(s)y(s) corresponds to series with a strictly positive convergence radius

$$P(s)y(s) \equiv \sum_{i=0}^{\infty} a_i y^{(i)}(t)$$

when $t \mapsto y(t)$ is a Gevrey function of order $\alpha < 1/\sigma - 1$.

Motion planning of the heat equation

$$\begin{aligned} \text{Take } \sum_{i \ge 0} a_i \frac{\xi^i}{i!} \text{ and } \sum_{i \ge 0} b_i \frac{\xi^i}{i!} \text{ entire functions of } \xi. \text{ With } \sigma > 1 \\ y(t) &= \left(\sum_{i \ge 0} a_i \frac{t^i}{i!}\right) \left(\frac{e^{\frac{-T^{\sigma}}{(T-t)^{\sigma}}}}{e^{\frac{-T^{\sigma}}{t^{\sigma}}} + e^{\frac{-T^{\sigma}}{(T-t)^{\sigma}}}}\right) + \left(\sum_{i \ge 0} b_i \frac{t^i}{i!}\right) \left(\frac{e^{\frac{-T^{\sigma}}{t^{\sigma}}}}{e^{\frac{-T^{\sigma}}{t^{\sigma}}} + e^{\frac{-T^{\sigma}}{(T-t)^{\sigma}}}}\right) \end{aligned}$$

the series

$$\theta(x,t) = \sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2i)!} x^{2i}, \quad u(t) = \sum_{i=1}^{+\infty} \frac{y^{(i)}(t)}{(2i)!}.$$

are convergent and provide a trajectory from

$$\theta(x,0) = \sum_{i \ge 0} a_i \frac{x^{2i}}{(2i)!}$$
 to $\theta(x,T) = \sum_{i \ge 0} b_i \frac{x^{2i}}{(2i)!}$

A quantum analogue of the water-tank problem: the quantum box problem (R. 2002) (Beauchard 2005))

In a Galilean frame

$$i\frac{\partial\phi}{\partial t} = -\frac{1}{2}\frac{\partial^2\phi}{\partial z^2}, \quad z \in [v - \frac{1}{2}, v + \frac{1}{2}],$$
$$\phi(v - \frac{1}{2}, t) = \phi(v + \frac{1}{2}, t) = 0$$

Particle in a moving box of position v

In a Galilean frame

$$i\frac{\partial\phi}{\partial t} = -\frac{1}{2}\frac{\partial^2\phi}{\partial z^2}, \quad z \in [v - \frac{1}{2}, v + \frac{1}{2}],$$
$$\phi(v - \frac{1}{2}, t) = \phi(v + \frac{1}{2}, t) = 0$$

where \boldsymbol{v} is the position of the box and \boldsymbol{z} is an absolute position .

In the box frame:

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial q^2} + \ddot{v}q\psi, \quad q \in [-\frac{1}{2}, \frac{1}{2}],$$
$$\psi(-\frac{1}{2}, t) = \psi(\frac{1}{2}, t) = 0$$

Tangent linearization around eigen-state $\bar{\psi}$ of energy $\bar{\omega}$

$$\psi(t,q) = \exp(-i\bar{\omega}t)(\bar{\psi}(q) + \Psi(q,t))$$

and $\boldsymbol{\Psi}$ satisfies

$$i\frac{\partial\Psi}{\partial t} + \bar{\omega}\Psi = -\frac{1}{2}\frac{\partial^2\Psi}{\partial q^2} + \ddot{v}q(\bar{\psi} + \Psi)$$
$$0 = \Psi(-\frac{1}{2},t) = \Psi(\frac{1}{2},t).$$

Assume Ψ and \ddot{v} small and neglecte the second order term $\ddot{v}q\Psi$:

$$i\frac{\partial\Psi}{\partial t} + \bar{\omega}\Psi = -\frac{1}{2}\frac{\partial^2\Psi}{\partial q^2} + \ddot{v}q\bar{\psi}, \quad \Psi(-\frac{1}{2},t) = \Psi(\frac{1}{2},t) = 0.$$

Operational computations s = d/dt

The general solution of

$$(\imath s + \bar{\omega})\Psi = -\frac{1}{2}\Psi'' + s^2 v q \bar{\psi}$$

is

$$\Psi = A(s,q)a(s) + B(s,q)b(s) + C(s,q)v(s)$$

where

$$A(s,q) = \cos\left(q\sqrt{2\imath s + 2\bar{\omega}}\right)$$
$$B(s,q) = \frac{\sin\left(q\sqrt{2\imath s + 2\bar{\omega}}\right)}{\sqrt{2\imath s + 2\bar{\omega}}}$$
$$C(s,q) = (-\imath sq\bar{\psi}(q) + \bar{\psi}'(q)).$$

68

Case $q \mapsto \overline{\phi}(q)$ even

The boundary conditions imply

 $A(s, 1/2)a(s) = 0, \quad B(s, 1/2)b(s) = -\psi'(1/2)v(s).$

a(s) is a torsion element: the system is not controllable.

Nevertheless, for steady-state controllability, we have

$$b(s) = -\bar{\psi}'(1/2) \frac{\sin\left(\frac{1}{2}\sqrt{-2is+2\bar{\omega}}\right)}{\sqrt{-2is+2\bar{\omega}}} y(s)$$
$$v(s) = \frac{\sin\left(\frac{1}{2}\sqrt{2is+2\bar{\omega}}\right)}{\sqrt{2is+2\bar{\omega}}} \frac{\sin\left(\frac{1}{2}\sqrt{-2is+2\bar{\omega}}\right)}{\sqrt{-2is+2\bar{\omega}}} y(s)$$
$$\Psi(s,q) = B(s,q)b(s) + C(s,q)v(s)$$

Series and convergence

$$v(s) = \frac{\sin\left(\frac{1}{2}\sqrt{2is+2\bar{\omega}}\right)}{\sqrt{2is+2\bar{\omega}}} \frac{\sin\left(\frac{1}{2}\sqrt{-2is+2\bar{\omega}}\right)}{\sqrt{-2is+2\bar{\omega}}} y(s) = F(s)y(s)$$

where the entire function $s \mapsto F(s)$ is of order 1/2,

$$\exists K, M > 0, \forall s \in \mathbb{C}, \quad |F(s)| \le K \exp(M|s|^{1/2}).$$

Set $F(s) = \sum_{n\geq 0} a_n s^n$ where $|a_n| \leq K^n / \Gamma(1+2n)$ with K > 0 independent of n. Then F(s)y(s) corresponds in the time domain to

$$\sum_{n\geq 0} a_n y^{(n)}(t)$$

that is convergent when $t \mapsto y(t)$ is a C^{∞} time function of Gevrey order $\alpha < 1$: i.e. $\exists M > 0$ such that $|y^{(n)}(t)| \leq M^n \Gamma(1 + (\alpha + 1)n)$

Steady state controllability

Steering from $\Psi = 0$, v = 0 at time t = 0, to $\Psi = 0$, v = D at t = T is possible with the following Gevrey function of order σ :

$$[0,T] \ni t \mapsto y(t) = \begin{cases} 0 & \text{for } t \leq 0\\ \frac{\exp\left(-\left(\frac{T}{t}\right)^{\frac{1}{\sigma}}\right)}{\exp\left(-\left(\frac{T}{t}\right)^{\frac{1}{\sigma}}\right) + \exp\left(-\left(\frac{T}{T-t}\right)^{\frac{1}{\sigma}}\right)} & \text{for } 0 < t < T\\ \overline{D} & \text{for } t \geq T \end{cases}$$

with $\overline{D} = \frac{2\overline{\omega}D}{\sin^2(\sqrt{\overline{\omega}/2})}$. The fact that this function is of Gevrey order σ results from its exponential decay of order σ around 0 and 1.
Practical computations via Cauchy formula

$$y^{(n)}(t) = \frac{\Gamma(n+1)}{2i\pi} \oint_{\gamma} \frac{y(t+\xi)}{\xi^{n+1}} d\xi$$

where γ is a closed path around zero, $\sum_{n\geq 0} a_n y^{(n)}(t)$ becomes

$$\sum_{n\geq 0} a_n \frac{\Gamma(n+1)}{2\imath \pi} \oint_{\gamma} \frac{y(t+\xi)}{\xi^{n+1}} d\xi = \frac{1}{2\imath \pi} \oint_{\gamma} \left(\sum_{n\geq 0} a_n \frac{\Gamma(n+1)}{\xi^{n+1}} \right) y(t+\xi) d\xi.$$

But

$$\sum_{n\geq 0} a_n \frac{\Gamma(n+1)}{\xi^{n+1}} = \int_{D_\delta} F(s) \exp(-s\xi) ds = B_1(F)(\xi)$$

is the Borel transform of F.

Practical computations via Cauchy formula (end)

In the time domain F(s)y(s) corresponds to

$$\frac{1}{2i\pi} \oint_{\gamma} B_1(F)(\xi) y(t+\xi) d\xi$$

where γ is a closed path around zero. Such integral representation is very useful when y is defined by convolution with a real signal Y,

$$y(\zeta) = \frac{1}{\varepsilon\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp(-(\zeta - t)^2/2\varepsilon^2) Y(t) dt$$

where $\mathbb{R} \ni t \mapsto Y(t) \in \mathbb{R}$ is any measurable and bounded function:

$$v(t) = \int_{-\infty}^{+\infty} \left[\frac{1}{\imath \varepsilon (2\pi)^{\frac{3}{2}}} \oint_{\gamma} B_1(F)(\xi) \exp(-(\xi - \tau)^2 / 2\varepsilon^2) d\xi \right] Y(t - \tau) d\tau.$$

Conclusion

• 1-D wave equation: eigenvalue asymptotics $|\lambda_n| \sim n$:

Prototype:
$$\prod_{n=1}^{+\infty} \left(1 + \frac{s^2}{n^2} \right) = \frac{\sinh(\pi s)}{\pi s}$$

entire function of exponential type, i.e, order one and finite type (OK).

• 1-D Heat equation: eigenvalue asymptotics $|\lambda_n| \sim n^2$:

Prototype:
$$\prod_{n=1}^{+\infty} \left(1 - \frac{s}{n^2} \right) = \frac{\sinh(\pi\sqrt{s})}{\pi\sqrt{s}}$$

entire function of order 1/2 (OK).

Conclusion (continued)

Systems described by 2-D partial differential equation on Ω with 0-D control u(t) on the boundary. An Example

$$\frac{\partial H}{\partial t} = \Delta H \text{ on } \Omega$$
$$H = u(t) \text{ on } \Gamma_1$$
$$\frac{\partial H}{\partial n} = 0 \text{ on } \Gamma_2$$

where the control is not distributed on Γ_1 ($\partial \Omega = \Gamma_1 \cup \Gamma_2$).

Steady-state controllability: steering in finite time from one steady-state to another steady-state not possible in general (Chitour et al. 2005).

Conclusion (continued)

• 2D-heat equation: eigenvalue asymptotics $w_n \sim -n$

Prototype:
$$\prod_{n=1}^{+\infty} \left(1 + \frac{s}{n}\right) \exp(-s/n) = \frac{\exp(-\gamma s)}{s\Gamma(s)}$$

entire function of order 1 but of infinite type (?).

• 2D-wave equation: eigenvalue asymptotics $|w_n| \sim \sqrt{n}$

Prototype:
$$\prod_{n=1}^{+\infty} \left(1 - \frac{s^2}{n} \right) \exp(s^2/n) = \frac{-\exp(\gamma s^2)}{s^2 \Gamma(-s^2)}$$

entire function of order 2 but of infinite type (?).

Conclusion (end)

1-D wave equation with internal damping:

$$\frac{\partial^2 H}{\partial t^2} = \frac{\partial^2 H}{\partial x^2} + \epsilon \frac{\partial^3 H}{\partial x^2 \partial t}$$
$$H(0,t) = 0, \quad H(1,t) = u(t)$$

where the eigenvalues are the zeros of analytic function

$$P(s) = \cosh\left(\frac{s}{\sqrt{\epsilon s + 1}}\right)$$

Approximate controllability depends on the choice made for functional space (Rosier-R 2006).

La Cavité Fabry-Perot supraconductrice

Mode gaussien avec un diamètre de 6mm Grand champ par photon (1,5mV/m) Grande durée de vie du champ (1ms) allongée par l'anneau autour des miroirs Accord en fréquence facile Faible champ thermique (< 0,1 photon)

78

*Source: S. Haroche, cours au collège de France.

*

*Source: S. Haroche, cours au collège de France.

A PDE formulation of Jaynes-Cummings controlled model

$$i\frac{d}{dt}\psi = \frac{\Omega}{2}(a|e\rangle\langle g| + a^{\dagger}|g\rangle\langle e|)\psi - (va^{\dagger} + v^{*}a)\psi$$

Since $\psi \in L^2(\mathbb{R}, \mathbb{C}) \otimes \mathbb{C}^2$ and $L^2(\mathbb{R}, \mathbb{C}) \otimes \mathbb{C}^2 \sim (L^2(\mathbb{R}, \mathbb{C}))^2$ we represent ψ by two components ψ_g and ψ_e elements of $L^2(\mathbb{R}, \mathbb{C})$. Up-to some scaling:

$$i\frac{\partial\psi_g}{\partial t} = \left(v_1x + iv_2\frac{\partial}{\partial x}\right)\psi_g + \left(x + \frac{\partial}{\partial x}\right)\psi_e$$
$$i\frac{\partial\psi_e}{\partial t} = \left(x - \frac{\partial}{\partial x}\right)\psi_g + \left(v_1x + iv_2\frac{\partial}{\partial x}\right)\psi_e$$

where $v = v_1 + iv_2 \in \mathbb{C}$ is the control. Remember that

$$a = \frac{1}{\sqrt{2}} \left(x + \frac{\partial}{\partial x} \right), \quad a^{\dagger} = \frac{1}{\sqrt{2}} \left(x - \frac{\partial}{\partial x} \right)$$

Innsbruck linear ion trap

 $\omega_{\text{axial}} \approx 0.7 - 2 \text{ MHz}$ $\omega_{\text{radial}} \approx 5 \text{ MHz}$

*

*Source: F. Schmidt-Kaler, séminaire au Collège de France en 2004.

*

*Source: F. Schmidt-Kaler, séminaire au Collège de France en 2004.

*

*Source: F. Schmidt-Kaler, séminaire au Collège de France en 2004.

83

A single trapped ion controlled via a laser

$$H = \Omega(a^{\dagger}a + 1/2) + \frac{\omega_0}{2} (|e\rangle \langle e| - |g\rangle \langle g|) + \left[ue^{i(\omega t - kX)} + u^* e^{-i(\omega t - kX)} \right] (|e\rangle \langle g| + |g\rangle \langle e|)$$

with $kX = \eta(a + a^{\dagger}), \eta \ll 1$ Lamb-Dicke parameter, $\omega \approx \omega_0$ and the vibration frequency $\Omega \ll \omega, u \in \mathbb{C}$ the control (amplitude and phase modulations of the laser of frequency ω).

Assume $\omega = \omega_0$. In $i \frac{d}{dt} \psi = H \psi$, set $\psi = \exp(-i \omega t \sigma_z/2) \phi$. Then the Hamiltonian becomes

$$\Omega(a^{\dagger}a + 1/2) + \left[ue^{i(\omega t - \eta(a + a^{\dagger}))} + u^{*}e^{-i(\omega t - \eta(a + a^{\dagger}))} \right] \left(e^{-i\omega t} |g\rangle \langle e| + e^{i\omega t} |e\rangle \langle g| \right)$$

Rotating Wave Approximation and PDE formulation

We neglect highly oscillating terms with $e^{\pm 2\imath\omega t}$ and obtain the averaged Hamiltonian:

$$\tilde{H} = \Omega(a^{\dagger}a + 1/2) + ue^{-i\eta(a+a^{\dagger})} |g\rangle \langle e| + u^* e^{i\eta(a+a^{\dagger})} |e\rangle \langle g|$$

corresponds to $(n \mapsto n\sqrt{2})$:

This corresponds to $(\eta \mapsto \eta \sqrt{2})$:

$$i\frac{\partial\psi_g}{\partial t} = \frac{\Omega}{2} \left(x^2 - \frac{\partial^2}{\partial x^2} \right) \psi_g + u e^{-i\eta x} \psi_e$$
$$i\frac{\partial\psi_e}{\partial t} = u^* e^{i\eta x} \psi_g + \frac{\Omega}{2} \left(x^2 - \frac{\partial^2}{\partial x^2} \right) \psi_e$$

where $u \in \mathbb{C}$ is the control $\left|\frac{d}{dt}u\right| \ll \omega |u|$ and $\eta \ll 1, \Omega \ll \omega$.

Controllability of this system ?

Logique quantique avec une chaîne d'ions

Des impulsions laser appliqués séquentiellement aux ions de la chaîne réalisent des portes à un bit et des portes à deux bits. La détection par fluorescence (éventuellement précédée par une rotation du bit) extrait l'information du système.

Beaucoup de problèmes à résoudre pour réaliser un tel dispositif.....

Quelques chaînes d'ions (Innsbruck)

Fluorescence spatialement résolue. Détection en quelques millisecondes (voir première leçon)

*Source: S. Haroche, CdF 2006.

*

Visualisation des modes (N=3)

Les deux premiers modes (centre de masse et accordéon) sont pour tout *N* ceux de fréquences les plus basses. Leurs fréquences sont indépendantes de *N*. Ce n'est plus vrai pour les modes plus élevés.

*Source: S. Haroche, CdF 2006.

*

Les deux premiers modes de vibration sont indépendants du nombre d'ions dans la chaîne (ici cas de 7 ions)

Mode du centre de masse

 \boldsymbol{W}_{z}

Mode "accodéon": élongation proportionnelle à la distance de l'ion au centre de la chaîne

89

Spectre résolu de l'ion interprété en terme de création/annihilation de phonons ($\Gamma < \omega_{r}$)

*Source: S. Haroche, CdF 2006.

*

Two trapped ions controlled via two lasers ω (phonons Ω of the center of mass mode only)

The instantaneous Hamiltionian:

$$\begin{split} H &= \Omega(a^{\dagger}a + 1/2) \\ &+ \frac{\omega_{0}}{2} (|e_{1}\rangle \langle e_{1}| - |g_{1}\rangle \langle g_{1}|) \\ &+ \left[u_{1}e^{i(\omega t - k(a + a^{\dagger}))} + u_{1}^{*}e^{-i(\omega t - k(a + a^{\dagger}))} \right] (|e_{1}\rangle \langle g_{1}| + |g_{1}\rangle \langle e_{1}|) \\ &+ \frac{\omega_{0}}{2} (|e_{2}\rangle \langle e_{2}| - |g_{2}\rangle \langle g_{2}|) \\ &+ \left[u_{2}e^{i(\omega t - k(a + a^{\dagger}))} + u_{2}^{*}e^{-i(\omega t - k(a + a^{\dagger}))} \right] (|e_{2}\rangle \langle g_{2}| + |g_{2}\rangle \langle e_{2}|) \end{split}$$

Two trapped ions controlled via two lasers ω

The averaged Interaction Hamiltonian (RWA)

$$\begin{split} \tilde{H} &= \Omega(a^{\dagger}a + 1/2) \\ &+ u_1 e^{-i\eta(a+a^{\dagger})} |g_1\rangle \langle e_1| + u_1^* e^{i\eta(a+a^{\dagger})} |e_1\rangle \langle g_1| \\ &+ u_2 e^{-i\eta(a+a^{\dagger})} |g_2\rangle \langle e_2| + u_2^* e^{i\eta(a+a^{\dagger})} |e_2\rangle \langle g_2| \end{split}$$

with

$$a = \frac{1}{\sqrt{2}} \left(x + \frac{\partial}{\partial x} \right), \quad a^{\dagger} = \frac{1}{\sqrt{2}} \left(x - \frac{\partial}{\partial x} \right)$$

and the wave function (probability amplitude $\psi_{\mu\nu} \in L^2(\mathbb{R}, \mathbb{C}), \mu, \nu = e, g$):

 $|\psi\rangle = \psi_{gg}(x,t) |g_1g_2\rangle + \psi_{ge}(x,t) |g_1e_2\rangle + \psi_{eg}(x,t) |e_1g_2\rangle + \psi_{ee}(x,t) |e_1e_2\rangle$ Qbit notations: $|1\rangle$ corresponds to the ground state $|g\rangle$ and $|0\rangle$ to the excited state $|e\rangle$.

Two trapped ions controlled via two lasers ω

The PDE satisfied by $\psi(x,t) = (\psi_{gg}, \psi_{eg}, \psi_{ge}, \psi_{ee})$:

$$\begin{split} &i\frac{\partial\psi_{gg}}{\partial t} = \frac{\Omega}{2}\left(x^2 - \frac{\partial^2}{\partial x^2}\right)\psi_{gg} + u_1e^{-i\eta x}\psi_{eg} + u_2e^{-i\eta x}\psi_{ge} \\ &i\frac{\partial\psi_{ge}}{\partial t} = \frac{\Omega}{2}\left(x^2 - \frac{\partial^2}{\partial x^2}\right)\psi_{ge} + u_1e^{-i\eta x}\psi_{ee} + u_2^*e^{-i\eta x}\psi_{gg} \\ &i\frac{\partial\psi_{eg}}{\partial t} = \frac{\Omega}{2}\left(x^2 - \frac{\partial^2}{\partial x^2}\right)\psi_{eg} + u_1^*e^{i\eta x}\psi_{gg} + u_2e^{-i\eta x}\psi_{ee} \\ &i\frac{\partial\psi_{ee}}{\partial t} = \frac{\Omega}{2}\left(x^2 - \frac{\partial^2}{\partial x^2}\right)\psi_{ee} + u_1^*e^{i\eta x}\psi_{ge} + u_2^*e^{i\eta x}\psi_{eg} \end{split}$$

where $u_1, u_2 \in \mathbb{C}$ are the two controls, laser amplitudes for ion no 1 and ion no 2 $\left|\frac{d}{dt}u_{1,2}\right| \ll \omega |u_{1,2}|$ and $\eta \ll 1$, $\Omega \ll \omega$.

Controllability of this system ?

References

Lectures at "Collège de France" of Serge Haroche:

http://www.lkb.ens.fr/recherche/qedcav/college/college.html

Basic books:

C. Cohen-Tannoudji, B. Diu, F. Laloë. Mécanique Quantique.Hermann, Paris 1977 (vol I & II).

R. Feynman. Cours de physique: mécanique quantique. InterEdition, Paris, 1979.

A. Aspect, C. Fabre, G. Grynberg. Optique quantique 1 et 2. Cours de majeure de physique. Ecole Polytechnique (2002).

Other books:

CDG1: C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989. (also in french, CNRS editions) **CDG2:** C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg. Atom-Photon interaction: Basic Processes and Applications. Wiley, 1992. (also in French, CNRS editions)

A conference paper: R. W. Brockett, C. Rangan, A.M. Bloch. The Controllability of Infinite Quantum Systems. CDC03.

See also the contributions on the controlled Schrödinger equation of Claude Le Bris, Gabriel Turinicci, Mazyar Mirrahimi, Eric Cancès, Jean-Michel Coron, Karine Beauchard, Jean-Pierre Puel, Enriques Zuazua, ...