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Angular Velocity Nonlinear Observer
From Single Vector Measurements

Lionel Magnis and Nicolas Petit, Senior Member, IEEE

Abstract—The paper proposes a technique to estimate the an-
gular velocity of a rigid body from single vector measurements.
Compared to the approaches presented in the literature, it does not
use attitude information nor rate gyros as inputs. Instead, vector
measurements are directly filtered through a nonlinear observer
estimating the angular velocity. Convergence is established using
a detailed analysis of a linear-time varying dynamics appearing
in the estimation error equation. This equation stems from the
classic Euler equations and measurement equations. As is proven,
the case of free-rotation allows one to relax the persistence of
excitation assumption. Simulation results are provided to illustrate
the method.

Index Terms—Guidance navigation and control, nonlinear ob-
server and filter design, sensor and data fusion, time-varying
systems.

1. INTRODUCTION

HIS paper considers the question of estimating the angular

velocity of a rigid body from signals from embedded
sensors. This general question is of particular importance in var-
ious fields of engineering, and in particular for the problem of
orientation control, as shown in numerous applications [1]—[4]
for spacecraft, unmanned aerial vehicles, guided ammunitions,
to name a few.

In the literature, two types of methods have been proposed
to address this question. First, one can directly measure the
angular velocity by using a specific sensor. This straightforward
solution requires a strap-down rate gyro [5]. However, gyros
have numerous drawbacks. They are very expensive compared
to direction sensors, prone to saturation during high rate ro-
tations [6] and subject to failure. A famous example is the
Hubble Space Telescope, which was put into “safe hold” (i.e.,
sleep mode) on November 13rd, 1999 as four of its six gyros
malfunctioned [7]. Eventually, the six gyros were replaced in
1999 and again in 2009 during the highly expensive missions
STS-103 and STS-125 [8].

Fortunately, gyros are not strictly necessary in the applica-
tions considered here. A recent trend is to replace (or consoli-
date) the gyro measurements with other sensors. In particular,
vector measurements have been investigated for estimating the
angular velocity for the last 15 years. An example of this
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“gyro-less” trend is the Solar Anomalous and Magnetospheric
Particle Explorer (SAMPEX) spacecraft, which was launched
in July 1992 and whose inertial unit only comprises Sun sensors
and magnetometers [9]. The alternative to gyros is a two-step
approach. In the first step, attitude is determined from measure-
ments of known reference vectors. Then, in the second step,
attitude variations are used to estimate the angular velocity.

The first step is detailed in [10]. In a nutshell, when two
independent vectors are measured with vector sensors attached
to arigid body, the attitude of the rigid body can be found under
the form of the solution to the Wahba problem [11] which is a
minimization problem having as unknown the rotation matrix
from a fixed frame to the body frame. Thus, at any instant, full
attitude information can be obtained [12]-[15]. In principle,
this is sufficient to perform the second step: once the attitude
is known, angular velocity can be estimated from a time-
differentiation. However, noise disturbs this process. To address
this issue, introducing a priori information in the estimation
process allows one to filter-out noise from the estimates. Fol-
lowing this approach, numerous observers based on the Euler
equations have been proposed to estimate angular velocity from
full attitude information [1], [16]-[18].

Besides this two-step approach, which requires measure-
ments of two independent reference vectors, a more direct
and less requiring solution can be proposed. In this paper,
we expose an algorithm that directly uses the measurements
of a single vector and reconstructs the angular velocity in a
simple manner, by means of a nonlinear observer. This is the
contribution of this paper. In a related philosophy, we have
recently proposed an observer using the measurements from
two linearly independent vectors as input [19]. The present
paper studies a similarly structured observer. However, due to
the fact that here only a single vector measurement is employed,
the arguments of proof are completely different, and result in a
new and independent contribution.

The paper is organized as follows. In Section II, we intro-
duce the notations and the problem statement. We analyze the
attitude dynamics (rotation and Euler equations) and relate it
to the measurements. In Section III, we define the proposed
nonlinear observer. The observer has an extended state and uses
output injection. To prove its convergence, the error equation
is identified as a linear time-varying (LTV) system perturbed
by a linear-quadratic term. Under a persistent excitation (PE)
assumption, the LTV dynamics is shown to generate an ex-
ponentially convergent dynamics. This property, together with
assumptions on the inertia parameters of the rigid body, reveal
instrumental to conclude on the exponential uniform conver-
gence of the error dynamics. Importantly, the PE assumption
is proven to be automatically satisfied in the particular case of
free-rotation. In details, in Section IV, we establish that for
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almost all initial conditions, the PE assumption holds. This
result stems from a detailed analysis of the various types of
solutions to the free-rotation dynamics. Illustrative simulation
results are given in Section V. Conclusions and perspectives
are given in Section VI.

II. NOTATIONS AND PROBLEM STATEMENT

A. Notations

Vectors in R? are written with small letters . |x| is the
Euclidean norm of z. [x«] is the skew-symmetric cross-product
matrix associated with z, i.e., Vy € R?, [z« ]y=2 X y. Namely

A 0 —I3 T
[zx] = | =3 0 -z
—T9 T 0

where x1, x2, x3 are the coordinates of x in the standard basis
of R3. If x is a unit vector, we have

[ )? =z’ — 1T

Vectors in RS are written with capital letters X. | X| is the
Euclidean norm of X. The induced norm on 6 X 6 matrices is
denoted by || - ||. Namely

|M|| = max | MX].
iX|=1

For convenience, we may write X under the form
X =(x],x])"
with X1, Xo € R3. Note that
X[ = 1X1 + | X

Frames considered in the following are orthonormal bases
of R3.

Rotation matrix. For any unit vector v € R? and any ¢ €
R, r,({) designates the rotation matrix of axis u and angle (.
Namely

74(C) = cos (I + sin C[uy] + (1 — cos Q)uu'.

Circular functions cos, sin may, for brevity, be written c, s
respectively.

B. Problem Statement

Consider a rigid body rotating with respect to an inertial
frame R;. Denote by R the rotation matrix from R; to a body
frame R; attached to the rigid body and w the corresponding
angular velocity vector, expressed in R4. Assuming that the
body rotates under the influence of an external torque 7 (which,
is null in the case of free-rotation), the variables R and w are
governed by the following differential equations:

R = R|w,] (1)

Y

w=J Juoxw+7)=EWw) +J 1 )
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where J = diag(.Jy, J2, J3) is the inertia matrix.! Equation (2)
is known as the set of Euler equations for a rotating rigid
body [20]. The torque 7 may result from control inputs or
disturbances.”> We assume that .J and 7 are known.

Consider a reference unit vector a expressed in R;. We
assume that a is constant, but it needs not be known. We con-
sider that sensors arranged on the rigid body allow to measure
the corresponding unit vector expressed in R;. Namely, the
measurements are

a(t) 2 R(t) a. 3)

For implementation, the sensors could be e.g. accelerometers,
magnetometers, or Sun sensors to name a few [21]. We now
formulate some assumptions.
Assumption 1: w is bounded: |w(t)| < wmax at all times
Assumption 2 (Persistent Excitation): There exist constant
parameters 7' > 0 and 0 < p < 1 such that a(-) satisfies

t+7T
7 [ e e darzat v @

The problem we address in this paper is the following.

Problem 1: Under Assumptions 1-2, find an estimate @ of w
from the measurements a defined in (3).

Remark 1 (On the Persistent Excitation): (4) is equivalent to

t+T

1

- / (@ a(r) dr <1—p, Vt, Vijg|=1 (5)
t

which is only possible if a(-) varies uniformly on every interval

[t,t + T]. Without the PE assumption, Problem 1 may not have

a solution. For example, the initial conditions

1
Cl(to) = 0 s
0

w(to) =

o o &8

yield a(t) = a(to) for all ¢, regardless of the value of w. Hence,
the system is clearly not observable. Such a case is discarded
by the PE assumption. Note that this assumption bears on the
trajectory, hence on the initial conditions R(to), w(to) and on
the torque 7 only.

III. OBSERVER DEFINITION AND
ANALYSIS OF CONVERGENCE
A. Observer Definition
The time derivative of the measurement a is
a=R'a=—[w.,R'a=axw.

To solve Problem 1, the main idea of the paper is to consider
the reconstruction of the extended 6-dimensional state X by its

estimate X
X - (a> ’ X -
w

I'Without restriction, we consider that the axes of R, are aligned with the
principal axes of inertia of the rigid body.

2In the case of a satellite e.g., the torque could be generated by inertia wheels,
magnetorquers, gravity gradient, among other possibilities.
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The state is governed by

x= (E(MC; i$—17>

and the following observer is proposed:

B axo—k(a—a)
‘X:<E@0+J17+k%x(d—@> ©)

where k£ > 0 is a constant (tuning) parameter. Denote
X2x-x=2 (‘f) )
@
the error state. We have

X = (k;[li] [aox]> X4 (E(W)EE@)) L ®

B. Preliminary Change of Variables and Properties

The study of the dynamics (8) employs a preliminary change
of coordinates. Denote

2 (2)
K
yielding
. 0
Z =EkEAt)Z + (E(w)—E(&;)) (10)
k
with
Al =T a(t)s]
A(t) ([a(t)x] 0 ) (11)

which we will analyze as an ideal linear time-varying (LTV)
system

Z=kA(t)Z (12)
disturbed by the input term
A 0
§= <E(w)E(&;)>~ (13)
k

We start by upper-bounding the disturbance (13).
Proposition 1 (Bound on the Disturbance): For any Z, & is
bounded by

(14)

}. (15)

€] < d(V2wmax| Z| + k| ZI?)

where d is defined as

démax T3 — J
Ji

Ji—Js
) JQ

Jo—Jy
) J3

Proof: 'We have

6l = 1 |B(w) ~ B@)
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with, due to the quadratic nature of E(-)

Ew)—E@=J ' Joxw+Jwx®—Jdx @)

J2J_1J3 ((JJQC:)?, + (:120.)3) J2J_1J3 Wo 3
= | LD (wsy + Bswr) | — | LL@sin

JlJ;;]Q (w1@2 + W1wo) Jlfs‘b w1w2
26, — 6.

As a straightforward consequence
|62] < d|@]?.
Moreover, by Cauchy—Schwarz inequality
(w3 + @ows3)? < (w5 +w3) (@3 +@3) < (Wi + w3) [@]*
Using similar inequalities for all the coordinates of d; yields
16, ° < 2d?|wl@f® < 2d%w;

IIlaX|w|2'

Hence

2

1) 1)
% < d\/iwmax

w w

€] <

<d (\/ﬁwmalel + k|Z|2) -

O
Remark 2 (On the Quantity d): As Ji, Js, Js are the main
moments of inertia of the rigid body, we have [20] (§ 32, 9)

JiSJj-l-Jk

for all permutations i, j, k and hence 0 < d < 1. Moreover, d =
0 if and only if J; = Jo = Js. d appears as a measurement of
how far the rigid body is from an ideal symmetric body. For this
reason, we call it discordance of the rigid body. Examples:
¢ For a homogeneous parallelepiped of size [ x [ x L, with
L > [, we have

L? - 1?
d= ———
L2+ 2.
* For a homogeneous straight cylinder of radius r and
height h we have
de |h? — 372
h? + 3r2.

C. Analysis of the LTV Dynamics Z = kA(t)Z

The shape of A(t) will appear familiar to the reader ac-
quainted with adaptive control problems. Along the trajectories
of (12) we have

i|Z|2 = 2%|Z)*=-Z"C"CZ
dt
with
C £ (V2kI0).

As will be seen in the proof of the following Theorem, the
PE assumption will imply, in turn, that the pair (KA(-),C)
is uniformly completely observable (UCO), which guarantees
uniform exponential stability of the LTV system.
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Theorem 1 (LTV System Exponential Stability): There exists
0 < ¢ < 1 depending only on T', ui, k, and wpax such that the
solution of (12) satisfies for all integer N > 0

|Z(t)|*> < cN|Z(to)]?, VteEto+ NT,tg+ (N 4+ 1)T]

for any initial condition g, Z (to).
Proof: Along the trajectories of (12) we have

d
—|Z|* = —2k|Z1* <0
12 21 <
which proves the result for NV = 0. For all ¢
Z(t+ T =20 = Z()* W (t,t + T)Z(t)

where

t+T
W(tt+T)2 / o(r,t)TCTCH(r, t)dr

t

is the observability Gramian of the pair (kA(-),C) and ¢ is
the transition matrix associated with (12). Computing W is
no easy task. However, the output injection UCO equivalence
result presented in [22] allows us to consider a much simpler

system. Denote
avk (T
K02 % (Lpto.)

The observability Gramian W of the pair (M(-),C) is easily
computed as

t+T

Wit.t+1) = 2 / (A(T{tﬁ A(T,t)T.A(T,t)> dr

where
A(r, ) ék/[a(u)x]du.

Such a Gramian is well known in optimal control and has been
extensively studied, e.g., in [23, Lemma 13.4]. We have

o [P k[a(r)]Tkla(r)x)dT > TR*ul, Y t;

* kla(+)«] is bounded by k;

o the derivative of k[a(-)«] is bounded by kwmax;

from which we deduce that there exists 0 < §; < 1 depending
on T u, k, wmax such that

W(t,t+T)>pI, Vi

There also exists 82 > 0 depending on k, T such that W(t, t+
T) < B2I. From [22, Lemma 4.8.1] (output injection UCO
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equivalence), W (t,t +T) is also lower-bounded. More pre-
cisely, we have

W(tt+T) > 2 I2(1-

~ 21+ BoTk)
with ¢ < 1. Assume the result is true for an integer N > 0. For
any t € [to + NT,to + (N + 1)T], we have
Z(t+T)* =12(t)]* = Z(t) ' W(t,t + T)Z(t)
<elZ()* <N Z(k)

o)l

which yields ¢ > 0 (consider a nonzero solution) and concludes
the proof by induction. g

D. Convergence of the Observer
Consider the quantity
« A 1—c¢
B 2\/§Twmax
where c is defined in Theorem 1. The following Theorem,
which is the main result of the paper, shows that if d < d*, the
observer (6) provides a solution to Problem 1.

Theorem 2 (Main Result): We suppose that Assumptions 1-2
are satisfied and that

(16)

d<d

where d* is defined in (16). The observer (6) defines an error
dynamics (8) for which the equilibrium 0 is locally uniformly
exponentially stable. The basin of attraction of this equilibrium
contains the ellipsoid

~ 2
{X(O), 13(0)]? + |w§f2)| < r2} (17)
with
2
2 A (1 - 6)3 2\/§Cl115f‘}ma)c
LT RBRTH (1 1 o

Proof: Consider the candidate Lyapunov function
+oo
vit.2)2 27 | [ oy etrnar | 2
t

where ¢ is the transition matrix of system (12). Let (¢, Z) be
fixed. One easily shows that ||kA(t)| < k+/3 for all ¢. Thus
(see for example [24, Theorem 4.12])

e

V(t,Z) > 20|22 Wi (2).

1
— |z
2k\/§|

Moreover, Theorem 1 implies that

—+o00
V(t,2)=>
N=0
+0o0 T
<7y NZP=—|Z]
<7y Mz = 17|
N=0
A
el Z|* £ Wy (Z)

t+(N+1)T
Z o(r,t) T o(r, 1) Z

t+NT

1>
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This inequality, which holds for any value of Z, implies that the
largest eigenvalue of the symmetric positive matrix

+0o0
Q2 / o(r, 1) o, t)dr

is smaller than (T'/(1 — ¢)).
By construction, V' satisfies
%—‘;(t, Z)+VV(t,2) kAt Z = —|Z|?

where V is the gradient with respect to Z. Hence, the derivative
of V along the trajectories of (10) is

%V(t, Z)=—|ZP+VV(t,Z)"¢.

Using
2T
YV, 2) =21Q0)7] < ||
together with inequality (14) and the Cauchy-Schwarz inequal-
ity yields

YVt 2)7€] < 2 (Vo 2 + K12

Hence

d 2v/2dTw 24Tk
el tZ <—22 1_ Inax_ Z
dtV(, ) < ||< e 1 C| I>

2 _Wy(2).

By assumption d < d*, which implies

2\/§dTwIIlaX
1—c¢

1 > 0.

We proceed as in [24, Theorem 4.9] . If the initial condition of
(10) satisfies

|Z(to)| <
1—c¢ 2/ 2dT winax c1
o |Z(t - ¢ 2VEA Wmax a
| (0)|<2dkT< 1—¢ )x o

then W5(Z(tg)) > 0 and, while W3(Z(t)) > 0, Z(-) remains
bounded by
V(t) _ Vito)

C2
< < —=1Z(to)|?
C1 C1 C1

Z(1))* <

which shows that

2V2dTwmax ~ 2dkT [
W(Z) > (1 - ~ —j IZ(to)|> Z]?

1—c¢ 1—cV e

A
= C3 |Z|2
Consequently

20 < Ce 5 120

2477

which shows that the equilibrium 0 of system (10) is locally
uniformly exponentially stable. From (9), one directly deduces
that the basin of attraction contains the ellipsoid (17). ([

Remark 3: The limitations imposed on @(0) in (17) are not
truly restrictive because, as the actual value a(0) is assumed
known, the observer may be initialized with a(0) = 0. What
matters is that the error on the unknown quantity w(0) can be
large in practice.

IV. PE ASSUMPTION IN FREE-ROTATION

The PE Assumption 2 is the cornerstone of the proof of
the main result. It is interesting to investigate whether it is
often satisfied in practice (we have seen in Remark 1 that it
might fail). In this section we consider a free-rotation dynamics,
namely 7 = 0. We will prove that Assumption 2, or equiva-
lently condition (5), is satisfied for almost all initial conditions.

The following important properties hold.

e w'Jw is constant over time (which implies that
Assumption 1 is satisfied).

» The moment of inertia of the rigid body expressed in the
inertial frame

m 2 R(t)Jw(t) (19)
is constant over time.
 Thus, any trajectory ¢ — w(t) lies on the intersection of

two ellipsoids

wJw = w(ty) " Jw(ty), w'J?w=w(ty) J2w(to).
The analysis of the intersection of those ellipsoids is quite
involved and has been extensively studied in e.g. [20]. It follows
that there are four kinds of trajectories for the solutions w of (2).
We list them below, where (w1, ws,ws) are the coordinates of
w in the body frame.

Type | w is constant, which is observed if and only if w(¢g)
is an eigenvector of J.

Type 2 Jy, > Jo > J3 singular case: w1(t) and ws(t) vanish,
wo(t) tends to a constant when ¢ goes to infinity. This
situation is observed only for a zero-measure set of initial
conditions w(tp).

Type 3 J1 > Jo > J3 regular case: the trajectory is periodic
and not contained in a plane. This situation is observed for
almost all initial conditions w(#p).

Type 4 the trajectory is periodic and draws a nonzero di-
ameter circle. This situation is observed if and only if
two moments of inertia are equal and w(tp) is not an
eigenvector of .J.

Examples of such trajectories are given in Figs. 1 and 2 for
various initial conditions. For convenience of visualization, we
chose solutions having the same angular momentum norm |m)|,
so that they lie on the surface of the same ellipsoid.

A. Study of Type 1 and Type 2 Solutions

The simplest case one can imagine is when w(to) (or simply
w) is an eigenvector of J, namely for ¢ =1, 2, or 3

Jw = Jiw
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Type 3

Type 3

> w3

Fig. 1. Types 1,2, and 3 solutions having the same angular momentum norm |m|.

Type 2

w2

Fig. 2. Type 4 trajectories in the case J1 = J2 > J3 having the same angular
momentum norm |m)|.

Denote

A

1
Ro 2 R(ty), w = lw], u EROW'

Proposition 2: For all ¢, R(t) can be written as
R(t) = ry (w(t — o)) Ro
where
ro (W(t —tg)) = cw(t — to)I + sw(t — to)[ux|
+ (1 = cw(t —to))uu'

and where c, s stand for cos, sin, respectively.

Proof: For convenience and without loss of generality,
we take tg = 0 in the proof. R(t) and r,, (wt) Ry have the same
value R(to) for t = to. Moreover

—ru(wh) Ry = w (—swtI + cwt[ux] + swtuu'") Ry
= (cwtlux] + swtu]?) wRo
= (cwt] + swt[uy]) wlux]Ro
= (cwt] + swt[uy] + (1 — cwt)uu ") wlux| Ro
= 1o (wt)wlux | Ro
= ry(wt)[Rowx] Ry = ru(wt)Rolwx].

Thus, both functions satisfy (1), which concludes the proof by
Cauchy-Lipschitz uniqueness theorem. (]
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It follows that for all ¢, a(t) can be written as:
a(t)=R(t)"a

= cwtRya—swtR) (u x a) + (1—cwt)u'aRju. (20)

For this reason, we call planar rotation the R(-) matrix gener-
ated by a Type 1 trajectory.

Remark 4: The direction u of the rotation can be simply
computed from m. We have

m = RJw = J;Rw = wJ; RRyu = wJyu

which implies that
_ m
|

The impact of the planar nature of the rotation on the PE
assumption is as explained in the next two subsections.

1) Type 1 Solution With m Aligned With a or w = 0: Con-
sider that a is aligned with m = R(tg)Jw(to). In this case
u = 4-a (see Remark 4). Thus, (20) yields a(t) = R] a constant
over time. This also holds when w(t¢) = 0. For any 7" we have,
for the unit vector r = Rja

Thus, condition (5) is not satisfied.

2) Type I Solution With m Not Aligned With a: Conversely,
consider that a is not aligned with m. Define v, z such that
(u, v, ) is a direct orthonormal basis of R3. The decomposition
of the unit vector a in this basis is given as

a=aju+aw+azz, a+a3+ai=1, with o} <1.
We have

a(t) = Ry (aru + (agcwt + agswt)v + (azcwt — agswt)z) .
For T' = 27 /w, any ¢ and any unit vector

T = Rg(xlu + zov + x32)

t+T
1
== / (a121 4+ (agcwt+azswt)xs + (azcwt — agswt)xg)zds
t

a%—l—a%( 2

=ajat + =5 (25 +

23) < (1—p)
with

1 2
1 2 min (1 — a2, J;al) € (0,1).

Thus, condition (5) is satisfied.
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3) Type 2 Solutions: As shown in [20], the Type 2 solutions
are characterized by J; > Jo > J3 and

J3(Jy — J3)

Ji(J1 — Jo

|w1(t0)| = J )

|ws(to)| # 0

which defines a zero-measure set. For this reason, they are
called singular solutions. In this case, w(t) converges to a limit
Weo = (0, +w, 0), which is an eigenvector of .J, when ¢ goes
to infinity. The rotation R(¢) is thus asymptotically arbitrarily
close to a planar rotation around m = R(t)Jw(to). The ar-
guments already employed for the Type 1 solutions show that
condition (5) is satisfied unless R(to)Jw(0) and a are aligned.

B. Study of Type 3 and Type 4 Solutions

In this section, we will show that the Type 3 and Type 4
solutions satisfy the PE assumption. Both proofs rely on the
following technical result.

Proposition 3 (Preliminary Result): If condition (4) is not
satisfied, then for all 7' > 0 and all € > 0 small enough, there
exists ¢ such that for all y € R3, and all s € [t,t + T7:

* R(s)y remains between two planes orthogonal to a and
distant by e|yl;
* R(s)'y remains between two parallel planes distant by

elyl.
Proof: Consider T' > 0 and y such that

1 Tw max <1
ATwmax 4 '

O<u<min< (2))

Assume that (5) is not satisfied. There exists ¢,z such that
|z] =1 and

t+T
1

T / (a(s)—rx)2 ds >1— p.

t

(22)

As will appear, one can use the bounded variations of a(-) due
to its governing dynamics to establish a lower bound on the
integrand. Denote

h(s) = (a(s)Tx)Q, Vs.
We will now show by contradiction that
h(s) > 1 —2¢/Twmaxh,
Assume that there exists sg such that
h(s0) < 1 —2v/Twmaxft
We have, for all s
|h(s)| = |2a(s) "za(s) x|

= [2(a(s) x w)"za(s) 2| < 2wmax.

Vseltt+T].

Assume sy < t + T'/2 and denote

Tp

O‘)IH ax

SléSQ—f— <t+1T.
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We have, for any s € [so, s1] C [t,t + T

h(S) S h(SO) + 2wmax(8 - SO)

<1 = 2/Twmaxtt + 2Wmax(s — s0).

Hence
1 o 1 T
T / (a(s)Taz:)2 ds <1-— T o

t
S1
1
+ T / (1 -2 \V Twmax/-// + 2Wmax(s - SO)) ds
S0

=1-2p+p=1-p

wmax

which contradicts (22). The case so > t + 7'/2 is analog with

s € [so — \/(T1/wmax), So] C [t,t + T). Finally, we have, for

all s
0<1—2yTwpaxpt < (a(s)Tx)2 <1

which shows that the continuous function s — a(s) z is of
constant sign, strictly positive without loss of generality. Thus,
we have

0<1—2vTwyaxpt < a(s)Ta: <1

and in turn

la(s) — z|* = 2 — 2a(s) & < 4y/Twmax/t = YV I

Denote by R; a rotation matrix so that

(23)

a= Rz
and, for all s, u(s), &(s) such that

R(s) 2 ry() (£(5)) Ru.

Note that R(s)z = 7,(5)(£(s))a. The next Lemma formulates
that the rotation R(s) is uniformly close to 7, (£(s))Ry.
Lemma 1: We have, forall s € [t,t + T and all y € R3

|R(s)y — 7a (£(5)) Ruyl® < 307 /mlyl?

where  is defined by (23).
Proof: Let s € [t,t + T|. For clarity we may omit the s
dependency of u and £. Denote

(24)

A2 R(s) — ra(§)Ry
= (sin& ([ux] — [ax]) + (1 = cos&)(uu’ —aa")) Ry.

If a=u(s), |Al| =0 < 30v,/p. Otherwise, for A =2z we
have, from (23)

|AA]® = |R(s)z — ra(&)Raa|” = |R(s)z — a|”
= |z — RT(s)a|2 = |z —a(s))® < /R

Denote v, 2 so that (u, v, z) is an orthonormal basis of R? and
write

a = aju+ asv + asz, a%—i—ag—i—a%:l.
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We have

Wi > |R(s)z —al® = |(r,(§) — D)al
= |(az(c€ — 1) — ags€) v + (azsé + as(c — 1)) 2

=4 (a% + ag) sin? g

Now, denote B = R ((u x a)/(Ju x al)). We have

BTA— (uxa) Rz _
|u x al

(uxa)la
|u x al

=0

so that A and B are orthonormal. We have

.
IAB)? = =2 §2 lu x (uxa)—ax (uxa)l’
a; + aj
(2
sin” T,\2 2
= 1—
a%—i—a%( a u)’ju+al
c2
sin® & 92
= 4(1 -
a3 + a3 (1= ai)
<16 (a%—l—ag)siangéky\/ﬁ.

For C = A x B, we have
|ACP? = |R(s)(A x B) = ra(§)Rai(A x B)|*
= |R(s)A x R(s)B — ra(€)R1A X 14(€)r1 B|?
= |R(s)A x AB + AA x r,(§)Ri B)?
< 20y 4 Ayy/i) = 107/
and the vectors A, B, C' are orthonormal. Finally, for any vector
y=y1A+yB+uysC, oyl +u5 +u; =yl
we have
|AY? = |11 AA + 2 AB + ys AC
<3 (471047 + 3 |ABP + 4} 1ACT?)
< 3 (yi + 93 +u3) 107y = 307 /palyl®

which concludes the proof of Lemma 1. (]

Denote by e = 2,/30,/ix and consider any y in R? and any
sin [t,t + T]. On the one hand, r,(£(s))R1y lies on a circle
orthogonal to a. On the other hand

[R(s)y = ra (()) Ruy| < Syl

This yields the first item of Proposition 3 as p > 0 is arbitrary
small. Rewriting the result of Lemma 1 as

|R{ra (—€(5))y — R(s) y|” < 307/aly[?

for any s € [t,t + T and any y yields the second item and
concludes the proof. 0
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1) Type 3 Solutions: These solutions are characterized by
J1 > Jo > Jz and

J3(J2 — J3)

w1 (to)| # (=)

|ws (to)] -

In this case the trajectory of w(-) is closed and thus periodic of
a certain period T, > 0, and not contained in a plane. Assume
that condition (5) is not satisfied. We apply the second item
of Proposition 3 with T' = Tp. For any €, small enough, there
exists ¢ such that for all s € [t,t + Tp]

Jw(s) = R'(s)m

remains between two parallel planes and distant by ¢/m|. As
w(+) is Tp-periodic, this is true for all s € R. When ¢ goes
to 0, we conclude that the trajectory of w(:) remains in a
plane, which is a contradiction. Thus, condition (5) is satisfied,
unconditionally on R(tg).

2) Type 4 Solutions: We now consider the case where w(tg)
is not an eigenvector of JJ and two moments of inertia are equal.
In this case, the trajectory ¢ — w(t) is a circle, as represented
in Fig. 2. Since it is contained in a plane, we can not apply
directly the same technique as for Type 3 solutions. Without
loss of generality, we study the case J; = J2 > J3 (the case
Ji1 > Jo = J3 is analog). We thus consider a trajectory w such
that w(tp) satisfies

(Wl(t0)7w2(t0)) 7é (an)v w3(t0) 7& 0

Following the extensive analysis exposed in [20], we conve-
niently chose the inertial frame (e, e3, e3) so that es is aligned
with m, namely

~ [m]

For this choice of e3 and in the case where J; = J2, equations
(1) and (2) simplify considerably and one can show that the
rotation matrix satisfies for all ¢

() () Cgl(t—tl)
Rt)y=p| (- (---) s (t _ztl) (25)
C§2 (t — lfg) ng (t — lfg) 1[)_p

where (.. .) designates terms that are irrelevant in the following
analysis, t1, to are constant and:

\/ wal(t())Q +J12w2(t0)2

JEwi (to)? + J3wa(to)? + Jaws(to)?

1>

p €(0,1)

J?
& 2 \/wl(to)Q + (JJQ(tO)2 + J—‘;w?,(to)Q >0

1

1>

& (%—1)%@0) £0.

1
We now show that condition (5) is satisfied by contradic-
tion. Assuming that it is not, one can apply the first item of
Proposition 3 with

2r 27
T = max (g, @) .
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R(t)es

R(t)el

Fig. 3. R(t)es and R(t)e1 evolving on the unit sphere.

For ¢ small enough, there exists ¢ such that for all s € [¢,¢ +
T|R(s)es remains between two planes orthogonal to a and
distant by €. Moreover, expression (25) yields for all s

pcoséi(s —ty)
psin&y (s —t1)

Noer

Simple geometric considerations show that

R(s)es =

€

1—(aTe3)? < —

(aTe3)? < on

which yields a = e3 when ¢ goes to 0. Hence for ¢ small
enough, and all s € [t,t + T

R(s)e; = (..)
pcoséa(s —ta)

remains between two planes orthogonal to a = +es. Taking
€ < 2p yields a contradiction. The trajectories R(t)e; and
R(t)es are represented in Fig. 3 for better visual understanding
of the proof.

C. Conclusion

In this section, we have shown the following result.
Theorem 3: Consider the vector

a(t) = R(t)"a

where R(t) is a rotation matrix defined as the solution of the
free-rotation dynamics (1), (2) with 7 = 0. Assumption 2 is
satisfied for almost all initial conditions (R(to), w(to)). It fails
only in the cases listed below:

1) w(to) is an eigenvector or J and R(tg)Jw(to) is aligned
with a;

2) the eigenvalues of J are of the form J; > Jo > Js, the
coordinates of w(tp) in the trihedron of orthonormal
eigendirections of J satisfy

J3(J2 — J3)

- - 26
Ji(J1 — Ja) (26)

|wi(to)| = |ws(to)|

and R(to)Jw(to) is aligned with a.
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It follows that, except for the initial conditions listed in
items 1), 2), the conclusion of Theorem 2 holds without requir-
ing Assumption 2, which is automatically satisfied. Therefore,
in almost all cases, observer (6) asymptotically reconstructs the
desired angular velocity w.

V. SIMULATION RESULTS

In this section, we illustrate the convergence of the observer
and sketch the sensitivity with respect to the tuning gain k.

Simulations were run for a model of a CubeSat [25]. The
rotating rigid body under consideration is a rectangular par-
allelepiped of dimensions about 10 cm x 10 cm x 20 cm and
mass 2 kg assumed to be slightly nonhomogeneously distrib-
uted. The resulting moments of inertia are

Ji =87 kg.em?, J, =83 kg.em?, Jy = 37 kg.cm®.
No torque is applied on this system, which is thus in free-
rotation. Referring to Section IV, we will consider Type 1 and
Type 3 trajectories.

In this simulation the reference unit vector is the normalized
magnetic field a. The satellite is equipped with three magne-
tometers able to measure the normalized magnetic field y, in a
magnetometer frame R, .

It shall be noted that, in practical applications, the sensor
frame R, can differ from the body frame R; (defined along
the principal axes of inertia) through a constant rotation R, p.
With these notations, we have

T
a= Rm,bya

which is a simple change of coordinates of the measurements.

For sake of accuracy in the implementation, reference dy-
namics and state observer (6) were simulated using Runge-
Kutta 4 method with sample period 0.01 s. The generated
trajectories correspond to wyax =~ 100 [°/s].

A. Noise-Free Simulations

To emphasize the role of the tuning gain k, we first assume
that the sensors are perfect, i.e., without noise. Typical measure-
ments for a general Type 3 trajectory are represented in Fig. 4.
As J; and Js are almost equal, the third coordinate is almost
(but not exactly) periodic. Fig. 5 shows the convergence of the
observer for various values of k. Interestingly, large values of &k
produce undesirable effects. This is a structural difference with
the two reference vectors based observer previously introduced
by the authors [19]. The reason is that the convergence is
guaranteed by a PE argument and not by a uniformly negative
bound on eigenvalues.

In Fig. 6, we represented the observer error for a case where
the PE assumption is not satisfied, namely for a constant w
with m and a = (1 0 0)' aligned. This is a singular case,
as discussed earlier. Interestingly, the coordinates wo and ws
converge to zero, while w; converges to a constant value. This
can easily be proved by using LaSalle’s invariance principle.
Indeed, in this case, w and a are constant and the error system
(10) is actually LTI.
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measurements
o

-0.6

Fi

g. 4. Typical measurements in the ideal noise-free case.
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Fig. 5. Convergence of the observer for increasing values of k.
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Fig. 6. Without the PE assumption asymptotic convergence of the observer is
lost, a bias remains.

B. Measurement Noise

We now study the impact of measurement noise on the
observer performance. The simulation parameters remain the
same but we add Gaussian measurement noise with standard
deviation ¢ = 0.03 [Hz_l/ 2]. Typical measurements are repre-
sented in Fig. 7. The observer yields a residual error, about 5%
in Fig. 8 for £ = 1. Note that the measurement noise is filtered,
thanks to a relatively low value of the gain k. For large values
of k, the observer does not converge anymore (not represented).
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measurements

t [s]

Fig. 7. Vector measurements with additive Gaussian noise.

30

25

Fig. 8. Observer performance under noisy measurements for k = 1.

VI. CONCLUSIONS AND PERSPECTIVES

A new method to estimate the angular velocity of a rigid
body has been proposed in this paper. The method uses onboard
measurements of a single constant vector. The estimation algo-
rithm is a nonlinear observer which is very simple to implement
and induces a very limited computational burden. Moreover,
it does not rely on the knowledge of the inertial coordinates
of the reference vector, so that no reference model or look-up
table are necessary. At this stage, an interesting (but still pre-
liminary) conclusion is that, in the cases considered here, rate
gyros could be replaced with an estimation software employing
cheap, rugged and resilient sensors. In fact, any type of sensors
producing a 3-dimensional vector of measurements such as
e.g., Sun sensors, magnetometers, could constitute one such
alternative. Assessing the feasibility of this approach requires
further investigations including experiments.

More generally, this observer should be considered as a first
element of a class of estimation methods which can be devel-
oped to address several cases of practical interest. In particular,
the introduction of noise in the measurement and uncertainty
on the input torque (assumed here to be known) will require
extensions such as optimal filtering to treat more general cases.
White or colored noises will be good candidates to model these
elements. Also, slow variations of the reference vector a should
deserve particular care, because such drifts naturally appear in
some cases.
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On the other hand, one can also consider that this method can
be useful for other estimation tasks. Among the possibilities
are the estimation of the inertia J matrix which we believe is
possible from the measurements considered here. This could
be of interest for the recently considered task of space debris
removal [26]. Finally, recent attitude estimation techniques
have favored the use of vector measurements rogether with rate
gyros measurements as inputs. Among these approaches, one
can find i) extended Kalman filters (EKF)-like algorithms, e.g.,
[27], [28], ii) nonlinear observers [29]-[34]. This contribution
suggests that, here also, the rate gyros could be replaced with
more in-depth analysis of the vector measurements.
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