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ABSTRACT

Observation problems have been garnering increasing at-
tention in recent years. They can be seen as the esti-
mation of a periodic output dynamics driven by periodic
inputs. At various level of modelling, automotive engine
dynamics can be considered as a linear periodic sys-
tem mechanically coordinated through the revolution of
the crankshaft. In this paper, two practical examples are
addressed. The first example is the inversion of sensor
dynamics. A classical way of modelling such a sensor is
a first order dynamics with periodic excitations which can
be, depending on the application, the intake pressure, the
intake temperature, the exhaust pressure, the Air Fuel Ra-
tio, or the Mass Air Flow. The second example is the es-
timation of the engine speed next to the cylinder using as
only sensor the easily available instantaneous crankshaft
angle speed at the end of the connecting rod.

The contribution of this paper is the design of a real-time
observer of the periodic excitation of a linear periodic sys-
tems by the estimation of the Fourier decomposition of the
signal. The estimation of the coefficients of the Fourier
basis decomposition of the input periodic excitation is a
handy tool for engineering purposes. Indeed, the energy
levels of the signal allow another interpretation of the sig-
nal and can lead to detect the balance of the engine. This
high frequency (6o crankshaft estimation) information can
be used for imbalance diagnosis and torque balance con-
trol. Real application observation problems are exposed
in their practical context and illustrated by experimental
results on a 4 cylinder HCCI engine.

INTRODUCTION

Performance and environmental requirements impose ad-
vanced control strategies for automotive applications. Ide-

ally, pressures, temperatures, and flows would be mea-
sured at numerous places in the engine, allowing accu-
rate control. Unfortunately, their cost and reliability can
prevent these sensors from reaching commercial products
(e.g. in-cylinder pressure sensors). As a result, observer
design has been garnering increasing attention in recent
years. While each of the sensing technology poses its
own challenges, several common threads can be found.
In particular, many of these observation problems can be
seen as the estimation of periodic dynamics driven by pe-
riodic inputs. At various level of modelling, automotive
engine dynamics can be considered as a linear periodic
system mechanically coordinated through the revolution
of the crankshaft. A prime example is the inversion of
sensor dynamics (Zone 1 on Figure 1) (see [1] and [2] for
more details). A classical model of such a sensor is a first
order dynamics with periodic excitation which can be, de-
pending on the application, the intake pressure, the intake
temperature, the exhaust pressure, the Air Fuel Ratio, or
the Mass Air Flow.

A second example is the inversion of the transmission dy-
namics using as only sensor the instantaneous crankshaft
angle speed (Zone 2 on Figure 1) which can lead to the
estimation of the combustion torque (see [3, 4], [5], [6, 7,
8] for more details).

Imbalance is mostly produced by the injection system.
Due to the high pressure in the common rail injection sys-
tem, it is very difficult to estimate the fuel mass injected
in the cylinder accurately. Moreover, aging of this system
can create lag in the injection which leads to lag in the
injection timing. Both problems imply the imbalance of
the cylinder, i.e. with the same injection setpoint (injected
masses and timing), the cylinder do not produce the same
torque. A diagnosis based on commercial engine sensors
is a great tool to solve this problem.
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Figure 1: Engine Scheme.

In this paper, we cast such problem into the general
framework of time-periodic linear systems driven by time-
periodic inputs ẋ = Ax+A0w(t), y = Cx where x(t) ∈ R

n

and w is a T0-periodic signal containing a finite number
of harmonics. The contribution of this paper is the de-
sign of real-time observers of the periodic excitation by
estimation of its Fourier basis decomposition. By real-
time observers, we mean that the computational power
required by such asymptotic observers is quite low and
thus fits with the real-time computers available on auto-
motive engines. Among several alternatives, such ob-
servers may take the form of a filter complemented with
adaptation laws for the decomposition coefficients which
are weighted by periodic functions. Testbench results are
presented proving the relevance of this kind of observer
for torque balancing purpose.

The paper is organized as follows. In Section 2, we detail
the problem statement and the observer structure. The
first example of the AFR sensor dynamics inversion is re-
ported is Section 3 along with testbench results. In Sec-
tion 4, an observer for the transmission rod dynamics in-
version is explained. Testbench results present the use of
this observer for torque balancing issues. Conclusion and
future work are reported in Section 5.

OBSERVATION PROBLEM STATEMENT

Consider the periodic system driven by an unknown pe-
riodic input signal w(t)

{

ẋ = Ax + A0w(t)
y = Cx

(1)

where x(t) ∈ R
n is the state and A, A0, C are matrices in

Mn,n(R), Mn,m(R) and Mp,n(R) respectively. The goal
of our study is the estimation of the T0-periodic continuous

input signal w(t) ∈ R
m, with m = dim(w) ≤ p = dim(y) ≤

n = dim(x), through its Fourier decomposition over the h

harmonics

w(t) ,
∑

k∈Ih

ckeıkω0t ω0 ,
2π

T0

where Ih = {−h, . . . , h} is the set of h modes. We as-
sume that the following hypothesis hold
Hypothesis 1 (Injectivity of A0 and C†) Ker(A0) = {0}
and Ker(C†) = {0}.
We note † the Hermitian transpose that reduces to stan-
dard transpose for matrices with real entries.
Hypothesis 2 (Observability) The only solution t 7→
(x(t), ck(t)) of

{

ẋ = Ax + A0(
∑

k∈Ih
ckeıkω0t)

ċk = 0, ∀k ∈ I+

h

(2)

for which the output y(t) = Cx(t) is identically zero on
[0, T0], is the zero solution.

REFERENCE MODEL The reference system writes






ẋ = Ax + A0(
∑

k∈Ih
ckeıkω0t)

ċk = 0, ∀k ∈ Ih, k ≥ 0
y = Cx

(3)

Generically we denote by Fl(x) the lth coefficient of
the Fourier decomposition of a periodic signal x(t),
i.e. Fl(x) = 1

T0

∫ T0

0
x(s)e−ılω0sds. When x is real, the

complex-conjugate of Fl(x) satisfies Fl(x)† = F−l(x).
This explain the fact we consider only k ∈ Ih positive:
ck ∈ C when k > 0 and ck ∈ R when k = 0.
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OBSERVER STRUCTURE Corresponding to state-
space model (3), we define a time-varying Luenberger
type observer

{

˙̂x = Ax̂ + A0(
∑

k∈Ih
ĉkeıkω0t) − L(Cx̂ − y)

˙̂ck = −e−ıkω0tLk(Cx̂ − y), ∀k ∈ Ih, k ≥ 0
(4)

L and {Lk}k∈Ih
are defined later through the conver-

gence analysis. The error-state is x̃ = x − x̂ and c̃k =
ck − ĉk, and the error dynamics is

{

˙̃x = (A − LC)x̃ + A0(
∑

k∈Ih
c̃keıkω0t)

˙̃ck = −e−ıkω0tLkCx̃, ∀k ∈ Ih, k ≥ 0
(5)

OBSERVER DEFINITION

Design of L and {Lk}k∈Ih
with full measurement This

subsection deals with the full state measurement case
p = n. In this case, we use

L = (A − L̃)C−1(t) (6)

where L̃ be an asymptotic stable matrix in Mnn(R) and
for all k ∈ Ih, we choose the gains Lk such that

Lk , α2
kA

†
0PC−1 (7)

where P the symmetric definite solution of the Lyapunov
equation

PL̃ + L̃†P = −In,n (8)

and {αk}k∈Ih
∈ (R \ {0})h. Convergence with this gains

is proved in [9].

Design of L and {Lk}k∈Ih
with partial measurement In

this part, we consider that p < n. L is chosen such that
A − LC is asymptotically stable. Assuming that for all
k ∈ Ih ,

Pk , C(ıkω0 − P )−1A0

is full rank, we choose the gains Lk(t)

β 6= 0 and Lk(t) , −εβ2((ıkω0 − (A − LC)))−1A0)
†C†

(9)
For ε > 0 and small enough, convergence is proved [9].

AIR FUEL RATIO SENSOR INVERSION

The first example is the inversion of the Air Fuel Ra-
tio (AFR) sensor. Its measurement is a very good rep-
resentation of the combustion, especially in the case of
cylinders imbalance on the engine (which are very fre-
quent in practice). The individual cylinder exhaust flows
are mixed in the exhaust manifold and passes through the
turbocharger. This leads to a nonlinear dynamics as ex-
plained in [10] or [11] for example. The sensor has a low-
pass dynamics.

SENSOR DYNAMICS In order to estimate the individual
cylinder AFR, we need to estimate the AFR downstream
the turbine and “invert” the sensor dynamics. The sensor
can be considered as a cascade of two first order systems
with time constant τ1 = 25ms and τ2 = 20ms. w is the
input signal driving a cascade of two first order dynamics.
The sensor is used to reconstruct in two steps w. First the
intermediate variable x1 is reconstructed under the form of
a periodic signal. Second, this estimation feeds another
observer. The structure is explained in Figure 2. For a first

Second order dynamics

First order First order 

Figure 2: Top: w is the input signal driving a cascade of
two first order dynamics. Bottom: the sensor is used to
reconstruct in two steps w. First the intermediate variable
x1 is reconstructed under the form of a periodic signal.
Second, this estimation feeds another observer.

order system with a time constant τ , the system is similar
to system (3) with A = − 1

τ
, A0 = 1

τ
, C = 1, and Ih ,

{−3, ..., 3}. The observer is designed according to (4) with
the gains defined by Equations (6) and (7). We use L̃ =
− 4

τ
and α2

k = 4

k2+1
.

AFR OSCILLATIONS To introduce imbalance on the ex-
perimental testbed, we apply an injection duration timing
trajectory. It produces offsets in injected masses lead-
ing to AFR disturbances. More precisely, the injection
steps have an effect on the average level of the measured
AFR and introduce oscillations as represented in Figure 3.
These oscillations are the direct consequences of the indi-
vidual AFR imbalance. During cylinder 1 exhaust phase,
the AFR increases in the manifold, and then decreases
while the other cylinders exhaust phases occur. The mag-
nitude of the oscillations is related to the amount of the
AFR difference between the cylinders and the gas mass
in the manifold (and thus to its volume). The oscillation is
then propagated to the turbine, and to the UEGO sensor,
where it is filtered.

FROM OSCILLATIONS TO IMBALANCE DIAGNOSIS
The implementation is achieved in discrete time with a
sample angle of 6odeg crank angle. The observer de-
scribed is evaluated on a 4 cylinder engine testbench,
see [12]. At t = 4.5s, we introduce an imbalance on cylin-
der 1 (+25% of IMEP). This produces the expected oscil-
lation of the AFR signal. The proposed technique is used
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Figure 3: Testbench results. AFR oscillation after intro-
duction of an imbalance on cylinder 1 (+25% of IMEP)

and provides the results reported in Figure 4.
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Figure 4: Testbench results. AFR reconstruction. Mea-
sured AFR by the sensor located downstream the turbine
(blue), reconstructed AFR in exhaust manifold (red)

To check imbalance, a diagnosis function synchronized to
the cylinders exhaust phases is applied. This function is
the mean value of the AFR during the exhaust phase of
each cylinder. Application of this diagnosis on both mea-
sured and estimated AFR is reported in Figures 5 and 7.

Moreover, the oscillation can be seen through the en-
ergy of the harmonics. For each harmonics, we define its
energy by

Ecyl(k) =

√

‖ck‖
2

+ ‖c−k‖
2

The energy of each harmonics is reported in Figures 6
and 8. Notice that, as expected, the first harmonic raises
for the imbalance of one cylinder and that only the sec-
ond harmonics raises when two opposite cylinders are
balanced each other. Without the observer, it is impos-
sible to tell which cylinder is receiving an extra amount of
fuel. The observer gives a reliable information on the dy-
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Figure 5: Testbench results. Diagnosis of cylinder imbal-
ance. Top: Experimental IMEP produced by each cylin-
der. Middle: Diagnosis with AFR measurement. Bottom:
Diagnosis with AFR estimation
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Figure 6: Testbench results. Energy level of each har-

monics Ecyl(k) =

√

‖ck‖
2

+ ‖c−k‖
2

namics of the signal, give an information on the imbalance
(even if the information is not perfect, we are able to de-
tect imbalance though the energy of the signal) and is a
relevant tool towards individual cylinder Air Fuel Ratio.

TOWARDS TORQUE BALANCING As is, this informa-
tion is not sufficient to elaborate an exact diagnosis, but
combined to phasing with respect to the cylinders ex-
hausts dynamics, it is a relevant input signal for an individ-
ual cylinder AFR to have a close estimation (as in [10] for
example). This information could be used to balance the
cylinder by applying a correction on the cylinder individual
injection masses. Control of AFR imbalance between the
cylinders can be addressed by controlling the individual
injection quantities (which is the relevant control strategy
for such imbalance) with a PI controller. Figure 9 presents
the results of such a control strategy relying on the indi-
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Figure 7: Testbench results. Diagnosis of cylinder imbal-
ance. Top: Experimental IMEP produced by each cylin-
der. Middle: Diagnosis with AFR measurement. Bottom:
Diagnosis with AFR estimation
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vidual AFR estimation. On the testbench, we turn off the
control at 7.5s which leads to the natural imbalance of the
engine. We introduce an injection offset on cylinder 2 at
19s and finally turn the controller back on at 36s. We see
that the control is efficient and that we are able to balance
the torque produced by each cylinder.

TRANSMISSION ROD DYNAMICS INVERSION

For technical reasons, the instantaneous engine speed
sensor is not located next to the cylinders but at the end
of a transmission rod. When engine speed and torque
increase, the excitation on the transmission rises in mag-
nitude, yielding misleading information about the combus-
tion. Modelling the transmission and inverting its dynam-
ics is necessary for a good torque combustion estimation.
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Figure 9: Torque balancing based on individual AFR esti-
mation: test bench results (Engine Speed 1500rpm, IMEP
9bar). We turn off the control at 7.5s, we introduce an in-
jection offset on cylinder 2 at 19s and finally turn the con-
troller back on at 36s. Top: IMEP from cylinder pressure
sensors. Bottom: Individual Estimated AFR with the non-
linear observer

MODEL DESCRIPTION Crankshaft dynamics mod-
elling has been addressed previously in the literature
(see [5] and [6] for example). In a first approach, the sys-
tem can be modelled by a second order dynamics (classi-
cal for mechanical systems) as we can see in Figure 10.
x1 and x2 refer to the engine speed at the end of the trans-

Cylinder

Transmission

Gear box

Measurement
  Periodic

 Excitation

x2 x1

Figure 10: Transmission scheme.

mission and next to the cylinders respectively. The cou-
pling dynamics writes

{

(d2x1

dα2 − d2x2

dα2 ) + 2ξ̄ω̄(dx1

dα
− dx2

dα
) + ω̄2(x1 − x2) = 0

y = x1

where ξ̄ is a damping coefficient and ω̄ the natural fre-
quency of the transmission. As the damping coefficient is
much smaller than 1, .15 in practice, we can not split the
problem as previously. Let

w0 ,
d2x2

dα2
+ 2ξ̄ω̄

dx2

dα
+ ω̄2x2

as x2 is mechanically periodic so does w0. Some rewriting
yields

{

d2x1

dα2 = −2ξ̄ω̄ dx1

dα
− ω̄2x1 + w0

y = x1

5



OBSERVER DESIGN The state is x =
[

x1
dx1

dα

]†
.

The state space model is of the form of system (3)

with A =

[

0 1
−ω̄2 −2ξ̄ω̄

]

, A0 =
[

0 1
]†

, and C =
[

1 0
]

. The observer is designed according to (4) with
the gains defined by Equation (9) in subsection . We
take L =

[

2ξ̄ω̄ 2ω̄2
]†

, Ih = {−2, ..., 2} harmonics and
Lk(t) = −εβk((ıkω0 − P )−1A0)

†CT . We choose ε = 0.1
and β2 = 1. The coefficients of the decomposition of x2

are obtained from the coefficients of w0 by matrix multipli-
cation with

[

ω̄2 − (kω0)
2 kω02ξ̄ω̄

−kω02ξ̄ω̄ ω̄2 − (kω0)
2

]−1

TESTBENCH RESULTS The implementation is
achieved in discrete time with a sample angle of 6odeg
crank angle. The observer described is evaluated on a 4
cylinder engine testbench, see [12]. The observer design
yields the reconstruction of the engine speed next to the
cylinder with the measurement of the engine speed and
the end of the transmission. Experimental results are
given in Figure 11. From these, we get an information on
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Figure 11: Testbench results. Engine speed reconstruc-
tion over 2 cycles at 1500 rpm and 8 bar of IMEP: Blue
: measured engine speed Ne,meas, reconstructed engine
speed red : Ne,est

the work produced by each cylinder. This work is linked
to the variance of the signal that writes

Vi =
∑

k∈IhÂ{0}

‖ck,i‖
2

We can see the comparison between the IMEP produced
by each cylinder (from the in-cylinder pressure measure-
ment available on the testbench) and the variance of each
cylinder in Figure 12.

CONCLUSION AND FUTURE WORK

In this paper, we expose an observation technique for
a periodic linear system with an unknown periodic input
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Figure 12: Testbench results. Diagnosis of torque imbal-
ance. Top: IMEP from in-cylinder pressure measurement.
Bottom: balance energy (Vi −

1

ncyl

∑

k Vk, where i refers
to cylinder i) estimated with the observer.

along with several test cases from the automotive control
systems area: torque estimation and sensors inversion.
Our observer scheme estimates the state and the Fourier
basis decomposition coefficients of the periodic excitation.
The cases of full and partial state measurement are stud-
ied. In the first situation, our observer acts as a filter and
proves efficient in practice: simplicity and low phase shift
are among its reported properties. In the second case, the
observer reconstructs unmeasured variables. The obser-
vation problems are exposed in their practical context and
illustrated by experimental results. These studies suggest
that periodic input estimation is a relevant technique for
engine applications.

Moreover, the future work will focus on the use of the fre-
quency information (the Fourier coefficients) for the en-
gine control, i.e. correlate the Fourier coefficients with
other parameters of the engine control. For example, we
can try to estimate the EGR flow and the aspirated flow
from the frequency information of the Manifold Air Flow
and/or the intake pressure signal.
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