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Abstract: Linear time-varying systems driven by periodic input signals are ubiquitous in control
systems. For various reasons, including disturbance rejection and diagnosis by analysis of the
trajectories, estimation of their input signals is often desirable. In the present paper, we illustrate
a recently proposed general method to solve such problems by an asymptotic reconstruction
of the Fourier expansion of the unknown input signal along with several examples from the
automotive engine industry, and with an oscillating water column retrieving wave energy.
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1. INTRODUCTION

As is well known, linear time-varying systems driven by
periodic input signals are ubiquitous in control systems
(see Bittanti and Colaneri (2009)). For various reasons,
including disturbance rejection and diagnosis by analysis
of the trajectories, estimation of their input signals is
often desirable. In the present paper, we present a gen-
eral method to address such problems along with several
examples which serve to see its merits.

In some recent works (see Chauvin et al. (20067)), a strong
motivation to aim at reconstructing unknown periodic in-
put signals has raised from automotive engine applications.
In this domain of engineering, this periodicity stems from
a fundamental property of the engines : at various levels of
modelling, automotive engine dynamics can be considered
as a system being mechanically coordinated and synchro-
nized by the revolution of the crankshaft. We will show
examples stressing the interest of having observers in this
context of automotive engine control. Moreover, as will
appear, such observer design can be applied to numerous
fields of engineering (such as the presented wave energy
retrieving system).

We now briefly outline the method we propose. Consider
a T0-periodic input signal denoted w, where T0 is per-
fectly known. The case of signals w that could be written
as a sum of a finite number of harmonics was consid-
ered in Chauvin et al. (20067). In this context, a finite-
dimensional linear time-varying observer was proposed.
We proposed in Chauvin and Petit (2010) an infinite-
dimensional observer to reconstruct signals possessing an
infinite Fourier expansion. This extension provides a sim-
ple asymptotic formula that, when truncated, serves as a

tuning methodology for finite-dimensional filters. Further,
it guarantees global convergence.

This approach is related to several research works in the
literature. Online estimation of the frequencies of a signal
being the sum of a finite number of sinusoids with unknown
magnitudes, frequencies, and phases has been addressed
by numerous authors (one can refer to e.g. Hsu et al.
(1999); Marino and Tomei (2000); Xia (2002)). However,
the problem we address is different. The signal we wish to
estimate is not directly measured. It is filtered through
a linear time-varying system. The filtered signal is the
only available information. Secondly (and very impor-
tantly), its period is precisely known. This particularity
suggests a dedicated observation technique could be worth
developing. Our approach can be considered close to the
general class of methods aiming at identifying periodic
disturbances in view of cancelling them. The main dif-
ficulty lies in determining a simple and mathematically
consistent method to tune the gains of the infinite number
of adaptation laws. As will be presented, a simple solution
is found.

The goal of this paper is to show the application of this
method to several examples. In Section 2, we recall the
problem statement and the procedure for the observer
design. Then, in Section 3, a first example is the inversion
of automotive sensor dynamics (see Hammerschmidt and
Leteinturier (2004) and Heywood (1988) for more details).
This will serve as a tutorial example to illustrate the
convergence and the robustness of the observer design. In
Section 4, a second automotive example is given. Finally,
we present a mechanical system retrieving wave energy in
Section 5. We hope that these examples can serve as bench-
marks and subject of future studies for the community.
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2. STATEMENT OF THE PROBLEM AND
PRESENTED OBSERVER DESIGN

We now briefly present the problem under consideration
and the solution we propose for it.

Notations

In the following, n and m are strictly positive integers, T0

is a strictly positive real parameter, ‖· · · ‖n refers to the
Euclidean norm of C

n, and ‖· · · ‖nm refers to the Euclidean
norm of Mn,m(R) the set of n × m matrices with real
entries. The symbol † indicates the Hermitian transpose.

We define






















ℓ2n ,
{

{xk}k∈Z ∈ (Cn)Z /
∑

k∈Z

‖xk‖
2
n < +∞

}

ω1,2
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{

{xk}k∈Z ∈ (Cn)Z /
∑

k∈Z

(1 + k2) ‖xk‖
2
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Both ℓ2n and ω1,2
n are Hilbert spaces with the inner product
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∥

2

n
, respectively 1 .

We also consider the following functional spaces (Adams,
1975, pp. 23, 60):






























L2
n[0, T0] ,

{

{[0, T0] ∋ t 7→ x(t) ∈ R
n}

measurable over [0, T0] such that
∫ T0

0

‖x(t)‖
2
n dt < +∞

}

W 1,2
n [0, T0] ,

{

{[0, T0] ∋ t 7→ x(t) ∈ R
n} ∈ L2

n[0, T0]
such that Dx ∈ L2

n[0, T0]
}

,

where Dx is the weak derivative of x.

As will become apparent, the functions considered in this
paper have continuous partial derivatives (in the classical
sense).

Again, both L2
n[0, T0] and W 1,2

n [0, T0] are Hilbert spaces.
Moreover, W 1,2

n [0, T0] is a Sobolev space.

We consider the space E , R
n×ω1,2

m and note its elements

X = (x, c). The norm on E we consider is ‖X‖
2
E

= ‖x‖
2
n +

‖c‖
2
ω

1,2
m

.

2.1 Estimation problem and definitions

Consider the following linear time-varying system driven
by an unknown periodic input signal w(t):

ẋ = A(t)x + A0(t)w(t), y = C(t)x,

where the state x(t) and the output y(t) belong to R
n

and A(t), A0(t), C(t) are continuous matrices in Mn,n(R),
Mn,m(R) and Mn,n(R), respectively, with entries that
are uniformly bounded (not necessary periodic), locally
integrable functions of t. The matrix A0(t) has T0-periodic
coefficients. We assume that T0 is perfectly known, and we
1 These inner products implicitly define the norms ‖x‖

ℓ2n
=<

x, x >
ℓ2n

, and ‖x‖
ω

1,2
n

=< x, x >
ω

1,2
n

.

want to estimate the T0-periodic KC1 (continuous and
with piecewise continuous derivative) input signal t 7→
w(t) ∈ R

m, with m = dim(w) ≤ n = dim(y) = dim(x),
through its Fourier decomposition 2 :

w(t) ,
∑

k∈Z

ckeikω0t, ω0 =
2π

T0

In the last expression, each vector ck admits m complex
entries. The state of this model is X = (x, c) ∈ E.

Because w is real-valued, for any k ∈ Z, c−k = c†k.

Because w is KC1, c , {ck}k∈Z belongs to ω1,2
m (as

implied by Parseval equality, ‖c‖
2
ℓ2m

= 1
T0

‖w‖
2
L2

m[0,T0]
, and

‖c‖
2
ω

1,2
m

= 1
T0

(

(1 − 1
w2

0

) ‖w‖
2
L2

m[0,T0]
+ 1

w2

0

‖w‖
2
W

1,2
m [0,T0]

)

.

Simple rewriting yields:






ẋ = A(t)x + A0(t)(
∑

k∈Z

ckeikω0t)

ċk = 0, ∀k ∈ Z

, y = C(t)x (1)

Furthermore, following Chauvin and Petit (2010), we make
some general assumptions.

H 1. We assume that there exist two strictly positive
numbers (ρm, ρM ) such that, for all t ≥ 0:







AT (t)A(t) ≤ ρ2
MIn

ρ2
mIm ≤ AT

0 (t)A0(t) ≤ ρ2
MIm

ρ2
mIn ≤ C(t)CT (t) ≤ ρ2

MIn

(2)

In particular, we can deduce from H1 that A0(t) has a
non-singular pseudo-inverse 3 .

2.2 Observer definition

Corresponding to state-space model (1), we define a time-
varying Luenberger type observer:







˙̂x = A(t)x̂ + A0(t)(
∑

k∈Z

ĉkeıkω0t) − L(t)(C(t)x̂ − y)

˙̂ck = −e−ıkω0tLk(t)(C(t)x̂ − y(t)), ∀k ∈ Z
(

x̂(0), ĉ(0) , {ĉk(0)}k∈Z

)

∈ E.

(3)

The state is X̂ , (x̂, ĉ) ∈ E. The gain matrices L(t)
(with real entries) and {Lk}k∈Z (with complex entries) are
defined in the following sub-section [see (4) and (5)].

2.3 Design of L and {Lk}k∈Z

By assumption (2), for all t ≥ 0, C(t) is a square invertible
matrix. Let H be a Hurwitz matrix in Mn,n(R). We set

L(t) , (A(t) − H)C−1(t). (4)

R
+ ∋ t 7→ L(t) ∈ Mn,n(R) is a bounded function because

t 7→ A(t); H and t 7→ C−1(t) are also bounded. Consider

2 This is how we account for the periodic nature of the signal w. By
making this decomposition early in the study, we are immediately
left with an infinite number of variables.
3 The interested reader might notice that this assumption would
enable a least-square approach to estimate w(t) from past measure-
ments of x (from the inversibility of C) through the differential
equation (1). Such methods, which usually do not explicitly take
advantage of the periodic nature of the signal w(t), are out of the
scope of the paper but would be totally relevant here, especially if
they are appropriately tuned to account for noises.



P the unique symmetric definite solution in Mn,n(R) of
the Lyapunov equation PH + HT P = −In. We use P to
compute the observer gains as follows: for all k ∈ Z:

Lk(t) ,
α

k2 + 1
AT

0 (t)PC(t)−1, (5)

where α is a strictly positive constant. Let X̃ , X −
X̂ , (x̃, c̃) ∈ E. The error dynamics is:











˙̃x = Hx̃ + A0(t)(
∑

k∈Z

c̃keikω0t)

˙̃ck = −
α

k2 + 1
e−ikω0tAT

0 (t)P x̃, ∀k ∈ N,

where (x̃(0), c̃(0)) ∈ E.

(6)

Under this form, the roles of the tuning parameters (the
Hurwitz matrix H, and the strictly positive constant α)
are distinct. H controls the convergence rate of the error
state x̃, and α impacts on the convergence of the Fourier
coefficient estimates.

From Chauvin and Petit (2010), we have the following
convergence result

Proposition 1. Consider system (1). Assume that (2)
holds. Consider the observer (3) with L and {Lk}k∈Z

defined in (4) and in (5). Then the error dynamics (6)
asymptotically converges to zero in R

n × ℓ2m.

The frequent case for which A, A0 and C are time-invariant
is addressed in the following corollary.

Corollary 1. Consider system (1). Assume that C is in-
vertible and A0 is injective. Consider the observer (3) with
L and {Lk}k∈Z defined in (4) and in (5). Then the error
dynamics (6) asymptotically converges toward 0Rn×ℓ2m

.

3. SENSOR DYNAMIC INVERSION

A first example is the inversion of sensor dynamics
(see Hammerschmidt and Leteinturier (2004) and Hey-
wood (1988) for more details). A classic model of such
a sensor is a first order dynamics with periodic excitation
which can be, depending on the application, the intake
pressure, the intake temperature, the exhaust pressure, the
air fuel ratio, or the mass air flow ...

For tutorial purpose, the system under consideration is










ẋ =
1

τ
(w(t) − x)

w(t) =
∑

k∈Z

ckeıkt

with the coefficients {ck}k∈Z defined by

ck =



















1 + i

2(1 + k2)
for k > 0

1 for k = 0
1 − i

2(1 + k2)
for k < 0

Observer design The main interest of this simple example
is to show that even if the number of harmonics under
consideration is high, the observer design remains easy and
is robust with respect to noise. The observer we propose
is, following (3),















˙̂x =
1

τ
(
∑

k∈Z

ĉkeıkt − x̂) − Lx(x − x̂)

˙̂ck =
α

2(k2 + 1)
e−ıkt(x̂ − x), ∀k ∈ Z

x̂(0) = 0, ĉk(0) = 0, ∀k ∈ Z.

In this example, there are only two tuning parameters for
this infinite dimensional problem. The roles of the tuning
parameters (the gain Lx, and the strictly positive constant
α) are distinct. Lx controls the convergence rate of the
error state x̂, and α impacts on the convergence of the
Fourier coefficient estimates.

Simulation results In practice, only a finite number of
Fourier expansion coefficients can be included. However,
numerous harmonics often need to be considered to re-
construct the signal. In the numerical application, we use
τ = 4, Lx = 1 and α = 0.5. To show the relevance of the
approach, we use 100 harmonics 4 . In Figure 1, we show
the square error between ŵ and w with respect to time.We
can see that convergence is provided even with a large
number of variables. Moreover, we see the decreasingness
of the L2-norm of the Fourier decomposition as time goes
to infinity.
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Figure 1. ‖ŵ − w‖
2

on a test with 100 harmonics.

Finally, the observer design is very robust to measurement
noise. In Figures 2 and 3, we present results with a mea-
surement gaussian noise with a standard deviation of 0.4.
Robustness is guaranteed while preserving convergence of
the state, the periodic input and its Fourier decomposition.

4. CRANKSHAFT DYNAMICS REFERENCE MODEL

We now present a second automotive system observa-
tion problem, also considered in Rizzoni (1989); Chauvin
et al. (2004); van Nieuwstadt and Kolmanovsky (1997).
Consider an ncyl-cylinder engine. Following Kiencke and
Nielsen (2000), the torque balance on the crankshaft can

be written as
d( 1

2
J(θ)ω2)
dθ

= T , where θ is the crank angle,

ω is the instantaneous engine speed, J is the 4π
ncyl

-periodic

inertia, and T is the combustion torque. In the variable θ
time scale, T is 4π

ncyl
-periodic and has zero mean at steady

state. This system defines a first-order periodic dynamics
with a periodic input signal T . The state x(θ) = 1

2J(θ)ω2

4 It means that we restrict k to [-100, 100]
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(ŵ).

is fully measured through the equation y = ω2. The
periodic input signal T admits a Fourier series expansion

T ,
∑

k∈Z,k 6=0 ckeık θ
2 . The reference dynamics is

dx

dθ
=

∑

k∈Z,k 6=0

ckeık θ
2

Then, the observer we propose is, following (3),














d

dθ
x̂ =

∑

k∈Z,k 6=0

ĉkeık θ
2 + H(x̂ −

1

2
J(θ)y)

d

dθ
ĉk =

α

2(k2 + 1)H
e−ık θ

2 (x̂ −
1

2
J(θ)y), ∀k 6= 0

x̂(0) = 0, ĉk(0) = 0, ∀k 6= 0.
(7)

Assumption (2) is easily verified with


















ρm = min{1, min
θ∈[0, 4π

ncyl
]

2

J(θ)
}

ρM = max{1, max
θ∈[0, 4π

ncyl
]

2

J(θ)
}

To estimate T , we can use the observer (7) with, e.g.,
H = −100 and α = 50 (these are the values used to obtain
the experimental results presented below). This gives the

estimate T̂ =
∑

k∈Z,k 6=0 ĉkeik θ
2 .

Experimental results In practice, only a finite number of
Fourier expansion coefficients can be included. However,
numerous harmonics need to be considered to reconstruct
the signal (at least 5). Very conveniently, the observer de-
sign can easily be updated when the number of harmonics
considered is changed. Indeed, without modifying the tun-
ing parameters H and α, new gains are computed from (4)
and (5). These formulae remain valid when the number
of harmonics asymptotically approaches infinity. Figure 4
shows experimental observer results for a four-cylinder
diesel engine. It is possible to compare our results to a
high-accuracy estimate obtained from in-cylinder pressure
sensors.

9.31 9.32 9.33 9.34 9.35 9.36 9.37 9.38 9.39

−300

−200

−100

0

100

200

300

400

500

600

700

Time [s]

T
or

qu
e 

[N
m

]

ref
est

Figure 4. Combustion torque. Continuous line, reference
combustion torque obtained from in-cylinder pressure
sensors; dashed line, combustion torque estimated by
the proposed observer.
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Figure 5. Normalized CPU time as a function of the
number of terms considered in the Fourier expansion.
Comparison between an extended Kalman filter and
the proposed observer (3). Right axis, reconstruction
error.

The results for the observer presented are good. For sim-
ilar accuracy, the computational burden of our observer
compares very favorably to an extended Kalman filter (as
previously used Chauvin et al. (2004)). The results in
Figure 5 demonstrate that this burden increases quadrat-
ically as a function of the number of harmonics for the
extended Kalman filter, whereas it simply increases lin-
early for our observer. The interested reader will also



note that another advantage of the proposed method is
its proof of convergence. Interestingly, convergence of the
EKF for this system can also be established (see Chauvin
et al. (2004)), but it requires a careful investigation of
observability and controllability Grammians to guarantee
uniform (with respect to the time variable) properties of
this periodic system. These properties guarantee existence
and uniqueness of a symmetric periodic positive solution
to the discrete periodic Riccati equation that serves in the
proof of convergence.

Besides its convergence, the tuning simplicity and the
relatively low computational cost are the two points of
interest of the proposed technique.

5. OSCILLATING WATER COLUMN

We now wish to study a third example. Among all the
oceans renewable energy resources, wave energy is one
of the most promising and consequently one of the most
studied currently. This resource have been evaluated, and
it appears that, while the annual average power density
(aapd) is very high at certain locations (i.e. aapd> 20kW
for 1 m of wave front), the recovery of this energy is
made a difficult challenge by the large dispersion of energy
over the energy spectrum. An overview of the state of art
in recovering ocean wave energy can be found in Brook
(2003). The oscillating water column (OWC) power plant
represents the most studied device today; many prototypes
and projects have been built on this principle all over the
world 5 .

Figure 6. Generic device of a oscillating water column.

In this study, we shall focus on the control of a generic
point absorber device with a single degree of freedom
(DoF). A generic device is presented in Figure 6. Namely,
we will consider a submerged vertical cylinder constrained
to move in heave motion only, under the action of wave
forces. Yet, all theoretical work presented here can be ap-
plied to the more common case of floating bodies (provided
the linearized buoyancy force is included in the spring
force). The body oscillates vertically under the action of

5 One can cite the Pelamis (www.pelamiswave.com),
the AWS (www.awsocean.com), and the SEAREV
(fr.wikipedia.org/wiki/Searev)

: excitation forces, radiation forces, restoring forces ideal-
ized here as a single spring of stiffness k, and a damping
force proportional to the velocity (with damping coefficient
B) supposed to represent the action of the external Power
Take Off (PTO) mechanism. The vertical motion around
the equilibrium position will be denoted by ζ(t). A linear
approach will be adopted here for modelling the hydrody-
namics (see Josse and Clément (2007); Porter and Evans
(1995)), in such a way that the behavior of the body in
waves is governed by the following differential equation 6

(M + µ∞)ζ̈ + Bζ̇ + Kζ(t) = Fex(t) + u

where Fex is the external force and u the control input.
The waves can be considered (as a first approximation) as
a periodic motion with a known frequency (see Pitt and
Tucker (2001); Laitone and Wehausen (1960) for example).
The forecast this wave is of high importance. Indeed, for
control purposes (see Chatry et al. (1998) for example),
one would try to come in resonance with the wave to
maximise the recuperated power.

System model (for estimation purpose) For clarity, the

system is rewritten under the form (1) with x = [ζ, ζ̇] and

A =

[

0 1
−2ξωref −ω2

ref

]

, A0 =

[

0
1

]

C =

[

1 0
0 1

]

We define the wave by coefficients scaled by a factor of 10
and c0 = 0 (zero mean wave). The {ck}k∈Z are defined by

ck =



















1 + i

20(1 + k2)
for k > 0

0 for k = 0
1 − i

20(1 + k2)
for k < 0

Simulation results In this example, we used ξ = .1 and
ωref = 1.25. The proposed observer is defined by (3).

There are only two tuning parameters for the infinite
dimensional problem. The roles of the tuning parameters
(the gain H, and the strictly positive constant α) are
distinct. H controls the convergence rate of the error state
x̂. We used H = diag(1, 1) in the simulation result. The
parameter α impacts on the convergence of the Fourier
coefficient estimates (calibrated at 0.1 in the following
results).

In practice, only a finite number of Fourier expansion
coefficients can be included. However, numerous harmonics
often need to be considered to reconstruct the signal. To
show the relevance of the approach, we use 100 harmonics.

The observer design is very robust toward measurement
noise (both on ζ and ζ̇). In Figures 7 and 8, we present
results with a measurement gaussian noise with a standard
deviation of 0.04. Robustness is guaranteed while preserv-
ing convergence of the state, the periodic input and its
Fourier decomposition. One can see that convergence is
provided even with a large number of variables. Moreover,
6 A more precise model leads to a more complex damping coming
from the Cummins decomposition (see Cummins (1962)) of the
radiation forces. For sake of simplicity, this has not been added in
the paper.



the L2-norm of the Fourier decomposition decreased over
time (as can be seen in Figure 9).
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Figure 7. Test with 100 harmonics. Measurement, real
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6. CONCLUSION

Several examples of engineering interest have been pre-
sented in this paper to show the merits of a recently pro-
posed technique to asymptotically reconstruct the Fourier
expansion of periodic input signals of linear time varying

systems. The main characteristic are its ease of tuning,
even when large number of harmonics coefficients are con-
sidered, its low computational complexity, and its conver-
gence. As appears in the example treated, it is relatively
robust to noise in the measurements which is an appealing
feature for real applications.
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