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Abstract: To quantify the potential of electric hot water tanks (EHWT) in general demand
response programs, there is a need for models with prediction capabilities at a reasonable
computational cost. As can be experimentally observed, the input-output response of EHWT
is relatively complex. This paper presents two models of EHWT, one in the form of two simple
one-dimensional partial differential equations and the other as a hybrid system decoupling
the phenomena acting on the EHWT, in sequences. An experimental validation compares the
performance of these models. The conclusion is that the hybrid model is more accurate and less

computationally intensive.
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1. INTRODUCTION

The increasing share of intermittent renewable electricity
sources in the energy mix (Commission [2011], Edenhofer
et al. [2011]) reveals troublesomefor managing the elec-
tricity production-consumption equilibrium. This status
can be observed at national and local levels. Demand Side
Management (DSM), which is a portfolio of techniques
aiming at tailoring consumers’ demand, is a promising
solution for such concerns (Palensky and Dietrich [2011]).
A key factor in developing DSM is the availability of energy
storage capacities. For this reason, network operators and
electricity producers are developing new ways of storing
energy. In this context, the large pools of electric hot water
tanks (EHWT) found in numerous countries (the market
share of electric heater being 35% in Canada, see Aguilar
et al. [2005], 38% in the U.S, see Ryan et al. [2010], and
45% in France, see MSI [2013]) is particularly appealing.
For load shifting applications, its large storage capacities,
the flexibility yielded by its geographically scattered char-
acteristic and its functioning are key enabling factors.

EHWTSs heat water over relatively long periods of time.
To minimize cost, electricity is used in the night time
(one period when electricity price is low), while hot water
is used in the next day-time. More advanced timing
strategies are believed to generate further cost-reductions.
Design of these strategies requires dynamical models,
e.g. to determine optimal heating periods in response to
fluctuating prices of electricity. In this paper, we develop
one such model.

An EHWT can be seen as a two inputs, single output
dynamical system. The two inputs are the heating power

and water outflow (or drain). The output is the distri-
bution of temperature of water in the tank, which can be
used to define, for optimization purposes, quality of service
indexes. This simple description should not suggest that
the internal system dynamics are straightforward. In this
paper, we will consider a natural performance index, the
“available energy”, representing the total energy contained
in the water whose temperature is above some prescribed
threshold (e.g. 40°C). The rationale behind this choice
is that hot water can be used by blending it with cold
water for all domestic purposes, provided its temperature
is above the desired threshold. As will appear, accurate
forecasting of this variable requires advanced modeling.

In the literature (Blandin [2010], Kleinbach et al. [1993],
Zurigat et al. [1991]), hot water storages are modeled as
vertical cylindrical columns driven by thermo-hydraulic
phenomena: heat diffusion, buoyancy effects and induced
convection and mixing, forced convection induced by
draining and associated mixing, and heat loss at the walls.
Most existing models are either i) one-dimensional super-
position of layers (see e.g. Blandin [2010]), or i) three
or two-dimensional (using rotational symmetry) models,
often using a discretization for numerical simulation pur-
poses such as computational fluid dynamics (Blandin
[2010], Han et al. [2009], Johannes et al. [2005]) or #4) so-
called zonal models often based on the software TRN-
SYS (Johannes et al. [2005], Klein et al. [2010]). These
models, although accurate, are numerically intensive and
do not fit with our requirements of numerical efficiency.
On the other hand, when overly simplified, these layers
models fail to reproduce some physical phenomena whose
effects are observed in practice. This is particularly true in
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Fig. 1. Available hot water as a function of heating
and draining on a 24h run (experimental data). The
system is initially uniformly cold.

our context when one wishes to introduce heating in the
dynamics.

A complexity trade-off must be found. Interestingly, a
careful study of the physical principles at stake in the
system suggests some simplifications. The buoyancy effects
lead to the so-called stratification phenomenon (Han et al.
[2009]), causing horizontal homogeneity of the tempera-
ture profile, increasing with height. This effect is dominant
and allows one to consider only one-dimensional models.
Following this approach, the first model we briefly de-
velop here extends an existing one-dimensional convection-
diffusion linear equation modeling the draining convection
and its mixing developed in the 1980s (Zurigat et al. [1988,
1991]). In details, to the classic governing equation, we
add a nonlinear velocity term given by empirical laws
lumping various phenomena (turbulent natural convection
due to heating in particular). Further, we introduce heat-
ing power as a source term. Experimental data illustrate
the relevance of this modeling. The model is concise, and
relatively accurate. However, several improvements are
possible.

Then, in a second step, we decouple heating and draining
effects and develop a model based on the decomposition of
the dynamics according to the dominant effect at stake. We
distinguish three phases: heating, draining and rest. For
heating, we reproduce a behavior observed in experimental
data in which the temperature increases first at the bot-
tom of the tank forming a spatially uniform temperature
distribution which gradually extends itself upwards to the
top of the tank. We explain this observation by a model of
buoyancy-induced forces, generating a local natural con-
vection phenomenon. This homogeneous zone is followed
by an increasing profile of temperature in the upper part
of the tank, remaining untouched due to stratification
(heat diffusion being neglected in this case). Draining
is treated as a convection parameter and its associated
mixing effects are reproduced by a diffusion term following
the approach of Zurigat et al. [1991]. We model the effects
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Fig. 2. Schematic view of an EHWT.

of the water nozzle which creates a mixing zone of varying
temperature and volume. The cascade represents a Stefan
problem (Fasano and Primicerio [1977a,b]). Finally, rest
phases are simply driven by diffusion and loss. Sequencing
the three phases constitutes a hybrid model.

This hybrid model is the main contribution of this article.
It kindly reproduces experimental data presented in this
article, and permits to compute the dynamics of the
“available energy”, defined earlier, in response to the water
drain and the power injected in the tank. A typical scenario
is reported in Fig.1. As it is visible, the input-output
behavior of the system in somewhat complex although not
counter-intuitive ! .

The paper is organized as follows. After having described
the first model, we illustrate it by means of simulations
and compare it against experimental data in Section 2. In
this study, a typical 200L tank (equipped with spatially
distributed internal sensors) with realistic scenarios of
draining and heating is employed. Section 3 is dedicated
to the presentation of the hybrid model which is the main
contribution of the paper. Comparative studies reported in
Section 4 conclude that this hybrid model is more accurate
and more computationally efficient.

2. PRELIMINARY CONSIDERATIONS AND FIRST
MODELING

2.1 General considerations on water tanks and stratification

A typical EHWT is a vertical cylindrical tank filled with
water in which a heating element is plunged at the bottom
end (see Fig. 2). The heating element is pole-shaped, and
its length is relatively large, up to one third of the tank.
Cold water is injected at the bottom while hot water

1 Heating water takes time. Starting from a uniformly cold tank, the
output of the system (the “available energy”) remains identically
equal to zero for hours. Then it jumps, and steadily increases.
Draining causes steps down on the output, and also causes some
internal mixing which is non negligible.
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Fig. 3. Example of the temperature profile inside a strati-
fied water tank.

is drained from the top at exactly the same flow rate
(under the assumption of pressure equilibrium in the water
distribution system). Therefore, the tank is always full. In
the tank, layers of water with various temperature can
coexist (see Fig.3). At rest, these layers are mixed only
by heat diffusion which effects are relatively slow (Han
et al. [2009]). Existence of a non uniform (increasing with
height) quasi-equilibrium temperature profile in the tank
is called stratification (Dincer and Rosen [2010], Han et al.
[2009], Lavan and Thompson [1977]). In practice, this
effect is beneficial for the user as hot water available for
consumption is naturally stored near the outlet of the
EHWT, while the rest of the tank is heated (see Fig.3).
Due to this effect and the cylindrical symmetry of the
system, one can assume that the water temperature in
the tank is homogeneous at each height of the tank and
one can limit studies to one-dimensional models.

2.2 Coupled one-dimensionnal distributed parameters model

The system can be described by coupled diffusion-
convection Partial Differential Equations (PDEs). To ac-
count for heating buoyancy effects, one of the convection
parameter is impacted by the local temperature increase.
Defining two states T', AT standing for average and spread
of temperature, respectively, we have
T + 02 (vgT) = 00y, T + AT — k(T — T,)
GAT + 0, (Vg + Vne)AT) = @0, AT — PAT + Py,
va(T(0,t) — Tip) + @0, T(0,8) =0
vgAT(0,t) + ad,AT(0,t) =0
0. T(h,t) =0
Oy AT (h t)=0
) =To(x)

(2.1)
where vy > 0 is the velocity induced by the draining
(assumed spatially uniform but time-varying), o = a;+ayq
is the sum of the thermal diffusivity of water and an addi-
tional turbulent diffusivity representing the drain mixing
effects, k is a coefficient scaling the loss to the exterior
assumed to be at constant temperature Ty, and Tj, is the
temperature of injected water. To these term representing
draining, heat loss and thermal diffusion, we add a veloc-
ity term v, of natural convection, which is responsible

for transport of energy in the system, a distributed heat
exchange term ®AT representing at each height the mix-
ing induced by natural convection which is proportional
to the temperature spread, and the spatially distributed
source term Py (representing the power injected in the
tank via the heating elements), which drives the dynamic
of AT. The nonlinear transport velocity v,. and exchange
coefficient ® between the two equations are modeled as

h
Une(z, ) = v / [T(x,t) + AT (y,t) — T(y, 1)) dy)" (2.2)

O(x,t) = ¢[Umaac — Une(, t)]_»,_ (2'3)
where [z] is the positive part of z and v, ¢, Vynaz, 8 and v
are positive factors.

For more details about the model and the derivation
of equations (2.1-2.3), the interested reader is referred
to Beeker et al. [2015].

2.8 First comparison against data: some limitations appear

To validate the model, experiments have been conducted in
the facilities of EDF Lab Research Center, on an Atlantis
ATLANTIC VMRSEL 200L water tank. The power is
injected via three nearby elements permitting a power
injection up to 2200W. The dimensions of the water tank
are specified in Table 1.

Table 1. Specifications of the EHWT used in

experiments
Volume (L) 200
Length (m) 1.37
Maximal power (W) 2200
Heat loss coefficient (WK~Im~=2) | 0.66

The water tank has been equipped with internal tempera-
ture sensors to record temperature at 15 locations of differ-
ent heights, 15cm deep inside the water tank (see Fig. 2).
This depth is sufficient to bypass the insulation of the tank.
Reasonably, it can be assumed that the sensors have no
effect on the flows (e.g. that they do not induce significant
drag). During the experiment, the following quantities
have been measured with external sensors: injected power,
water flow at the inlet, water temperature at the inlet.
These three quantities feed the model, the output of which
can be compared with the temperature measured by the
sensors. The comparisons are directed into an optimiza-
tion procedure identifying the coefficients. The conducted
experiments take the form of fourteen 24h runs with a
sampling rate of 1Hz. This generates 13Mbytes of data for
each run. Histories for drain (which where actually applied
to the system) are taken from the normative sheets emitted
by the European norm organism (CEN [2010]) for a tank of
this capacity, associated with a classical night-time heating
policy until total load. Subsequent experiments consider
similar total consumption but with different drain/heat
combination to test the model under various situations.

The comparison of the model against data is overall
satisfactory even in 24h open-loop runs, but close-up
inspection reveals some possibilities of improvement.

First of all, numerical results of this model and experimen-
tal data concur and show, during heating, the appearance
of a temperature plateau starting from the bottom of the
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tank (see Fig. 7 (a.l)). This plateau has increasing tem-
perature and length, but leaves temperatures at greater
heights untouched and only progressively covers the whole
of the tank. This phenomena is seen in experimental data
in the exact same way at the exception of a small tem-
perature backward flow observed at the higher part of
plateau(see Fig. 7 (a.1)). These observations support the
validity of the model, but the apparently simple dynamics
of the plateau suggest some simplification could be made.

Secondly, a mismatch appears during draining in the
lower part of the tank. This mismatch consists of an
underestimation of the injected water temperature and
a shift of the location of the layer of high temperature
gradient (see Fig. 7 (a.2)), called thermocline (Zurigat
et al. [1991]) (see Fig. 3). It is believed that these effects
arise from a local mixing in the bottom of the tank, such
as the one coming from a strong squirt out of the water
injection mnozzle. The dynamics of such mixing and its
effect on the thermocline location have a strong effect
on the temperature profile that cannot be reproduced by
the simple convection-diffusion equation in a fixed domain.
Accounting for them calls for a transformation of this fixed
domain into a time-dependent one and an adaptation of
boundary conditions. This work is presented in the next
section.

3. HYBRID MODEL FOR HEATING, DRAINING
AND HEAT LOSS

3.1 Simplifying assumptions and framework

In practice, it appears that draining and heating effects
on the tank are mostly taking place over distinct periods.
Therefore, the time interval on which the system is con-
sidered can be split into distinct subintervals, or phases.
Introducing distinct dynamics for each phase presents the
double advantage of reducing the computational burden
(by tailoring numerical schemes for each dynamics) and of
offering considerably more flexibility compared to a single
system of PDEs.

For these reasons, we now present a hybrid model, sequenc-
ing the dynamics. These dynamics can be successively
applied to the temperature profile as follows.

Consider an initial time tg, an initial temperature profile
To(x), and a time t. at which one wants to determine
the temperature profile T'(-,t.). On [tg,t], the tank is
submitted to draining and heating, characterized by the
draining velocity v4(t) and the injected power u(t) (related
to the precedently defined Py via the relation w(t) =

foh Py (y,t)dy). We assume that vy and u are piecewise
constant and left-continuous (at each discontinuity point).

Let us define 7% = (t§ = to,...,ty, = t.) and T" =
(t§ = to, ..., ty,, = tc) the sequence of discontinuity points
respectively of v and vg, and T = T*UTY = (Lo, ..., tm)
the sequence of discontinuity points of u and vy, such
that tg < 1 < ... < t,, = t.. This sequence 7 defines
a succession of m time intervals |t;,¢;11] of length At;.
In each time interval, the tank is in one (and only one of
the configurations I, IT, IIla, ITIb defined below. Over each
time interval, u(t) and v(t) are constant (see Fig 4).

Draining
va(t) =0 [ va(t) >0
. u(t) =0 I ITIa
Heatin
& u(t) >0 I TIT6
Draining velocity vy (m - s7%)
Time
" t"‘l"t'{,"t'};’"'"'tﬁlfillllllg"'ﬁl"g:ff
" Heating power u (W)

‘ Time
o ' A T "=t
Configuration Time

e T [ 11 [1] i [ 1m0
oty g ! A I Kty =t;

Fig. 4. Definition of the timeline

In each interval ]t;,t;+1], we want to determine the tem-
perature profile as a function of time, in particular at final
time t;41. This last profile will serve as initial condition
for the following phase. Three functions Fr, Fir, Frr (ac-
counting for I1Ta and IIIb) map an initial profile and work-
ing conditions to temperature profiles for future times. We
note,

o T(- tix1) = Fr(T(-,t;), At;)
o T(-tix1) = Fri(T(-,t;), Aty,u)
o T(tiv1) = Fri(T (-, i), Ati, va, u).

Clearly, if one wishes to compute the temperature profile
at any time of interest t., one only needs to compute the
sequence of intermediate profiles T'(,¢;),i = 1,...,m — 1
as a function of the previous ones by a chain rule. Note
that for the computation on a short interval [to,t.] (e.g.
if we focus on a succession of nearby times of interest), 7
can be reduced to a short list of events. Interestingly, a
comparable split is developed in Kreuzinger et al. [2008]
for the case of a water storage tank with external heating.

We now expose these mappings, for any index i.

3.2 Phase I: Rest

In this part, we consider periods without any draining or
heating.

Physical considerations The only phenomena driving the
temperature profile are diffusion and heat loss.

Dynamics  The input variables of F; are the initial
profile, say Tp(-), and the duration At;. They serve in the
following diffusion-heat loss one-dimensional system:

0T = 20y, T — k(T —T,) onQxIT

0:T(0,t) =0 on I
0:T(h,t)=0 on [ (3.1)

T'(z,0) = To(x) on Q

where I =]0, At] and ©Q = [0, h)].
We have F[(T(‘,ti), Ati) = T(',ti_;,_l).
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Fig. 5. Energy balance for the integral form heating model

Numerical considerations Numerically, this system can
be solved relatively easily with finite difference schemes.
We use a Crank-Nicholson scheme (Allaire [2007]) on a
linearly spaced mesh.

3.3 Phase II: Heating

Physical considerations  Heating modeling can be sim-
plified using the appearance of the plateau discussed ear-
lier. Turbulence generated by buoyancy effects during the
heating process is the cause of a local mixing. Here, we
consider that this mixing is perfect on an area [0, z,(t)],
the plateau, and that the buoyancy effects do not affect
stratification in heights above x,(t). For sake of simplicity
the case without heat loss is exposed, but loss can be
included without too much difficulty (this is done for
the simulation presented in Section 4). To simplify the
dynamics, the diffusion phenomena have to be neglected.
Then, the governing equations take the form of an ODE
that we derive below.

Dynamics  The input variables of Fj; are the initial
profile, say Ty(+), the duration At¢;, and the constant value
u of the heating power. The plateau temperature is noted
T,(t). It is related to z,(t) by the equation

Tp(t) = To(zp(t)) (32)
corresponding to the continuity assumption at the junction

between the plateau and the (untouched) initial profile (see
Fig. 5).

Denoting S the cross-section of the tank, and p and ¢,
respectively the density and heat capacity of water, an
energy balance (illustrated in Fig. 5) gives

xp(t) t U(S)
Denoting T} the derivative of Tp, relations (3.2) and (3.3)
yield the dynamics of z,(¢)

- 2,(0) =0,

(3.3)

t €]0, At] (3.4)

p=————,
P Spepa,Th ()
which directly gives T),(t) using (3.2).

For completeness, other phenomena can be included:

e Heat loss at walls (with loss coefficient k) is a local
phenomena that does not alter the shape of a plateau.
Its effects are some shrinking of Ty (+) towards ambient
temperature T, in the form of a exponential factor
ekt of the initial profile and a direct change of the
dynamics of z,(t).

e If the plateau is not exactly constant but always
features the same dependency in z (for instance a
constant shape around the heating elements), we
can divide the temperature of the plateau in two
components Ty (z,t) = Tp(t) +Tpe(z) and then study
the dynamics of Tp,(¢).

e Finally, the small backward energy flow that is al-
ways observed (see Fig. 7 (a.1)) at the junction (in
a stronger way at the top of the tank) can be mod-
eled by breaking the continuity hypothesis (3.2) and
replacing it with

Ty(xp(t), 1) + Tpa(p(t)) = To(xp(t)) (3.5)

where the continuity gap 7j,A depends of the geome-
try of the tank and has to be identified.

Integration of such optimal features define the dynamics
of x,(t) under the general form (slightly) more complex
than (3.4)

i’p = f(xp» t)u + g(mpv t) (3'6)
where the nonlinear functions f and g are constructed
from the functions Ty, Tpe, Tpa and their derivative or
reciprocal function, and parameters S,p,c,,T, and k.
Simple examples for f and g are reported in (3.4).

At any instant ¢ €]0, At], the temperature inside the tank
is defined as the profile constituted by the plateau (on the
lower part) and the initial profile updated by the heat loss
factor (on the upper part).

This defines F[[(T(-,ti), Ati7u) = T(-,ti+1).

Numerical considerations In principle, the extra features
added in the dynamics could make the dynamics (3.6) dif-
ficult to identify and even more difficult to integrate. How-
ever, an integral form similar to the energy balance (3.3)
gives an easy way to determine the profile at the end
of the heating phase. This method is used in practice to
numerically compute the profile in Section 4.

8.4 Phase Illa and IIIb: Drain as a Stefan problem

Physical considerations During draining periods, Zuri-
gat’s convection-diffusion model (and therefore the model
present in Section 2) seems to be globally valid when
confronted against data, but systematic errors appear.
Examination of recordings reveals that the injected water
seems to be of higher temperature than the one coming
from the water system, and the injection seems to be
located not at x = 0 but at higher heights (see Fig. 7

(a.2)).

As we have seen it in Section 2, the water nozzle mixes
the injected water in a volume, raising its temperature in
a zone of varying size. Zurigat’s model does not account
for this effect and tends to neglect the water in the bottom
of the tank which results in a shift of the thermocline
(see Fig. 7 (a.2)). A similar effect is studied for large
storage tanks (>30m?®) when injecting hot water on top
of the tank in Oppel et al. [1986] and Nakahara et al.
[1988], who introduce buffer zones of respectively constant
and constantly increasing (with time) length. The buffer
models they present do not yield conclusive results for our
case, even though interesting similarities in the spirit of
derivation can be seen with our work.
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Fig. 6. The Stefan problem for modeling draining (moving
boundary).

For these reasons, we introduce another homogeneous zone
characterized with temperature T,(¢t) and length a(¢).
Their dynamics are driven by the water injection. In case
of simultaneous heating and draining (case IIIb), draining
effects are predominant. We simply assume that the heat-
ing elements all belong to this zone and concentrate the
effects of the heating power u on Ty (¢).

Dynamics  Zurigat’s convection-diffusion PDE is still
valid on the interval [z(t), h], but the Dirichlet boundary
condition T'(zp(t),t) = Tp(t) is now located at the end
of the mixing area (zp in Fig. 6), and thus constitutes a
time-varying boundary condition.

The input variables of Fyj are the initial profile, say To(-),
the duration At;, and the constant values of the heating
power u and draining velocity vg. Consider the Stefan
problem

WT + 040, T = a0y, T — k(T — T,) on C,
T(xp(t),t) = Tp(t) on I
0:T(h,t)=0 onl (3.7)
Ty(0) = Ty, x4(0) = 2}
T(x,0) = Tp(z) on |zp(0), bl

over the domain Cs = {(x,t)|t € I,xp(t) < x < h} (where
I =10, At]).

The dynamics of T} derive from an energy balance, i.e.
xb(t)Tb(t) = ’Ud[Tm — Tb(t)] + a@zT(mb(t), t)

~ k(1) (T (t) — Ta) + SZC . (38

For completeness, the dynamics of x;(t) are needed. There
is no obvious natural way to define it (for instance from a
physical principle), but observation of data suggests that
the mixing zone seems to be larger when its temperature
is low. Then, we choose the following general formulation

zp(t) = q(Ty(1)) (3.9)
where ¢ is a positive, decreasing and invertible function
to be identified. For the simulation, we use the nonlinear
form

q(T) = . —

T - Tmzn

where A and T,,;, < T;n are subject to an identification
procedure. More generally, g represents the mixing effects
of water injection and therefore is strongly connected with
the typology of the nozzle. This definition is consistent

(3.10)

with the fact that large values of vy will induce rapid
decrease of T, and increase of xy.

The initial conditions z) and T} are defined as follows.
The homogeneous domain is initialized with

b
ry = argmin{zy| / To(z)dxr = ¢ ' (zp)}
0

or ) = h if the later is not defined, and Ty = ¢~ *(z)).
Then, the solution of (3.8) with (3.9),(3.11) and the
coupled Stefan problem follows.

(3.11)

Remark 1. Generally, existence and uniqueness of such
time-varying boundary conditions problem is not straight-
forward. Here, relating to the so-called Stefan one-phase
problem (Fasano and Primicerio [1977a,b]) (which models
the temperature of water next to a melting layer of ice
and other crystal growth problems) and with some as-
sumptions on ¢ and u, we can prove not only that the
problem is well-defined but also that for any time t € I,
T'(-,t) is an increasing function. The proof of this result is
out of scope of this paper, but will be the subject of future
publications.

Remark 2. If 3t € [0, At] s.t. xp(t) = h, the previously
defined dynamics is stopped and is replaced for later times
by

hTy(t) = vg[Th — Ty(t)] — kR(Th(t) — Ta) + ——

Spep (3.12)

xp(t) =h
defining T'(-) = Ty(t) over the whole domain.

The description above defines the function Fjjj: given
a constant draining vy and heating w, Fryr is the map-
ping from Tp(-),At;,vq and u to the solution T(-,s)
of (3.7),(3.8),(3.9) at time t;11. In other words

Frir(T(-, i), Aty u,vg) = T(-, ti).

Numerical considerations  As in section 3.2, this system
can be solved numerically with finite difference schemes,
jointly with an ODE solver for the state 7. However,
attention has to be paid to the moving boundary to ensure
consistency of the numerical scheme.

3.5 Summary of the model

The definitions of functions Fry, Frr, Frr; above allow an
easy computation of the temperature profile at any final
time t.: given a succession of phases separated by times
T = (to,t1,..,tm = t.) and an initial profile T'(-,%o),
intermediary profiles T'(-,¢;) are computed by successive
applications of the functions, using the constant values of
u and vy during each phase.

Remark 3. If we define E C L*°(Q) the set of increasing,
piecewise continuous and continuously piecewise differen-
tiable functions, with some assumptions on u, then each
of Fr, Frr, Fryr maps the profiles from E to F, ensuring
that our problem is well-defined.

4. MODEL VALIDATION

The second model has been compared against experimen-
tal data in the same conditions as the first. An additional
set of data has been generated for a total of twenty runs,
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reduced to eight after elimination of corrupted and re-
dundant data. Comparison with numerical results shows
clear improvements both during draining parts (with the
vanishing of the temperature and thermocline shifts) (see.
Fig 7 (a.2)(b.2)) and during heating parts (with a better
estimation of the plateau distribution and the backward
flow) (see. Fig 7 (a.1)(b.1)). The changes have a positive
impact on the accuracy of the model, as is reported in
Table 2, in which the statistics of the absolute difference
between simulation and experimental data has been used
as a quality index (for the whole set of data): with the
hybrid model, 96.8% of predicted temperature have an
error lower than 4°C.

Table 2. Comparison of absolute difference be-

tween experimental value and model predic-

tion; computational time. Percentage of sam-

ple for each error interval. M1: First model,
M2: Hybrid model

Err. | 0-2°C | 2-4°C | 4-6°C | 6-8°C | 8°C+ Time
M1 53.9% | 22.9% | 10.7% 5.1% 7.4% 2435.6s
M2 82.3% | 14.5% 2.0% 0.6% 0.6% 4.6s

5. CONCLUSION

This paper proposes a new model for an EHWT. This
model is based on experimental observations. It has the
advantages of being accurate and computationally light.
This model opens doors to optimization of heating poli-
cies, by enabling accurate and fast computation of any
comfort indicator defined from the internal temperature
profile, which can be used as objective function. In Fig. 8,
we report the prediction of the introduced “available en-
ergy”, contained in the EHWT. Experimental data are
well reproduced (over 24h) by our model. A simplistic
integration model is shown, for comparisons, which clearly
demonstrate the relevance of our approach.
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Fig. 8. Simulation of the “available energy” contained in the EHWT. Using the histories of draining and heating,
and a uniform cold profile as initial condition, the proposed model kindly reproduces experimental data while
vastly outperforming a simplistic single-integrator model. Red: experimental data, blue: model predictions, black:

single-zone model.



