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Abstract: This paper considers a semi-active Tuned Liquid Column Damper (TLCD) designed
to damp a Floating Wind Turbine (FWT). This device contains a choke that can be controlled
to damp the natural oscillations created by ocean waves on the FWT. The choke, which controls
the flow inside the TLCD, defines, by construction, an input variable having bounded values (the
restriction). These limitations spur an interest in optimal control strategies for this oscillating
system subject to a sinusoidal wave. These strategies are the subject of the paper. First, we
numerically solve an optimal control problem of interests for the application. When computed
over long time horizons, the resulting control signal appears to be of periodic nature. To confirm
this fact, we employ averaging methods on a simplified model. This study confirms that the
optimal control is bang-bang, is periodic, and its frequency is the double of the incoming wave
frequency.

1. INTRODUCTION

Wind power is the second fastest growing renewable source
of electricity (National Renewable Energy Laboratory,
2012) in terms of installed power. The construction of
offshore wind farms is booming all over the world. In
Europe, offshore wind energy is expected to grow to 23.5
GW by 2020, thereby tripling the installed capacity in 2015
(Ernst & Young, 2015). The causes of this recent trend are
the strength and regularity of the wind far from the shore,
which should facilitate the mass production of electricity.
Two types of technology may be employed to exploit
offshore wind energy: fixed-bottom wind turbines (with
the foundations fixed into the seabed) and floating wind
turbines (FWTs). Fixed bottom offshore wind turbines are
too expensive for waters deeper than 60 m (Musial et al.,
2006), which prevents their use in the most interesting
fields. Thus, FWTs are a more attractive alternative. In
particular, FWTs have little dependence on the seabed
conditions for installation and they can be moved to
a harbour to perform maintenance. However, the main
drawback of FWTs is their sensitivity to the surrounding
water waves which subject the wind turbine to increased
mechanical loads (Jonkman, 2007), thereby reducing the
lifespan of the mechanical parts of the wind turbine.

Attached moving masses such as tuned mass dampers
(TMDs) can be employed to improve the response of
massive structures to external disturbances. One of the
most economical and efficient variants of the TMD is
the tuned liquid column damper (TLCD), which is also
known as an anti-roll tank or U-tank. The TLCD was
originally proposed by Frahm (Frahm, 1911; Moaleji and
Greig, 2007) to limit ship roll: it is a U-shaped tube on a
plane orthogonal to the ship roll axis, which is generally

filled with water. The liquid inside the TLCD oscillates due
to the movement of the structure and the liquid energy
is dissipated via a restriction located in the horizontal
section. A TLCD is usually employed to damp the natural
frequency of the structure.

In (Coudurier et al., 2015), we considered damping a FWT
with a semi-active TLCD (with a variable restriction)
and derived the dynamics of the coupled system using
a Lagrangian approach. A reduced model of the system
was proposed along with a clipped LQR law. The clipping
(saturation) of the feedback law was a simple, yet relatively
efficient, solution as was shown in simulations that demon-
strate the potential of this control law for reducing the
pitch motion of the structure. The obtained performance
was not optimal, but, as expected, was much better than
the passive TLCD (without any actuation).

In this study, we seek performance improvement and con-
sider the optimal control of the restriction of the TLCD.
Mathematically, we aim to damp a FWT subject to a
sinusoidal wave. Solving such optimization problem can
serve to quantitatively estimate the best possible perfor-
mance (and, in turn, the performance loss of suboptimal
strategies such as the clipped LQR mentioned earlier). In
addition, if its computational burden is not too heavy,
it could serve as online control algorithm, following the
large trend of model predictive control (Lee, 2011). These
questions are left for future studies. The question at stake
in this article is the observed periodic nature of the optimal
solution.

The paper is organised as follows. First, we numerically
solve the optimal control problem of the reduced model, as
proposed in (Coudurier et al., 2015). Next, using a similar
but simpler system (the Toy Problem), we analytically
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Fig. 1. Scheme of the TLCD in motion.

study the optimal control under a sinusoidal disturbance.
For this, we employ averaging methods (Arnold, 2013;
Guckenheimer and Holmes, 1983) on the stationarity con-
ditions obtained from the application of Pontryagin Mini-
mum Principle (Pontryagin, 1987). This analysis confirms
the numerical observations of periodicity.

2. OPTIMAL CONTROL OF A FWT

To quantify the best performance that can be achieved by
a semi-active TLCD on a FWT, we consider an optimal
control formulation.

2.1 Formulation

Following the model presented in (Coudurier et al., 2015),
the following optimal control problem is considered.
Problem 1. (Optimal control of the TLCD-FWT)

minη(t),X0
J =

∫ T

0

α (t)
2

dt

subject to

Ẋ = AX − 1

2
ρAh(νẇ)|νẇ|Bη + EF ∀t ∈ [0, T ]

X0 = 04×1
XL ≤ X (t) ≤ XU ∀t ∈ [0, T ]

ηL ≤ η (t) ≤ ηU ∀t ∈ [0, T ]

where T is the horizon of the problem (T is large w.r.t. the
period of the sinusoidal wave denoted Ts). We have X =

(α w α̇ ẇ)
> where α is the pitch angle of the platform and

w is the liquid displacement. The dynamics are detailed
in (Coudurier et al., 2015, § 4.1). The control variable
is η. It is positive at all times, so that ηL = 0. Also an
upper bound ηU = 1000 is introduced to avoid numerical
issues (a larger value for this parameter does not create
any practical change in the solutions as the gain of the
control variable is null for large values, asymptotically).
To satisfy the model hypothesis stating that the vertical
columns of the TLCD are never empty, we must have
XU (2) = −XL(2) = Lv with Lv the length of the vertical
tubes of the TLCD as in Fig. 1, this is the only state
constraint considered in this study . In practical numerical
experimentations, this constraint is not active. We note
that classically X0 , X (t = 0). In Problem 1, F is the
force created by the wave on the barge, which is a known
time-varying signal (a sinusoid in this study).

2.2 Numerical resolution of the problem

We use the Matlab toolbox ICLOCS (Imperial College of
London Optimal Control Software) (Falugi et al., 2010) to
solve optimal control problems with a direct approach (the
dynamics of the system and the cost are discretized, and
then the resulting finite-dimensional optimisation problem
is solved with an interior point algorithm). The control
signal is restricted to being a discrete-time signal sampled
at 5 Hz (this sampling time being very small compared
with the time constants of our system).

In Fig. 2, we report a typical solution η (t) and α (t). One
can see that the control is bang-bang (it commutes back
and forth from ηL to ηU , which are the extremal admissible
values) and it has two bangs per wave period. In the next
section, we investigate this fact using analytic tools.

3. MATHEMATICAL ANALYSIS OF AN
EQUIVALENT PROBLEM

The following investigations are conducted on a simpli-
fied version of Problem 1. The dynamics are structurally
unchanged, but a change of input is introduced so that
the dynamics become control-affine (with state-dependant
gain).

Formally, the system at stake is a double mechanical
oscillator with similar physical characteristics to those in
Problem 1, but with significantly simpler dynamics. The
ratio of the two masses is small. This system is called a
Toy Problem and an illustration of this system is given in
Fig. 3. The dynamics of this system are

Mẍ+ Cẋ+Kx = B1(x)u (t) + E1F (t)

with

M=

(
m1 0
0 m2

)
, K=

(
k1 + k2 −k2
−k2 k2

)
, E1=

(
1
0

)
C=

(
0 0
0 c

)
, B1(x)=

(
0
cẋ2

)
, x=

(
x1
x2

)
where x1 (respectively x2) is the displacement of the first
(respectively second) mass.

We set
m1 = 100 kg k1 = 100N/m c = 0.5Ns/m
m2 = 2 kg k2 = 3N/m

The dynamics rewrite in a state space representation as

Ẋ = AX +B(X)u (t) + EF (t)

with

X=

x1x2ẋ1
ẋ2

=

X1

X2

X3

X4

 , A=

(
02×2 I2
−M−1K −M−1C

)

E=

(
02×1

M−1E1

)
, B=

(
02×1

M−1B1 (X)

)
=


0
0
0
c

m2
X4


or, in details,
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Fig. 3. Double mechanical oscillator “Toy Problem”

Ẋ1 = X3 (1)
Ẋ2 = X4 (2)

Ẋ3 = − (k1 + k2)

m1
X1 +

k2
m1

X2 +
1

m1
F (t) (3)

Ẋ4 =
k2
m2

X1 −
k2
m2

X2 −
c (1− u (t))

m2
X4 (4)

3.1 Optimal control problem

The following optimal control problem is considered
Problem 2. (Optimal control of the Toy Problem)

minu(t),X0
J (X,u) =

∫ T

0

1

2
X (t)

>
QX (t) dt

subject to

Ẋ = AX +B(X)u (t) + EF (t) ∀t ∈ [0, T ]

X0 = X(T )

− 1 ≤ u (t) ≤ 1 ∀t ∈ [0, T ]

where F is a sinusoid with a period of Ts = 2π and T is
the horizon of the problem. We set Q11 = 1 as the only
non-zero coefficient of the cost matrix Q. Classically, the
Hamiltonian of our problem is written as

H = −1

2
X>QX + λ> (AX +B(X)u (t) + EF (t)) ,

which depends in a linear manner on u; therefore, accord-
ing to Pontryagin Minimum Principle (Pontryagin, 1987)
u is bang-bang and it is defined as
u (λ,X) = sgn

(
λ>B(X)

)
= sgn (λ4B4(X)) = sgn (λ4X4) .

(5)
Classically, the other stationarity conditions give the ad-
joint dynamics

λ̇ = −∂H
∂X

= −A>λ+QX − λ> dB

dX
u (6)

where λ ∈ R4 and
dB

dX
=

(
03×3 03×1

01×3
c

m2

)
.

We change the adjoint variables using λ = Pµ such that
µ̇1 = µ3 and µ̇2 = µ4. We select

P =


0 0 −1 0

0
k2
m2

0 0

1 0 0 0
m2

m1
0 0 1


With these new variables, we rewrite (5) and (6) as follows

u (µ,X) = sgn
(
µ>P>B(X)

)
= sgn

((
µ1

m1
+
µ4

m2

)
X4

)
(7)

µ̇ = P−1
(
−A>Pµ+QX − µ>P> dB

dX
u

)
(8)

We note that the system (8) is unstable as the real parts
of the eigenvalues of A are negative. The equation (8)
expands as
µ̇1 = µ3 (9)
µ̇2 = µ4 (10)

µ̇3 =
k2
m2

µ4 −
k1
m1

µ1 − x1Q11 (11)

µ̇4 =
c (1−u(µ,X))

m1
µ4+

c (1−u(µ,X))

m2
µ1 −

k2
m2

µ2 −
m2

m1
µ3

(12)
We note that writing the adjoint variables under this
form, i.e. finding the P matrix, is a step that could
cause difficulties when attempting to treat the original
FWT/TLCD system with averaging methods.

3.2 Sinusoidal form

We use averaging methods to solve Problem (2) (Arnold,
2013; Guckenheimer and Holmes, 1983). As the wave
excitation is sinusoidal, the state of the system and the
optimal control are periodic and can be written under
the form a(t) cos (t+ φ(t)) with a (t) and φ (t) periodic.
Without any loss of generality, we consider T = 2π.
Therefore, we have



F = ε sin (t)

and we search for solutions of the stationarity conditions
under the form

X1 = a1 cos(t+ φ1) µ1 = a3 cos(t+ φ3) (13)
X2 = a2 cos(t+ φ2) µ2 = a4 cos(t+ φ4) (14)
X3 = −a1 sin(t+ φ1) µ3 = −a3 sin(t+ φ3) (15)
X4 = −a2 sin(t+ φ2) µ4 = −a4 sin(t+ φ4) (16)

This periodic form implies that X and u stabilize the
unstable system (8). Substituting (13–16) into (1–2) and
(9–10) for i = 1, ..4 yields

ȧi cos(t+ φi)− aiφ̇i sin(t+ φi) = 0 (17)

Equations (3–4) and (11–12) for i = 1, ..4 can be rewritten
as

−ȧi sin(t+φi)−aiφ̇i cos(t+φi) = ai cos(t+φi)+fi (a, φ, t)
(18)

where fi (a, φ, t) are defined in (23–26). By solving the
system having 8 equations and 8 unknown variables (17–
18), we obtain

ȧi (a, φ, t) = − (ai cos(t+ φi) + fi (a, φ, t)) sin(t+ φi)

φ̇i (a, φ, t) = − 1

ai
(ai cos(t+ φi) + fi (a, φ, t)) cos(t+ φi).

3.3 Averaging

As a (resp. φ) is periodic it can be written as the sum of
its average value ā (resp. φ̄) and an oscillating term εv.
We are looking to find ā and φ̄.

ai = āi + εvi
(
ā, φ̄, t

)
+O

(
ε2
)

(19)
φi = φ̄i + εwi

(
ā, φ̄, t

)
+O

(
ε2
)

(20)

with

˙̄ai =
1

T

∫ T

0

ȧi
(
ā, φ̄, t

)
dt+O

(
ε2
)

(21)

˙̄φi =
1

T

∫ T

0

φ̇i
(
ā, φ̄, t

)
dt+O

(
ε2
)
, (22)

where āi represents the mean part of ai and εvi
(
ā, φ̄, t

)
is

the oscillating part. We have

u
(
ā, φ̄, t

)
= − sgn (Π)

Π = ā2 sin(t+ φ̄2)
(
m2ā3 cos(t+ φ̄3)−m1ā4 sin(t+ φ̄4)

)
f1
(
ā, φ̄, t

)
= −k1 + k2

m1
ā1 cos(t+ φ̄1)

+
k2
m1

ā2 cos(t+ φ̄2) +
ε

m1
sin (t) (23)

f2
(
ā, φ̄, t

)
= − k2

m2
ā2 cos(t+ φ̄2)

+
k2
m2

ā1 cos(t+ φ̄1) +
cā2
m2

(
1− u

(
ā, φ̄, t

))
sin(t+ φ̄2)

(24)

f3
(
ā, φ̄, t

)
= − k1

m1
ā3 cos(t+ φ̄3)

− k2
m2

ā4 sin(t+ φ̄4)− ā1Q11 cos(t+ φ̄1) (25)

f4
(
ā, φ̄, t

)
= −ā4

k2
m2

cos(t+ φ̄4)

− ā4
c

m2

(
1− u

(
ā, φ̄, t

))
sin(t+ φ̄4)

+
ā3
m1

c
(
1− u

(
ā, φ̄, t

))
cos(t+ φ̄3) + ā3

m2

m1
sin(t+ φ̄3)

(26)

The term λ>B(X), in (5) is a product of two sinusoids of
period T, so it has a period of T/2, and thus u is bang-bang
with a period of T/2. For the same reason, ȧi

(
ā, φ̄, t

)
and

φ̇i
(
ā, φ̄, t

)
also have a period of T/2. Therefore, we can

rewrite (21) and(22) as follows.

˙̄ai =
2

T

∫ T/2

0

ȧi
(
ā, φ̄, t

)
dt+O

(
ε2
)

(27)

˙̄φi =
2

T

∫ T/2

0

φ̇i
(
ā, φ̄, t

)
dt+O

(
ε2
)

(28)

According to (5), u switches when λ4 or X4 is zero. On
the interval

[
0, T2

]
we have

λ4 (t) = 0 ⇐⇒

t = arctan

(
m1ā4 sin(φ̄3 − φ̄4) +m2ā3

m1ā4 cos(φ̄3 − φ̄4)

)
− φ̄3 + kλπ , rλ4

X4 (t) = 0 ⇐⇒ t = −φ̄2 + kBπ , rB4

where kλ, kB ∈ Z. We define rm , min(rλ4 , rB4) and
rM , max(rλ4

, rB4
) .

Then, one can rewrite (27)-(28) as follows

˙̄a1
(
ā, φ̄
)

= −k2ā2
2m1

sin
(
φ̄1 − φ̄2

)
− ε

2m1
cos(φ̄1) +O

(
ε2
)
(29)

˙̄a2
(
ā, φ̄
)

= u
(
ā, φ̄, 0

) cā2
m2T

×(
π − 2 (rM − rm)− sin(2rm + 2φ̄2) + sin(2rM + 2φ̄2)

)
+
ā1k2
2m2

sin(φ̄1 − φ̄2)− ā2c

2m2
+O

(
ε2
)

(30)

˙̄a3
(
ā, φ̄
)

=
k2

2m2
ā4 cos(φ̄3 − φ̄4)

+
ā1Q11

2
sin(φ̄3 − φ̄1) +O

(
ε2
)

(31)

˙̄a4
(
ā, φ̄
)

=
ā3

2m1

(
c sin(φ̄3 − φ̄4)−m2 cos(φ̄3 − φ̄4)

)
+

ā4c

2m2

+ u
(
ā,φ̄,0

) c
T

ā3
m1
×(

−π−2 (rM−rm)−cos(2rm+φ̄3+φ̄4)+cos(2rM+φ̄3+φ̄4)
)

+ u
(
ā,φ̄,0

) c
T

ā4
m2
×(

−π−2 (rM−rm)−sin(2rm+2φ̄4)+sin(2rM+2φ̄4)
)

+O
(
ε2
)

(32)



ā1 10.88µm φ̄1 2.159

ā2 4.351µm φ̄2 1.691

ā3 118.5 10−6 φ̄3 1.592

ā4 7.361 10−6 φ̄4 0.581

Table 1. Amplitudes and phases of the
ICLOCS solution

āavg
1 11.19µm φ̄avg

1 2.137

āavg
2 4.319µm φ̄avg

2 1.710

āavg
3 125.2 10−6 φ̄avg

3
π/2 (' 1.571)

āavg
4 7.459 10−6 φ̄avg

4 0.567

Table 2. Amplitudes and phases predicted by
the averaging technique

˙̄φ1
(
ā, φ̄
)

=
1

2

(
k1 + k2
m1

− 1

)
− ā2k2

2ā1m1
cos(φ̄1 − φ̄2)

+
ε

2ā1m1
sin
(
φ̄1
)

+O
(
ε2
)

(33)

˙̄φ2
(
ā, φ̄
)

= u
(
ā, φ̄, 0

) c

m2T
×(

− cos(2rm + 2φ̄2) + cos(2rM + 2φ̄2)
)

+
1

2

(
k2
m2
− 1

)
− ā1k2

2ā2m2
cos(φ̄1 − φ̄2) +O

(
ε2
)

(34)

˙̄φ3
(
ā, φ̄
)

=
1

2

(
k1
m1
− 1

)
+
ā1Q11

2ā3
cos(φ̄1 − φ̄3)

− ā4k2
2ā3m2

sin(φ̄3 − φ̄4) +O
(
ε2
)

(35)

˙̄φ4
(
ā, φ̄
)

=
1

2

(
k2
m2
− 1

)
− ā3

2ā4m1

(
m2 sin(φ̄3 − φ̄4) + c cos(φ̄3 − φ̄4)

)
+ u
(
ā, φ̄, 0

) c
T

(
cos(2rm+2φ̄4)−cos(2rM+2φ̄4)+

ā3
ā4m1

)
+ u
(
ā, φ̄, 0

) c
T

ā3
ā4m1

×(
− cos(φ̄3 − φ̄4) (−π − 2 (rM − rm))

+ sin(2rm+φ̄3+φ̄4)− sin(2rM+φ̄3+φ̄4)
)

+O
(
ε2
)

(36)
Equations (29–36) are differential equations with equilib-
rium points, which define the quantities we are looking for.
Below we detail the obtention of the numerical parameters
of this averaged model.

3.4 Numerical results

For this numerical study, we set the oscillating force to be
a sinusoid of amplitude ε = 10−4N, which is insignificant
for the mass of our system (m1 = 100 kg and m2 = 2 kg).

We search for the equilibrium point closest to the values
identified based on the data provided by ICLOCS. The
amplitudes and phases identified according to the numer-
ical solution to Problem 2 are reported in Table 1.

This solution is actually very close to the solution es-
timated as the equilibrium point of the equations (29–
36) obtained using the averaging technique, reported in
Table 2.

Therefore, a trajectory exists 1 written as (13–16) and
(19–20) close to that provided by ICLOCS verifying Pon-
tryagin Minimum Principle. The results of ICLOCS are in
accordance with the analysis obtained with the averaging
method. We also confirmed that the optimal command is
bang-bang with a period of T/2.

4. CONCLUSIONS AND PERSPECTIVES

In this study, we investigated the optimal control of a
semi-active TLCD for damping a FWT subject to a
sinusoidal wave. First, we numerically solved the optimal
control problem. The optimal command appeared to have
periodic nature, so we employed a simpler model with
similar physical characteristics to the original problem in
order to perform an analytic study of the optimal control
using averaging methods. We showed that the optimal
command was a bang-bang command with a period of
T/2. We also found that the optimal control obtained
analytically was very close to the command obtained by
the numerical routine, which confirms the validity of the
averaging technique employed here.

It seems very reasonable that an optimal control of a set of
coupled oscillators subjected to a sinusoid input generates
a periodic solution. What is less easy to anticipate is the
frequency doubling effect. Interestingly, the frequency of
the solution does not depend on the natural frequency of
the system. Only its phases and amplitudes do.

We believe that this result is relatively general, and that
one could benefit from studying the general question of
optimal control of sets of oscillators, under periodic distur-
bances. More generally, if the disturbance is not monochro-
matic but contains more than one, say two, frequencies, the
questions will certainly be more complex. If the frequen-
cies are harmonic (i.e. define an integer ratio) then the
calculations presented here could be generalized. The two
frequencies will be coupled, implicitly, through the con-
straint, most likely involving some arithmetics connecting
the various extremums of the signal. If the two frequencies
define a rational ratio (ratio of two prime integers), the sit-
uation will also be governed by some arithmetic equation,
defining the periodic distribution of extremums. However,
these last two cases, of theoretical interest, are not well-
suited to cover practical problems where the waves have
widespread spectrum. For such cases, the questions of
replacing a genuine real-time optimal control solver by an
analytically derived approximate solution as is done in this
article remains vastly opened.

However, the case of single frequency wave is of interest
for applications. Future studies could use the properties
of the optimal control to develop computationally efficient
model predictive control (Mayne et al., 2000) to control
the restriction of the TLCD in association with short-term
wave forecasting algorithms (Fusco and Ringwood, 2010)
with some adaptation on the frequency which could be
considered as a slowly-varying parameter.

1 If we initialize the fsolve function with random values, the
algorithm either does not converge or it converges to the values given
in Table 2. Therefore, it is reasonable to assume that this equilibrium
point is unique.
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