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Abstract: Oil well instabilities cause production losses. One of these instabilities,
referred to as the “casing-heading” is an oscillatory phenomenon occurring on gas-
lift artificially lifted well. This behavior is well represented by a 2D model with a
vector field that is not continuously differentiable across several switching curves.
These correspond to switches in flow rate functions describing the valves. In order
to interpret the observed oscillations as a limit cycle we use the Poincaré-Bendixon
theorem with a detailed study of uniqueness of trajectories and the derivation of a
positive invariant set. Apart from the general case considered here, an illustrative
example is given. The vector field is explicited and a similar limit cycle appears.
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1. INTRODUCTION

Producing oil from deep reservoirs and lifting
it through wells to the surface facilities often
requires activation to maintain the oil output
at a commercial level. In the gas-lift activation
technique (Brown, 1973), gas is injected at the
bottom of the well through the injection valve
(point C in Figure 1) to lighten up the fluid
column and to lower the gravity pressure losses.
High pressure gas is injected at the well head
through the gas valve (point A in Figure 1), then
goes down into the annular space between the
drilling pipe (casing, point B) and the production
pipe (tubing, point C) where it enters. The oil
produced from the reservoir (point F) and the
injected gas mix in the tubing. They flow through
the production valve E located at the surface.

Since 1986, a system for automatic handling of
such wells, FCW (Full Control of Wells) has been

developed by TOTAL. Wells have been operated
by FCW since 1988. This tool schedules the open-
ing of valves A and E following a sequential logic
algorithm which steers the system to a prescribed
setpoint. These can be stable or unstable. Details
can be found in (Lemetayer and Miret, 1991).

High yield setpoints (low gas and high oil output)
lie in an unstable region (Jansen et al., 1999).
A periodic phenomenon called “casing-heading”
can appear. It consists of a succession of pressure
build-up phases in the casing without production
and high flow rate phases. These oscillations re-
duce the overall oil production and may damage
the reservoir well interface and the facilities. Cur-
rently FCW does not fully address such dynamical
instabilities.

This “casing-heading” instability is accurately
represented by multiphase partial differential equa-
tions models (such as those implemented in
IndissTM-IProd or Olgar2000). Yet, simpler mod-
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Fig. 1. Scheme of a gas-lift activated well.

els can be used. In (Imsland, 2002; Eikrem et

al., 2003) a three balance ordinary differential
equations model is used as the well dynamics.
Numerical simulations prove the relevance of this
approach. Further studies reveal that, as it is
assumed that the gas mass fraction is constant
with respect to the depth, the 3D model can be
reduced to a 2D one (the masses of oil and gas in
the tubing are highly correlated). This assumption
eliminates possible instabilities due to propaga-
tion and thus let us focus on the casing-heading
phenomenon. This representation is handy to in-
terpret the casing-heading oscillations as a limit
cycle. The contribution of this paper is to explain
the observed planar limit cycle (e.g see Figure 2
for a sample IndissTM-IProd multiphase well sim-
ulation – exact scales are omitted for confiden-
tiality reasons) through the Poincaré-Bendixon
theorem. This system is related to other work
on hybrid systems, such as the two-tank exam-
ple addressed in (Hiskens, 2001), or the gener-
alization of the Poincaré-Bendixon theorem to
planar hybrid systems by (Simić et al., 2002).
Yet, several specific issues have to addressed here.
The model includes two switching curves. These
model the flow rate through the two valves (A
and E). According to classic Saint-Venant laws
(refer to (Standard Handbook of Petroleum and

Natural Gas Engineering, 1996)) the flow rate
is non differentially smooth around zero. The
model is thus non differentially smooth across the
switching curves. Therefore proving existence and
uniqueness of the trajectories requires special care
and does not directly derive from a Lipschtiz-
continuity assumption.

The article is organized as follows. The system
under consideration is presented in Section 2. In
Section 3 a positive invariant set is constructed.
In Section 4 existence and uniqueness of the
trajectories are addressed through detailed studies
around switching curves and their intersections.
A future goal is to stabilize the system to the
inner setpoint or to shrink the limit cycle. For that
purpose a normalized sample problem is given for
further reference. Its dynamics are explicited in
Section 5. It exhibits a similar limit cycle. We hope
it can serve as a test bench for various control
techniques.
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Fig. 2. Projection of a limit cycle obtained with
the IndissTM-IProd multiphase simulator.

2. DYNAMICS DEFINITION

2.1 Notations

We represent the behavior of the well around an
unstable setpoint by the following dynamics over
[x, x] × [y, y] ⊂ R

+ × R
+

(

ẋ
ẏ

)

=

(

εwgc(x) − wiv(x, y)
wiv(x, y) − µwpg(y)

)

(1)

We note X , [x, x], Y , [y, y], X , (x, y)t and

Ẋ = F (X) = (F1(x), F2(x))T . This 2D dynamics
is a restriction of the 3D one defined in (Eikrem et

al., 2003). wgc, wiv and wpg are the gas flow rate
through the gas valve A, through the injection
valve C and through the production valve E. x
and y represent the mass of gas in the casing and
in the tubing. The positive parameters ε and µ
stand for the openings of valves A and E. φ(·,X0)
denote the solution of Equation (1) with X0 as
initial condition.

2.2 Hypothesis

We assume that both wiv and wpg vanish over
their definition intervals. Let ∂Fo

iv and ∂Fo
pg be

the boundaries of the sets w−1
iv (0) and w−1

pg (0). We
assume the following hypothesis hold.

(H1) wgc : R → R is C1, strictly decreasing and
does not vanish.

(H2) wiv = giv ◦ τiv

• τiv : R
2 → R is C2, and strictly increasing

w.r.t x and y.



• giv : R → R
+, is C0, strictly increasing over

R
+, C1 over R/{0}, and non Lipschitz at 0.

giv(0) = 0. g′iv is decreasing over R
+\{0}.

g′iv ∼ tλ with −1/2 < λ < 0.
(H3) wpg = gpg ◦ τpg

• τpg : R
2 → R is C1, strictly increasing w.r.t.

y, and does not depend on x.
• gpg : R → R

+, is C0, strictly increasing
over R

+ and C1 over R/{0}, non Lipschitz
at 0. gpg(0) = 0.

(H4) τiv and τpg vanish over X × Y. We define

∂Fo
iv , τ−1

iv (0) and ∂Fo
pg , τ−1

pg (0).

In order to construct a polygon P such as defined
later on in Section 3.1 we need some further
assumptions.

(H5) ∀x ∈ X , ẏ(x, y) < 0
(H6) ẋ(x, ypg) < 0
(H7) ∀x ∈ X , τiv(x, y) ≤ 0
(H8) ∀y ∈ Y, τiv(x, y) ≤ 0

where, thanks to the continuity of wpg, ypg ,

max{y/wpg(y) = 0}.
One last assumption (H9) is that a constant K
uniquely defined later on in Section 4.3 by the
functions above is not zero.

2.3 Existence conditions of a limit cycle

Let Ω(φ) be the limit set of φ. According to
the Poincaré-Bendixon theorem as expressed in
(Miller and Michel, 1982), the fact that Ω(φ)
contains no critical point combined to the unique-
ness of the solution of Equation (1) is sufficient
to guarantee the existence of a limit cycle. On
the other hand, exhibiting a positive invariant set
containing no stable equilibrium implies that Ω(φ)
contains no critical point. Therefore we can simply
check that

• there exists a positive invariant set (this will
be shown in Section 3),

• given an particular initial condition the so-
lution is uniquely defined (this will be ad-
dressed in Section 4).

3. POSITIVE INVARIANCE

3.1 Some useful lemmas

Let P be a polygon ((Pi)i∈[1,N ] its vertexes) such
that

∀i ∈ [1, N ],∃λ such that
−−−−→
PiPi+1 = λF (Pi) (2)

Classically, P is a positive invariant set if and only
if

∀X0 ∈ ∂P,∃t > 0 s.t. ∀ε ∈ [0, t] : φ(ε,X0) ∈ P
(3)

Lemma 1. Assume that F is Cn on a neighbor-
hood of X0, with X0 ∈ [Pi, Pi+1]. Define u =

P1×P2

‖P1×P2‖
. If there exists k ∈ [1, n] s.t.















F (Pi)×
djφ

dtj
(0,X0) · u = 0, j = 1..k − 1

F (Pi)×
dkφ

dtk
(0,X0) · u > 0

then condition (3) holds.

Proof 1. A sufficient condition for condition (3)
to be satisfied is that

−−−−→
PiPi+1 ×

−−−−−−−→
Piφ(ε,X0) · u > 0

This is equivalent to

A(ε,X0) = F (Pi) ×
−−−−−−−→
X0φ(ε,X0) · u > 0 (4)

Since F is Cn on a neighborhood of X0, an
expansion of A(·,X0) is

A(ε,X0) = εk−1(F (Pi) ×
dkφ

dtk
(0,X0) · u + o(1))

Therefore A(·,X0) is strictly positive and condi-
tion (3) is satisfied.

Similarly one can prove that

Lemma 2. Let X0 ∈ [Pi, Pi+1] and (j, l) ∈
{(1, 2); (2, 1)}. Assume that Fj(Pi) = 0. If Fl is
continuous around X0 and Fj is C1, a sufficient
condition leading to (3) is

(−1)j ẋl(Pi)ẋj(X0) > 0 or
{

ẋl(Pi)ẋj(X0) = 0

(−1)j ẋl(Pi)ẍj(X0) > 0











(5)

Corollary 1. If Fj(Pi) = 0 and if Fj and Fl are
only C0, a more restrictive condition is

(−1)j ẋl(Pi)ẋj(X0) > 0

3.2 Positive invariant set candidate

Two curves play a key role in the construction of
the candidate rectangle P = (P1P2P3P4). These
are the set {(x, y)/ ẋ = 0} and the set {(x, y)/ ẏ =
0}. We show that this rectangle, which is illus-
trated in Figure 3, satisfies Equation (2).

P1, P2 and P3 construction Let ψ be defined by

ψ(x) , εwgc(x) − wiv(x, ypg)

From (H6) and (H8), ψ(x) > 0 and ψ(x) < 0.
Since ψ is continuous, increasing, we can uniquely
define

x1 = max{x/ψ(x) = 0}
We note P1 , (x1, ypg). At that point ẋ and
wpg vanish. Further, similar arguments relying on
(H5), and (H2)-(H8) respectively, uniquely define
P2 , (x1, y2) with y2 , min{y/ẏ(x1, y) = 0} and
P3 , (x3, y2) with x3 , max{x/ẋ(x, y2) = 0}.



P4 construction Let P4 , (x3, ypg). [P3, P4] is
tangent to the field at P3. Further, [P4, P1] is
tangent to the field at P4. This arises from the
the following argument. As wiv is cancelling at
(x, ypg) and strictly positive at P1, we can choose
ε parameter in Equation (1) such that [P4, P1] ∩
∂Fo

iv 6= ∅. Therefore wiv(P4) = 0. As a conse-
quence ẋ(P4) > 0 and ẏ(P4) = 0.

3.3 Intersections with switching lines

Let X2
iv , (xiv, ypg) with xiv = max{x/(x, ypg) ∈

[P4, P1] ∩ ∂Fo
iv}. Remembering that wiv(P3) =

εwgc(P3) > 0 we conclude [P3, P4]∩∂Fo
iv 6= ∅. We

note X1
iv , (x3, yiv) with yiv , max{y/(x3, y) ∈

[P3, P4] ∩ ∂Fo
iv}.

3.4 Positive invariance

Let X0 be a point on the side of the rectangle.
We want to prove that the trajectory φ(·,X0) =
(φx, φy)t starting at X0 remains inside P for t > 0.
We assume that trajectories are uniquely defined,
this will be proven at Section 4.

Using Lemma 2 at points where F2 is not C1

Let X0 ∈ [P1, P2]. F1 vanishes at P1, so F1

being C1 and F2 only continuous around X0 will
complete the list of hypothesis needed to apply
Lemma 2. F2 is continuous by definition and F1

is C1, because ∀X0 ∈ [P1, P2]

wiv(X0) ≤ wiv(P1) = εwgc(P1) > 0

Therefore checking condition (5) of Lemma 2
will prove that the trajectory starting at X0

goes inside (P). If X0 ∈]P1, P2] the condition
rewrites −ẏ(P1)ẋ(X0) > 0. As −wiv is decreasing
w.r.t. y, ẋ(X0) < 0. Adding that ẏ(P1) > 0
ensures that the condition holds. If X0 = P1

the condition rewrites −ẏ(P1)ẍ(X0) > 0. As
ẍ(X0) = −∂ywiv(X0)ẏ(X0) < 0 this condition
holds. Following along the same lines it is easy to
check that Lemma 2 can be applied at every point
of ∂P except X1

iv and [P4, P1]. At these points the
C1 condition is not verified. Notice also that at
each vertex two conditions have to be verified, one
for each side.

Using Corollary 1 at points where F1 and F2 are

only C0 When X0 is an element of X1
iv∪]X2

iv, P1]
none of F coordinates vanish, therefore we can
simply use the fact that F is continuous to apply
Corollary 1. So for X0 = X1

iv the condition is
−ẋ2(P3)ẋ1(X0) > 0 which is easily checked. At
X0 ∈]X2

iv, P1] the condition is ẋ1(P4)ẋ2(X0) > 0.

A proof by contradiction when X0 ∈ [P4,X
2
iv]

Neither Lemma 2 (F2 is not C1) nor Corollary 1
(ẏ(X0) = 0) can be used here. Yet, we can prove
that a solution starting at X0 cannot go below
y = ypg. Assume that there exists t2 such that
φy(t2) < xpg

2 , define t1 such that
{ ∀t ∈]t1, t2], φy(t) < xpg

2

φy(t1) = xpg
2

(6)

Refering to the mean value theorem φy(t2) =
φy(t1)+(t2−t1)φ

′
y(tc) with tc ∈ [t1, t2]. φ′

y(tc) = 0
implies φy(t2) = φy(t1) which contradicts (6).
Finally, as the trajectory starting at X0 ∈ ∂P sat-
isfies condition (3), P defines a positive invariant
set.

4. EXISTENCE AND UNIQUENESS OF THE
TRAJECTORIES

The first hypothesis required by the Poincaré-
Bendixon theorem is the existence and forward
uniqueness of the solutions. Existence of a solution
of (1) starting at X0 ∈ X × Y follows from the
continuity of F . Uniqueness of a solution of (1)
starting at X0 ∈ (X × Y)/(∂Fo

iv ∪ ∂Fo
pg) follows

from the differentiable continuity of F around X0.

4.1 Decoupling

Consider X0 ∈ [P4,X
2
iv[⊂ ∂Fo

pg. wiv is null at P1

and increasing with respect to x, so it cancels over
[P4,X

2
iv]. In a neighborhood of any point of this

segment the system is decoupled. At this point the
system writes

{

ẋ(X0) = εwgc(x0)

ẏ(X0) = −µwpg(y0)

Both right hand sides are decreasing functions
because wpg is increasing and wgc is decreasing.
Thus the solution starting at X0 is unique (see
(Brauer and Nohel, 1989)).

Let X0 be ∈ ∂Fo
iv, such that F (X0)·∇τiv(X0) < 0.

Let φ be a solution starting at X0. F being
continuous and bounded in a neighborhood of X0,
we can define T > 0 such that ∀t < T , X0φ(t) ·
∇τiv(X0) > 0. Therefore the solutions of (1) are
the solutions of the decoupled system

{

ẋ = εwgc(x)

ẏ = −µwpg(y)

Each equation has a unique solution, so there
exists a unique solution starting at X0.

4.2 Transversality argument

Let X0 ∈ {X ∈ ∂Fo
iv/F (X) · ∇τiv(X) > 0} ∪

[X2
iv, P1]. Rewriting dynamics (1) in the (y, z)

coordinates, with z = τiv(x, y), yields



{

ż = F (ξ(y, z), y) · ∇τiv(ξ(y, z), y)

ẏ = giv(z) − µwpg(y)
(7)

where ξ is a C2 function defined from the implicit
function theorem applied to z = τiv(ξ(y, z), y).
The decoupling argument does not hold anymore,
but we can use the transversality property at
0, ż is strictly positive, therefore ∃α−, α+, T ∈
R

+\{0} such that ∀t ∈ [0, T ]

z0 + α−t ≤ z(t) ≤ z0 + α+t (8)

When y0 = y and z0 6= 0, ẏ(0) is strictly positive
which allow us to define β−, β+, T ∈ R

+\{0}
y0 + β−t ≤ y(t) ≤ y0 + β+t (9)

Now consider two distinct solutions (y1, z1) and
(y2, z2), let ey , y2 − y1 and ez , z2 − z1. The
key of the proof is to use equation (8) to define
an upper-bound to |e| = |(ey, ez)|. From (8) and
(9) we deduce that ∀t ∈]0, T ] y(t) > y0 and
z(t) > 0. Therefore the solution of (7) starting
at that point is unique. In the case of (y0, z0) =
(y, 0) this property still holds. The two solutions
(y1, z1) and (y2, z2) cannot split but at t = 0.
Furthermore we define T ′ such that ey, ez and
their derivatives remain positive over ]0, T ′]. The
dynamics rewrites as Equation (10). We replace
the C1 functions ∂xτiv, ∂yτiv and wgc by their first
order expansion around X0 in the first equation
of (10)

ż = A − Bgiv(z) − Cµwpg(y) + Dz + Ey + R(y, z)

(11)

With A > 0, C > 0 and

lim
(y,z)→(y0,0)

R(y, z)

|(y, z) − (y0, 0)| = 0 (12)

Using the mean value theorem, we can define
(yc, y

′
c, y

′′
c ) ∈ [y1, y2] and (zc, z

′
c, z

′′
c ) ∈ [z1, z2] such

that the dynamics of e is










ėy = − µw′
pg(yc)ey + g′iv(zc)ez

ėz =(−Cµw′
pg(y

′
c) + E + ∂yR(y′′

c , z2))ey

+ (−Bg′iv(z′c) + D + ∂zR(y1, z
′′
c ))ez

(13)
Recalling (12) one can define T ′, k and k′ such
that over ]0, T ′]

ėz ≤ (−Cµw′
pg(y

′
c) + kE)ey + (−Bg′iv(z

′
c) + k′D)ez

To define the upper-bound of (13), we recall the
transversality argument. g′iv being monotonous we
deduce
{

0 ≤ ėy ≤g′iv(z0 + α±t)ez

0 ≤ ėz ≤kEey + (−Bg′iv(z0 + α±t) + k′D)ez

(14)
Notice that for z0 > 0 we do not need the linear
bounds of (8) to derive a proper upper-bound
in (14). Yet, for z0 = 0 the upper-bound goes
to infinity, therefore we use that ż(0) is not zero.

Remark also that this kind of hypothesis is not
required for ẏ. Integrating between s and t (t <
min(t′, t′′) and s > 0) gives

e(t) ≤
∫ t

s

A(u)e(u)du + e(s)

with A(t) =

(

0 g′iv(z0 + α±t)
kE (−Bg′iv(z0 + α±t) + k′D)

)

Using |A| =
∑2

i,j=1|aij | we deduce

|e(t)| ≤
∫ t

s

|A(u)||e(u)|du + |e(s)|

Therefore the Gronwall inequality theorem((Brauer
and Nohel, 1989)) yields

|e(t)| ≤|e(s)| exp

(
∫ t

s

|A(u)|du

)

(15)

As the exponential term is bounded, the limit of
the right-hand side of equation (15) is also 0 when
s goes to 0 which concludes the proof.

4.3 Non transverse case

Define X0 such that X0 ∈ ∂Fo
iv and F (X0) ·

∇τiv(X0) = 0. The initial conditions of equation
(7) become ż(0) = z(0) = 0, ẏ(0) < 0 and y(0) >
ypg. In inequality (8), ż(0) = 0 yields α± = 0.
The upper-bound |A(u)| goes to infinity as u goes
to zero. System (14) does not give further result.
Yet, using y ∼ y0 + ẏ(0)t, Equation (11) yields

ż ∼ Kt − Bgiv(z)

with

K = (E − Cµw′
pg(y0)) (16)

The role of assumption (H9) appears here as a
substitute to the transversality property of Sec-
tion 4.2. It implies that when the field is tangent
to the switching curve there exists a non vanishing
higher order forcing term (which actually arises
from the coupling of the y dynamics onto the z
dynamics). Using L’Hospital’s rule we find that
Kt is the predominant term. Thus, for a given K,
the solutions are positive or negative exclusively.
Therefore, if K < 0 we use the decoupling argu-
ment to conclude to uniqueness. If K > 0 we use
z ∼ Kt2/2 instead. As t 7→ g′iv(t2) is integrable
around 0 the exponential term of the right-hand
side of Equation (15) is bounded, therefore letting
s go to zero yields e(t) = 0.

4.4 Conclusion

Away from ∂Fo
iv ∪ ∂Fo

pg uniqueness follows from
the differentiable continuity of F . Points at which
the field points toward the τiv < 0 zone were stud-
ied in Section 4.1 where a decoupling argument



{

ż = ∂xτiv(ξ(y, z), y)(εwgc(ξ(y, z)) − giv(z)) + ∂yτiv(ξ(y, z), y)(giv(z) − µwpg(y))

ẏ = giv(z) − µwpg(y)
(10)

was used. Otherwise, when available, transversal-
ity was used (see Section 4.2). Finally, the case
of a field tangential to ∂Fo

iv was addressed in
Section 4.3. All cases being addressed, uniqueness
is proven.

5. A CASE STUDY

While appearing as a limit case of our result (see
(H2)), square roots are often used for valve mod-
elling. Uniqueness proof follows along the exact
same lines except for the final points addressed
in Section 4.3. Instructively, an alternative study
leads to the conclusion. Let X = Y , [5/4 −
√

13/8, 5/4], ε = 0.1 and µ = 2. Let

wgc(x, y) ,
√

2 − x

τiv(x, y) , 13/8 − (x − 5/4)
2 − (y − 5/4)

2

τpg(x, y) , y
3

2

with giv = gpg ,
√

max(0, ·). Equilibrium points
are unstable with positive real part complex con-
jugate poles. Hypothesis (H1), (H2), (H3), (H4)
are verified. Let us check hypothesis (H5), (H6),
(H7) and (H8) (with ypg = 0)

(H5) ∀x ∈ X , ẏ(x, 5
4 ) =

√

13
8 −

(

x − 5
4

)2 −
2
(

5
4

)
3

4 < 0

(H6) ẋ(5/4, 0) = 0.1
√

3/2 − 1/4 < 0

(H7) ∀x ∈ X , τiv

(

x, 5
4 −

√

13
8

)

= −(x− 5
4 )2 ≤ 0

(H8) ∀y ∈ Y, τiv

(

5
4 −

√

13
8 , y

)

= −(y − 5
4 )2 ≤ 0

These hypothesis are also verified. Yet, α = 1/2,
thus we substitute Section 4.3 with the following
study. Around X0 = (y0, 0) where the field is
tangent to ∂Fo

iv we have, y ∼ y0+ẏ(0)t (ẏ(0) < 0).
Equation (11) now yields

ż ∼ −B
√

z + Kt

With B = −1.93 and K = (E−Cµ3/4y
−1/4
0 )ẏ(0) =

0.503. Using L’Hospital’s rule we compute: z(t) ∼
at2, with a = 1.38. As |e(s)| = ◦(s2), Equa-
tion (12) becomes

|e(t)| ≤ ◦(1)e
b(t−s)+(2− 1−B

2
√

a
) ln t

s

As 2 − (1 − B)/(2
√

a) = 0.757, letting s go to
0 implies that e(t) = 0. Uniqueness is proven.
Figure 3 shows the construction of the positive
invariant set and the limit cycle.
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Fig. 3. Limit cycle and positive invariant set for
the sample problem.
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