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Abstract: We study the time-optimal control of a particle in a dielectrophoretic
system. This system consists of a time-varying non-uniform electric field which
acts upon the particle by inducing a dipole moment within it. The interaction
between the dipole and the electric field generates the motion of the particle.
The control is the voltage on the electrodes which creates the electric field. Such
systems have wide applications in bio/nanotechnology. In regard to time-optimal
control, we address the issue of existence and uniqueness of optimal trajectories,
and explicitly compute the optimal control and the corresponding minimum time.
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1. INTRODUCTION

We consider the motion of a neutrally-buoyant
and neutrally-charged particle on an invariant
line in a chamber filled with fluid flowing at low
Reynolds number and with a parallel electrode
array at the bottom of the chamber; see Figure 1.
A force is created by the interaction between a
non-uniform electric field and the dipole moment
induced in the particle. The resultant motion is
called dielectrophoresis (DEP); see (Pohl, 1978).
We are interested in the time-optimal control
of this system which can be described, after a
nonlinear change of coordinates, by

ẋ = yu + αu2 (1)
ẏ = −cy + u. (2)

The state (x, y) ∈ R
2 and the single control u

satisfy

x(0) = given , y(0) = 0, (3)
x(tf ) = given , y(tf ) = free, (4)
|u| ≤ 1 (5)

where the parameters α and c satisfy

α < 0, c > 0. (6)

Variable x describes the displacement of the
particle. Variable y describes the exponentially-
decaying part of the induced dipole moment. Con-
trol u is the common voltage on each electrode.
Parameters α and c depend on the permittivities
and conductivities of the particle and the fluid
medium. Dielectrophoresis has wide applications
in bio/nanotechnology, in particular, in the sepa-
ration of bio/nano-particles (Hughes, 2002; Jones,
1995). We here address the case of a single particle
to underline key features of DEP such as the
dipole induction and the boundary control. We
hope that this will invite control researchers to
the application of DEP systems.

2. OVERVIEW OF MAIN RESULTS

Time optimal trajectories satisfy the following
dynamics:

ẋ = yu + αu2 (7)
ẏ = −cy + u (8)

λ̇ = cλ − u (9)

with conditions (3) – (5) and



λ(0) = λ0 = to be found, λ(tf ) = 0 (10)

where

u(t) = arg max
|v|≤1

H̃(y(t), λ(t), v)

with

H̃(y, λ, v) = αu2 + (y + λ)u − cyλ. (11)

See (21) for the optimal control u.

When xf < x(0), there are no Lebesgue measur-
able time-optimal control functions resulting in
x(tf ) = xf even though xf is reachable.

We now consider the case of xf > x0. Time-
optimal control law exists if and only if the pa-
rameters, α and c satisfy (1 + αc) > 0. Let

Λ = (−2α
√

1 + αc, 1/c)

and

Λ1 =(−2α
√

1 + αc,−2α), Λ2 =[−2α, 1/c) (12)

where it is understood that the decomposition of
Λ into Λ1 and Λ2 is done only when (1+2αc) > 0.
For the sake of convenience, let us define three
sentences as follows:

• P1 := [(1 + 2αc) > 0] ∧ [λ0 ∈ Λ1],
• P2 := [(1 + 2αc) > 0] ∧ [λ0 ∈ Λ2],
• Q := [(1 + 2αc) ≤ 0] ∧ [λ0 ∈ Λ]

where ∧ is the logical connective, AND. Let us
define a strictly increasing onto function X1 : Λ �→
(0,∞) by

X1(λ0) =
{

equation (22) if P1 ∨ Q,
equation (24) if P2

where ∨ is the logical connective, OR. Let us
define another function T1 on Λ by

T1(λ0) =
{

equation (28) if P1 ∨ Q,
equation (29) if P2.

Classically, we call a trajectory of (7) – (9) satisfy-
ing (3) – (5) and (10), an extremal. Let us call an
arc of an extremal a basic arc if the projection of
the arc onto the yλ-plane starts from 0×Λ (resp.
0×(−Λ)) and ends on Λ×0 (resp. (−Λ)×0), going
through the first (resp. third) quadrant of the yλ-
plane. We call an extremal an n-shot extremal
with n ∈ N if the maximum number of basic arcs
in the extremal is n.

To decompose extremals into finite arcs when [P1
∨ Q], let us introduce some notations. An arc with
the linear control u = (y + λ)/(−2α) on a time
interval of length ΔtAB(λ0) in (25), is denoted
by γλ0

L . Let γλ0
+ (resp. γλ0− ) denote an arc with

u = 1 (resp. u = −1) in a time interval of length
ΔtBC(λ0) in (27). The concatenation

Γλ0± = γλ0
L � γλ0± � γλ0

L

is called a basic arc where the concatenation �
is such that the leftmost one comes first and the

rightmost one comes last and the concatenation
curve is always a continuous curve. An arc with
the linear control u = (y + λ)/(−2α) is called an
idling arc if its projection (y, λ) starts from the
positive (resp., negative) y-axis, goes through the
fourth (resp., second) quadrant in the yλ-plane,
and finally ends on the negative (resp., positive)
λ-axis. An idling arc is denoted by γidling; see (b)
of Figure 3. Its duration is Tidling in (30). Hence,
when [P1 ∨ Q], we can express n-shot extremals
as Γλ0,n

± , n ∈ N which is defined as follows:

Γλ0,1
± = Γλ0± ;

Γλ0,k
± =

{
Γλ0,k−1
± � γidling � Γλ0∓ if k is even,

Γλ0,k−1
± � γidling � Γλ0± if k is odd

for k ≥ 2 with

λ(0) = ±λ0.

Let us now talk about the existence and unique-
ness of optimal trajectories. If (1+2αc) > 0, there
exist exactly two time-optimal trajectories for a
given xf > x(0), and they are basic arcs. Here is
the procedure of constructing them:

1. Find λ0 = X−1
1 (xf − x(0)) ∈ Λ,

2. Set λ(0) = ±λ0,
3. The minimum time cost is T1(λ0) and the

optimal trajectories γopt are

γopt =
{

Γλ0± if P1,
basic arc with u = ±1 if P2.

If (1+2αc) ≤ 0, we do not have any general proof
of the uniqueness of optimal control. However,
we have a finite procedure of finding all optimal
control laws for a given xf > x(0) as follows:

1. Define two sequences, for k ∈ N,

λ0,k = X−1
1

(
xf − x(0)

k

)
,

Tk = k T1(λ0,k) + (k − 1)Tidling

2. Find n = arg mink{Tk : k ∈ N} (it always
exists and is less than 1 + (T1/Tidling) ),

3. Set λ(0) = ±λ0,n,
4. The minimum time cost is Tn and the corre-

sponding optimal trajectories are Γλ0,n
± .

If there are j integers in step 2 to give the mini-
mum time, then there are exactly 2j time-optimal
trajectories. We remark that each basic arc in the
k-shot extremal Γλ0,k,k

± equally contributes (xf −
x(0))/k to the increment of x and the idling arcs
in between make no contributions.

3. DERIVATION OF DYNAMICS

We briefly derive the dynamics in (1) and (2),
and explain the conditions on the state and pa-
rameters in (3) – (6); see (Chang et al., 2003) for



more detail. Consider a neutrally charged particle
in a chamber with a fluid medium and a parallel
electrode array at the bottom as in (a) of Figure 1
where d1 is the width of each electrode, and d2

is the length of the gap between two electrodes.
As the electrodes are long enough compared with
the size of particles, we may assume that there
are infinite number of infinitely long electrodes.
Due to this symmetry, we will consider the motion
of the particle in the vertical plane as in (b) of
Figure 1. Let (q, p) ∈ R

2 be the coordinates in (b)

d1d2

(a)

p
q

(b)

Fig. 1. The dielectrophoretic system is a chamber
filled with a fluid medium where there is a
parallel array of electrodes at the bottom.

of Figure 1. We impose the common boundary
voltage on each electrode as follows:

Vdb(t) = V0 · u(t), |u(t)| ≤ 1.

The electric field vector E(q, p, t) ∈ R
2 in {p ≥ 0}

is given by

E(q, p, t) = −∇V (q, p, t).

This electric field induces a dipole moment, m, on
a single-layered spherical particle as follows:

m(q, p, t) = g(t) ∗ E(q, p, t)

where ∗ denotes time-convolution and the Laplace
transform G(s) of the (transfer) function g(t) is
given by

G(s) = a +
b

s + c

where

a = 4πr3εm(εp − εm)/(εp + 2εm),

b = a

(
σp − σm

εp − εm
− σp + 2σm

εp + 2εm

)
, (13)

c = (σp + 2σm)/(εp + 2εm) (14)

where r is the radius of the particle, εp (resp., εm)
is the permittivity of the particle (resp., medium)
and σp (resp., σm) is the conductivity of the
particle (resp., medium). The interaction between
the electric field and the induced dipole moment
creates a force Fdep. It is called dielectrophoretic
force and given by

Fdep(q, p, t) = (m(q, p, t) · ∇)E(q, p, t).

As the vertical motion of particles in the whole
chamber can be practically represented by that
of particles on the p axis, we are interested in
the motion of particles on the p axis. One can

check that the dielectrophoretic force on the p axis
is along this axis. This vertical dielectrophoretic
force on the p axis is denoted by Fdep(p, t). It is
of the form

Fdep(p, t) = F (p)u(t)(g ∗ u)(t)

with F (p) ≤ 0 on p ≥ 0, limp→∞ F (p) = 0, and
F (p) = 0 only at p = 0; see (Chang et al., 2003).

Let us assume that the particle is neutrally buoy-
ant and the medium fluid flows at low Reynolds
number. Thus, the gravitational force and the
buoyant force cancel and the inertial term mp̈ is
ignorable. The only forces on the particle is the
drag and the DEP force. Hence, the motion of the
particle on the p axis can be described by

f ṗ + F (p)u(t)(g ∗ u)(t) = 0. (15)

where f > 0 is the drag constant.

We assume that b in (13) is nonzero, which
generically holds. Then equations (1) and (2)
come from (15) where x and y are defined by

x =
∫ p

ε

−f

b F (z)
dz; Y (s) =

1
s + c

U(s) (16)

for p ≥ ε where ε is a positive number and Y (s)
and U(s) are the Laplace transforms of y(t) and
u(t), and α is defined by

α = a/b.

If a particle is close to the electrode, then ad-
ditional physical/chemical forces other than the
DEP force start to appear in the dynamics
(Hughes, 2002; Pohl, 1978), so the parameter ε in
(16) defines the region where the dynamics (15)
is valid. Physically, y is the exponentially induced
part of the dipole moment, so we have the initial
condition y(0) = 0. As we are not interested in
the final state of the induced dipole, we have
y(tf ) = free.

Depending on the sign of b, the original region
{p ≥ ε} is mapped to {x ≥ 0} or {x ≤ 0}.
However, in this paper, we ignore the state con-
straint on x, allowing for x on the whole real
line. In a future publication, we will address the
optimization problem with the state constraint on
x.

We also make the following assumption on the
signs of parameters α and c

α < 0, c > 0.

Assumption c > 0 is imposed by physics; see (14).
However, condition α < 0 is for convenience. The
case of α ≥ 0 can be treated in the similar manner.



4. MAIN DISCUSSION

4.1 Non-existence of optimal control for xf <
x(0).

We will show that there are no time-optimal
(Lebesque) measurable controls for xf < x(0)
even though xf is reachable. For a T > 0, let us
define a sequence of functions {uT

n : [0, T ] �→ ±1}
as follows:

uT
n (t) = sign(sin((2πt)/(nT ))), n ∈ N. (17)

Lemma 1. Let f be a continuous function on
[0, T ]. Then, limn�→∞

∫ t

0
f · uT

n = 0, uniformly in
t ∈ [0, T ].

The substitution of u from (2) to (1) yields

ẋ = yẏ + cy2 + αu2.

For any T > 0 we have

x(T ) − x(0)

=
1
2
y(T )2 + c

∫ T

0

y2 + α

∫ T

0

u2 ≥ αT (18)

where the last inequality holds by (5). This implies
that in the time interval [0, T ], the negatively
farthest reachable point is at best x(0) + αT . Let
(xn, yn) be the solution to (1) and (2) on [0, T ]
with control uT

n in (17). By Lemma 1, (18), and
the definition of uT

n , one can show

lim
n→∞(xn(T ) − x(0)) = αT.

We have constructed a sequence {uT
n} of control

laws such that the corresponding {xn(T )} con-
verges to the infimum of the reachable points of x.
However, the sequence of functions {uT

n} does not
converge to a measurable function. One can prove
that for xf < x(0), the infimum of the reachable
time is T = (x(0) − xf )/(−α), but there are
no time-optimal (Lebesgue) measurable controls to
reach xf in time T . We remark that for xf = x(0),
control u = 0 with tf = 0 is trivially the time-
optimal control. Hence, in the rest of the paper,
we only consider the case of xf > x(0).

4.2 Pontryagin maximum principle, Necessary
condition on parameters and Discrete symmetry.

We derive, from the Pontryagin Maximum Princi-
ple (PMP), necessary conditions for time-optimal
trajectories. Let us define the PMP Hamilto-
nian, H, for the time-optimal control as follows
(Pontryagin et al., 1962):

H(x, y, λx, λy, u) = λxαu2 + (λxy + λy)u − cyλy

where (λx, λy) is the vector dual to (x, y). Let

H◦(x, y, λx, λy) = max
|u|≤1

H(x, y, λx, λy, u).

Consider system (1), (2) with conditions (3) –
(5) and (6). Let u(t) be a time-optimal control
and (x(t), y(t)) be the corresponding trajectory.
Then, by the PMP, it is necessary that there exists
a continuous vector (λx(t), λy(t)), which is not
identically zero, such that

ẋ = yu + αu2; ẏ = −cy + u,

λ̇x = 0; λ̇y = cλy − λxu. (19)

Additionally, the following must be satisfied:

1. u(t) = arg max
|v|≤1

H(x(t), y(t), λx(t), λy(t), v),

2. H◦(t) = constant ≥ 0,

3. λy(tf ) = 0 (transversality condition). (20)

As λ̇x = 0 in (19), λx(t) is constant in time. We
consider the three different cases; λx = 0, λx < 0
and λx > 0.

A simple integration of (19) with the transver-
sality condition (20) implies that λx = 0 implies
λy(t) ≡ 0. Hence, there cannot be any optimal tra-
jectories with λx = 0 because the vector (λx, λy)
cannot be identically zero by the PMP.

In the case of λx < 0, one can show, by simple
computation, that no extremals satisfy both the
initial condition y(0) = 0 and the transversality
condition (20). Hence, there exist no optimal
trajectories with λx = 0.

We now assume that λx > 0. Let

λ = λy/λx; H̃(y, λ, u) = H/λx.

Then equation (19) is replaced by (9), giving us
the set of equations (7) – (9). As α < 0, the control
u maximizing H̃ (or equivalently H) is given by

u =

⎧⎪⎨
⎪⎩

+1 if y + λ > −2α,
y + λ

−2α
if |y + λ| ≤ −2α,

−1 if y + λ < −2α.

(21)

The (y, λ) dynamics with the control (21) have
three qualitatively different phase portraits de-
pending on the sign of (1 + αc). For example, the
origin (y, λ) = (0, 0) becomes a saddle, a degener-
ate equilibrium, and a center, respectively if (1 +
αc) is negative, zero and positive, respectively. A
simple but thorough phase portrait analysis shows
– we omit the detail – that when (1 + αc) < 0 or
(1 + αc) = 0, there are no trajectories satisfying
the initial condition y(0) = 0 and the final condi-
tion λ(tf ) = 0 (equivalently, λy(tf ) = 0). Hence,
time-optimal trajectories exist only when

1 + αc > 0

which is assumed in the following of the paper.
In this case, the dynamics of (y, λ) have two
qualitatively different phase portraits depending
on

(1 + 2αc) ≤ 0, or (1 + 2αc) > 0.



The portraits are given in Figure 2. A big differ-
ence between the two is whether the intersection
of the positive λ-axis and the switching line y +
λ = −2α is above or below 1/c.

u = 1

u = −1

u = y+λ
−2α

1
c

1
c

− 1
c

− 1
c y

λ

y + λ = −2α

y + λ = 2α

(a) (1 + 2αc) ≤ 0

u = 1

u = −1

u = y+λ
−2α

1
c

1
c

− 1
c

− 1
c

y

λ

y + λ = −2α

y + λ = 2α

(b) (1 + 2αc) > 0

Fig. 2. The phase portrait in the yλ-plane when
λx > 0 and (1 + αc) > 0. Depending on the
sign if (1 + 2αc), point (0,−2α) is above or
below point (0, 1/c) on the λ axis.

We now discuss about the discrete symmetry in
the phase portraits. Let us define three reflections,
Si, i = 1, 2, 3 as follows:

S1(x, y, λ) = (x, λ, y),
S2(x, y, λ) = (x,−λ,−y),
S3(x, y, λ) = S1 ◦ S2(x, y, λ) = (x,−y,−λ).

Denoting the dynamics in (7) – (9) by ZL with the
linear control u = (y + λ)/(−2α), one can check

Si ◦ ZL = −ZL ◦ Si, i = 1, 2.

The linear vector field, ZL, is invariant under
reflections, S1 and S2, up to the time-reversal.
In (a) of Figure 3 the duration ΔtAB from A to
B along the trajectory with u = (y + λ)/(−2α)
in the (y, λ)-plane equals ΔtSi(B)Si(A), i = 1, 2.
Also, the corresponding increments in x satisfy

ΔxAB = −ΔxSi(B)Si(A), i = 1, 2.

This implies that in the white region surrounded
by the shaded region in Figure 2 there cannot
be any optimal trajectories because any orbits

starting from the λ axis and ending at the y
axis can be decomposed into parts, each of which
is invariant under S1 or S2. This implies Δx =
0. However, we already know what the time-
optimal control is for Δx = 0. It is u = 0 with
tf = 0. Therefore, all time-optimal trajectories
are contained in the shaded region because only the
extremals in the shaded region can satisfy y(0) = 0
and λ(tf ) = 0.

A B
S1(B)
S1(A)

S3(A)S3(B)
S2(B)

S2(A)

λ

y

(a) Symmetries

y

λ

(b) Idling arcs

Fig. 3. (a) Discrete symmetries in the linear re-
gion. (b) Idling arcs.

Let us consider symmetry S3. Let Z be the vector
field in (7) – (9) with the control u in (21).
Then we have S3 ◦ Z = Z ◦ S3, which implies
ΔtAB = ΔtS3(A)S3(B) and ΔxAB = ΔxS3(A)S3(B)

in (a) of Figure 3.

4.3 Construction of X1, T1 and Tidling.

Let us call the part of the shaded region in
Figure 2 lying in the first quadrant a basic region.
We include the part on the y-axis and the λ-axis
but we exclude the boundary of the shaded region
which is strictly inside the first quadrant. Let us
denote the open interval on the λ axis of the basic
region by Λ. It is given by

Λ = {λ ∈ R+ | M(−α,−α) < M(0, λ)
< M(−(1 + 2αc)/c, 1/c)}

= (−2α
√

1 + αc, −2α
√

(1 + αc)/(−αc) ).

where M is the Hamiltonian H̃ in (11) with u =
(y + λ)/(−2α). One can see that the arc of an
extremal contained in the basic region is a basic
arc, which is defined in § 2.

Let us construct a map X1 on Λ, which measures
the increment of x along a basic arc starting with
λ(0) ∈ Λ. We show the construction in the case of
(1 + 2αc) > 0 only, as the other case can be done
similarly. When (1 + 2αc) > 0, we can decompose
Λ into Λ1 and Λ2 as in (12). The basic arc with
λ(0) ∈ Λ1 is exactly Γλ(0)

+ defined in (2), which
corresponds to ABCD in Figure 4. The basic arc
with λ(0) ∈ Λ2 corresponds to FG in Figure 4.
Suppose λ(0) = λ0 ∈ Λ1. By the S1-symmetry,
the x-increment along arc AB and along arc CD



λ

y

(
1
c , 1

c

)
−2α

A

B

C

D

F

G

Fig. 4. Construction of the x-increment map X1

when (1 + 2αc) > 0.

cancel, so X1(λ0) is the x-increment along arc BC,
which can be computed as follows:

X1(λ0) =
1
c

[−2α − 2yC(λ0)

+
(

α +
1
c

)
ln

(
1 + 2αc + cyC(λ0)

1 − cyC(λ0)

)]
(22)

where yB and yC are the y-coordinates of points
B and C and are given by

yB(λ0) = −α −
√

α2 + (λ2
0 − 4α2)/(−4αc),

yC(λ0) = −yB(λ0) − 2α. (23)

In the similar way, one can compute X1(λ0) with
λ0 ∈ Λ2, which is given by

X1(λ0)=
1
c

[
−λ0 − (1 + αc) ln(1 − cλ0)

c

]
. (24)

Regarding X1 in (22) as a function of yC , one
can check dX1/dyC > 0 on Λ1. As yC in (23)
is a strictly increasing function of λ0, it follows
that X1 is strictly increasing on Λ1. By computing
dX1/dλ0 > 0, one can show that X1 in (24) is also
strictly increasing on Λ2. Thus, X1 is a strictly
increasing function on Λ. One can also show

X1(Λ) = (0,∞).

Let T1 be the time duration of basic arcs with
λ(0) ∈ Λ, so it becomes a function on Λ. We only
show its construction in the case of (1 + 2αc) > 0
for the space limit. Consider a basic arc with
λ0 ∈ Λ1. It is of form Γλ0

+ , e.g., arc ABCD in
Figure 4. By the S1-symmetry, the duration of
AB equals that of CD, which is denoted by ΔtAB

and given by

ΔtAB(λ0) =
1
ω
× sin−1(−2αωyB(λ0)/λ0) (25)

where
ω =

√
c(1 + αc)/(−α) > 0. (26)

A simple integration yields the duration, ΔtBC of
the arc BC, which is given by

ΔtBC(λ0) =
1
c

ln
( 1

c − yB(λ0)
1
c − yC(λ0)

)
. (27)

Hence, T1 on Λ1 is given by

T1 = 2ΔtAB + ΔtBC . (28)

By a direct integration in the similar way, one can
show that T1 on Λ2 is given by

T1(λ0) = (−1/c) × ln(1 − cλ0). (29)

Recall the definitions of idling arcs and the idling
time in § 2; see also (b) of Figure 3. The name
of idling arcs comes from the fact that they do
not contribute any increments in x by the S1- and
S2-symmetry. One can compute the idling time,
Tidling, as follows:

Tidling = (1/ω) × sin−1(−2αω) (30)

with ω in (26). Notice that the idling time is
independent of the coordinates of the initial points
on the y-axis.

4.4 Discussion on the existence and uniqueness of
optimal trajectories.

We can classify extremals with k ∈ N defined in
§ 2. Notice that for k ≥ 3, the (y, λ)-projection
curves of all the k-shot extremals are closed curves
in the yλ-plane by the Si, i = 1, 2, 3 symmetry.

Given xf > x(0), one can show that for each
n ∈ N there exist exactly two n-shot extremals
– one is the reflection image of the other by the
S3 symmetry – such that both produce xf . In
the case of (1 + 2αc) > 0, we can prove that the
two one-shot extremals are the time-optimal ones.
The way of constructing them is given in § 2.
However, in the case of (1 + 2αc) ≤ 0, we have
not found any uniqueness proofs so far. Instead,
we provide a finite algorithm of finding time-
optimal trajectories in § 2. With this algorithm,
for example, we perform a simulation with the
following specification: α = −3/4, c = 1, x(0) = 1,
and xf = 2. In this case, two one-shot extremals
are the optimal trajectories and the minimum
time is tf = 7.8117. The optimal control u(t)
and the optimal trajectory (x(t), y(t)) with λ0 =
0.8649 are given in Figure 5.

0 1 2 3 4 5 6 7 8

5

1.

0

0.

1

5

2

2.5

x(t)

u(t)

t

y(t)

Fig. 5. Optimal solution for a sample case.
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