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Prediction-Based Stabilization of Linear Systems
Subject to Input-Dependent Input

Delay of Integral-Type
Delphine Bresch-Pietri, Jonathan Chauvin, and Nicolas Petit

Abstract—In this paper, it is proved that a predictor-based
feedback controller can effectively yield asymptotic convergence
for a class of linear systems subject to input-dependent input delay.
This class is characterized by the delay being implicitly related to
past values of the input via an integral model. This situation is
representative of systems where transport phenomena take place,
as is frequent in the process industry. The sufficient conditions ob-
tained for asymptotic stabilization bring a local result and require
the magnitude of the feedback gain to be consistent with the initial
conditions scale. Arguments of proof for this novel result include
general Halanay inequalities for delay differential equations and
build on recent advances of backstepping techniques for uncertain
or varying delay systems.

Index Terms—Backstepping, delay differential equation, par-
tial differential equation, prediction-based feedback, time-delay
systems.

I. INTRODUCTION AND PROBLEM STATEMENT

NUMEROUS control systems involve a physical lag which,
as it is well known, reveals troublesome in the design and

tuning of feedback control laws. In practice, such dead-time
can occur when sensors and actuators are not co-located. Prime
examples are processes involving transportation of material,
such as mixing processes for liquid or gaseous fluids, chemical
reactors [16], automotive engine [17] and exhaust line [13],
heat collector plant [32], blending in liquid or solid networks
[12], crushing mill [31] and batch processes [30], to name a
few. Remarkably, in all these examples, the lag directly depends
on the control variable and the considered delay is inherently
input-dependent.

Surprisingly, it seems that stabilization of such processes
with input-dependent delay in the input D(u) or D(ut), where
ut denotes past values over a finite horizon, has seldom been
theoretically studied. Rather, a widely considered approach is to
neglect to various extents the control-dependency of the delay,
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e.g., by modeling this dependence as D(u) ≈ D(t) (or even by
a constant average value D) and by asking the controller to deal
with a certain level of unstructured delay uncertainty.

On the opposite, the methodology developed in this paper
explicitly accounts for this dependency with the objective of
improving transient performances. The scope of this method
is as follows: we investigate the following potentially unstable
Single-Input Single-Output linear time-invariant plant,1 with a
measured output x(t)

x(n) + an−1x
(n−1) + . . .+ a1ẋ+ a0x = b0ϕ (t−D(t)) (1)

driven by a delayed input, where the varying delay D(t) is
implicitly defined in terms of the input past values as

t∫
t−D(t)

ϕ(s)ds = 1 with ϕ(t) = Sat[u,+∞) (u(t)) , u > 0.

(2)

This system is depicted in Fig. 1. The integral delay model2

(2) corresponds to a Plug-Flow assumption [29] in a transport
phenomenon and encompasses of a wide class of systems
involving transport phenomena with velocity ϕ [7], [38]. It can
be understood as the time of propagation for a transport process
with time-varying speed for which the control variable is the
speed itself.3

Motivating Example: An example of system fitting inside
this framework is the one of the exhaust Fuel/Air Ratio (FAR)
for Gasoline engines which can be found, e.g., in [7]. A
schematic view of the system is pictured in Fig. 2. To optimize
the catalyst operation, one wants to regulate the exhaust mixture
composition λ to stoichiometry. This is done by injecting a
given amount of fuel inside the combustion chamber, accord-
ing to the current fresh air mass flow rate. However, such a
variable fluctuates with the driver torque request (e.g., tip-ins
and tip-outs). The main challenge while trying to improve the

1Potential existing zeros can still be handled by a suitable aforementioned
choice of state-space representation and of the output matrix.

2Because ϕ ≥ u > 0, this transport delay is well-defined (positive and time-

derivative bounded by one) and upper-bounded, D(t) ≤ D
Δ
= (1/u)t ≥ 0.

Further, as D �→
∫ t

t−D
ϕ(s)ds is strictly increasing, it is invertible and the

delay can be calculated. It is therefore considered as known in this paper.
3In details, it can be shown that the solution of the transport PDE ∂tξ(x, t) =

u(t)∂xξ(x, t) for x = [0, 1] satisfies ξ(1, t) = ξ(0, t−D(t)) with D(t)
defined by (2) (see [7]).
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Fig. 1. The addressed problem, where the input is delayed by a transport delay which is input-varying.

Fig. 2. Schematic view of the Fuel/Air Ratio system on a Gasoline engine
equipped with indirect injection. A given amount of fuel is provided by the
injector (actuator). The control objective here is to guarantee that the exhaust
Fuel/Air Ratio, downstream of the catalyst (measured by an oxygen sensor), is
close to stoichiometry.

transient responses corresponding to these stimuli is that the
injector (actuator) is located typically upstream of the combus-
tion chamber. It is therefore spatially distant from the dynamics
under consideration. This generates a transport delay (see [36])
which follows an integral relation of type (2).

In details, considering a given operating point (constant fresh
air mass flow rate), defining u(t) as the injected fuel flow rate
and x(t) as the exhaust FAR, which is the measured output,
the dynamics can be written as a (stable) second-order input
delay system (see [7] for specific modeling). The transport
delay bearing on the input varies with the exhaust gas flow rate,
which itself varies with the exhaust pressure [11]. The latter
is a function of the injected fuel flow rate. Linearizing around
the given operating point (potentially after normalization), one
can recover an integral relation of type (2). Further, the input
is lower-saturated to prevent the engine to stall (a minimum
amount of fuel u has to be injected for the mixture in the
chamber to burn), which justifies the saturation in (2). Finally,
we wish to stabilize the plant toward a positive equilibrium
(stoichiometric exhaust composition) corresponding to a con-
trol reference ur > 0.

Proposed Methodology and Comparison With State-of-the-
Art Techniques: The control objective at stake in this paper is
to stabilize the plant (1), (2) over any equilibrium point such
that xr = (b0/a0)u

r with ur ≥ u > 0. The reason why we only
consider strictly positive steady-states is that, following (2),
D tends to infinity while ϕ tends to zero. Therefore, in this
case, the inputs do not reach the plant anymore and, obviously,
unstable systems cannot be stabilized.

The solution we consider is a predictor-based control strategy
(straightforwardly generalizing the ideas of [1], [24], [33]).
Prediction is already widely used for systems with constant
input time-delays (see for instance [8], [14], [19], [25], [26] or
[31] and the references therein) but is still not of general use for

time-varying delays (see [28] or, more recently, [22]). In such
cases, to compensate the varying input delay, the prediction
has to be calculated over a time window of which length
matches the value of the future delay. In other words, one
needs to predict the future variations of the delay to compensate
it. For example, this is the approach followed in [35] for a
communication time-varying delay, the variations of which are
provided by a given known model. It has also been used in [3],
[4] for a state-dependent delay or in [5] for a delay depending
on delayed state, where variations are anticipated by a careful
prediction of the system state.

When the delay depends on the input, things are getting very
involved. Determining the required prediction horizon becomes
an implicit question, which may not be practically solvable nor
even well-posed (this implicit interaction may yield to a set
of conditions characterizing the time horizon which may be
unsolvable for certain initial conditions). This implicit nature
is caused by the reciprocal interactions between the control
(current and past) values and the delay, yielding a closed-loop
dependency.

For this reason, in this paper, in lieu of seeking exact delay
compensation, we consider a prediction horizon equal to the
current delay value. This does not prevent implicit mutual
dependency between delay and input from arising, as the delay
model (2) is input-varying and the delay is involved in the
prediction-based control law. So, to disrupt this loop, which is
particularly troublesome in the stability analysis, we use a two-
steps methodology.

In a first move (Section II of this paper), we consider the
input-dependency as a particular type of time-variations. This
virtual parametrization suggests us to derive a robust compen-
sation result for linear systems with time-varying input delay,
using the backstepping tools proposed in [21] for the analysis of
input-delay systems stability. Technically, this result guarantees
stabilization provided that the delay variations are sufficiently
small. This rather reasonable condition can be easily inter-
preted as a direct consequence of the approximation of the
prediction interval by the current delay value. In a second step
(Section III of this paper), to derive a more practical sufficient
condition, the delay variations are related to the control tracking
error fluctuations, which are analyzed using delay differential
equations (DDE) stability theory (Halanay-type inequalities
[15]). This methodology allows us to establish a result guar-
anteeing local exponential stability, i.e., Theorem 1, which
yields exponential convergence of the system output towards
xr provided the initial conditions (x, its derivatives and the past
values of the control u[−D(0),0]) are sufficiently close to the
equilibrium.

To the best of the authors’ knowledge, this connection be-
tween prediction-based control law and input-dependency of
the delay has not been studied earlier, except on preliminary
works by the authors ([9] in which a scalar system is studied
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and [10] in which state-feedback is considered). The output
prediction-based feedback proposed here for potentially unsta-
ble systems of order n subject the input-dependent delay (2),
along with its proof of convergence in Theorem 1, is the main
contribution of this paper.

The paper is organized as follows. In Section II, we ad-
dress the topic of robust compensation of time-varying delay.
Then, sufficient conditions for stabilization in the case of
input-varying delay are derived in Section III through a proof
of convergence invoking Halanay-like inequalities arguments.
Finally, the merits of the obtained result are then illustrated in
Section IV through simulations.

Notations and Definitions: In the following, |.| stands for
the usual Euclidean norm, ‖f(t)‖ represents the norm of a
spatially distributed variable f : (x, t) ∈ [0, 1]× R �→ R and is
defined as

‖f(t)‖ =

√∫ 1

0

f(x, t)2dx (3)

C0(S1, S2) (resp. C1(S1, S2)) denotes the set of continuous
(resp. continuously differentiable) functions defined on a set
S1 with values into a set S2. The operator SatI stands for
the standard saturation operator onto the interval I . For a
given symmetric matrix, λ(.) and λ(.) stand respectively for
minimum and maximum eigenvalues.

We write ∂xf the partial derivative of a function f with re-
spect to a variable x. xt refers to the function xt : s∈ [−D, 0] �→
x(t+ s) for a given function x and a constant D > 0.
For any continuous function k defined on [−D, 0] and a poly-
nomial function π, we write π(xt) = π(x(t1), . . . , x(tn−2),∫ tn
tn−1

k(t− s)x(s)ds) for (t1, . . . , tn) ∈ [t−D, t]n.
A polynomial function π in the variables (x1, . . . , xm, . . . ,

xn) is said to be at least quadratic in x1, . . . , xm iff, for any
given (xm+1, . . . , xn), the corresponding polynomial function
πm defined as

πm(x1, . . . , xm) = π(x1, . . . , xm, . . . , xn) (4)

has no terms of order 0 or 1, e.g., both π = x2
1 + x1x2x3 and

π = x2x1 + x3x
2
1 are at least quadratic in (x1, x2) while this is

not the case for π = x3 + x3x
2
2.

II. SUFFICIENT CONDITION FOR ROBUST COMPENSATION

OF A TIME-VARYING INPUT DELAY

In this section, we consider the input delay as being any
element of C1(R+, [0, D]) for some D. Here, to design our
controller, we do not relate the variations of D(t) to those of
the control variable. To use the stabilization result established
below, we first reformulate system (1), (2) under a state-space
representation

⎧⎨
⎩

Ẋ = AX(t) +Bϕ (t−D(t))
Y (t) = CX(t)∫ t

t−D(t) ϕ(s)ds = 1 with ϕ(t) = Sat[u,+∞) (u(t))
(5)

where the pair (A,C) is observable and the controllable pair
(A,B) is

A =

⎛
⎜⎜⎝

0 1 0
...

. . .
0 0 1

−a0 −a1 . . . −an−1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0
...
0
b0

⎞
⎟⎟⎠ . (6)

Lemma 1: Consider the closed-loop single input system

Ẋ(t)=AX(t) +Bu (t−D(t)) (7a)

Y (t)=CX(t) (7b)

˙̂
X(t)=AX̂(t)+Bu (t−D(t))−L

[
Y (t)−CX̂(t)

]
(7c)

u(t)=K

⎡
⎢⎣eAD(t)X̂(t) +

t∫
t−D(t)

eA(t−s)Bu(s)ds

⎤
⎥⎦ (7d)

where X ∈ R
n, u ∈ R, K and L are chosen such that,

respectively, A+BK and A+ LC are Hurwitz and D ∈
C1(R+, [0, D]) for some D > 0. Define

Υ0(t) = |X(t)|2 +
∣∣∣X(t)− X̂(t)

∣∣∣2 + t∫
t−D(t)

u(s)2ds

+D(t)2
t∫

t−D(t)

u̇(s)2ds. (8)

There exists Δ∗(K) ∈ (0, 1) such that, if

∀t ≥ 0,
∣∣∣Ḋ(t)

∣∣∣ < Δ∗(K) (9)

then there exist R, ρ > 0 such that

∀t ≥ 0, Υ0(t) ≤ RΥ0(0)e
−ρt (10)

and in particular the system state X of plant (7a) exponentially
converges to the origin.

The prediction controller (7d) is a direct extension of the
prediction over a constant delay time window to time-varying
delay and output feedback, replacing respectively the con-
stant delay by D(t) and the system state by its observer X̂ .
This controller aims at forecasting values of the state over
a time window of varying length D(t).4 Of course, exact

4Note that, even if X̂ = X , this controller does not exactly match the
predicted system state on a time-horizon D(t). Indeed, using the variation of
constant formula

∀t ≥ 0, X (t+D(t)) = eAD(t)X(t)

+

t∫
t−D(t)

eA(t−s)Bu (s+D(t)−D(s)) ds.

Under the assumption that the variations of the delay are sufficiently small, this
latter integral can be approximated by the one used in (7d) as D(t)−D(s) ≈
0. As this assumption is already required to robustly compensate the delay, we
rather use the prediction form (7d) which is easier to implement instead of the
true prediction given above.
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compensation of the delay is not achieved with this controller5

and can be highly inaccurate when the delay is fast varying.
In this context, (9) can be interpreted as a condition for robust
delay compensation achievement.6 The spirit of this condition
is that, if the delay varies sufficiently slowly, its current value
D(t) used for prediction remains close enough to its future
values, and the corresponding prediction is accurate enough to
guarantee the stabilization of the plant through the feedback
loop.

We now detail the proof of this result.
Proof: In the following, we use the Lyapunov tools in-

troduced in [21] to analyze the stability of input time-delay
systems and which are based on a backstepping transformation
of a certain actuator state defined for constant delays. First, we
extend this distributed input to handle time-varying delay by
defining v(x, t) = u(t+D(t)(x− 1))x ∈ [0, 1] which enables
to rewrite plant (7a)–(7c) as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̃X(t) = (A+ LC)X̃(t)

˙̂
X(t) = AX̂(t) +Bv(0, t)− LCX̃(t)

D(t)∂tv(x, t) = ∂xv(x, t) + Ḋ(t)(x− 1)∂xv(x, t)

v(1, t) = u(t)

(11)

in which the state observation error X̃ = X − X̂ has been
introduced. In details, the input delay is now represented as
a cascade with a transport partial differential equation (PDE)
driven by the input and where the convection speed varies
both with space and time. Pursuing the mentioned approach,
now, consider the following backstepping transformation of the
distributed input

w(x, t) = v(x, t)−D(t)

x∫
0

KeAD(t)(x−y)Bv(y, t)dy

−KeAD(t)xX̂(t) (12)

which is designed to satisfy w(1, t) = 0 compliantly with the
choice of the control law (7d). The error (11) can now be
rewritten as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̃X(t) = (A+ LC)X̃(t)

˙̂
X(t) = (A+BK)X̂(t) +Bw(0, t)− LCX̃(t)

D(t)∂tw = ∂xw + Ḋ(t)g(x, t) +DKeAD(t)xLCX̃(t)

w(1, t) = 0
(13)

5As discussed earlier, to do so, one would need to consider a time window
of which length would exactly match the value of the future delay, as it is
made in [28] and [22]. In details, defining η(t) = t−D(t) and assuming that
its inverse exists (which is the case if Ḋ < 1), exact delay-compensation is
obtained with the feedback law U(t) = KX(η−1(t)). Yet, implementing this
relation requires to predict the future variation of the delay via η−1(t), which
may not practically achievable for an input-varying delay.

6Interestingly, a similar condition is often stated in Linear Matrix Inequality
approaches, such as [37] for example, where the delay is also assumed to be
time-differentiable.

with

g(x, t)=(x−1)∂xv(x, t)−KD(t)

x∫
0

eAD(t)(x−y)B(y−1)

×∂xv(y, t)dy−KD(t)

⎡
⎢⎣

x∫
0

eAD(t)(x−y) (I+AD(t)(x−y))

×Bv(y, t)dy+KAxeAD(t)xX̂(t)

⎤
⎥⎦

(14)

which can be formulated in terms of X̃, X̂, w and wx using
the inverse Volterra equation corresponding to (12). For the
Lyapunov analysis below, we also need the governing equation
of the spatial derivative of this transformed distributed actuator
which is

{
D(t)∂xtw=∂xxw+Ḋ(t)∂xg(x, t)+D2KeAD(t)xALCX̃(t)

∂xw(1, t) = −Ḋ(t)g(1, t)−D(t)KeAD(t)LCX̃(t).
(15)

We can now start the Lyapunov analysis and introduce the
following Lyapunov–Krasovskii functional candidate

V (t) = X̃(t)TP0X̃(t) + b0X̂(t)TP1X̂(t)

+ b1D(t)

1∫
0

(1+x)
[
w(x, t)2+(∂xw(x, t))

2
]
dx (16)

where P0 and P1 are the symmetric definite solutions of
the two Lyapunov equations (A+ LC)TP0 + P0(A+ LC) =
−Q0 and (A+BK)TP1 + P1(A+BK) = −Q1 for two
given symmetric definite positive matrices Q0 and Q1. Taking
a time derivative of this functional and using integration by
parts yield

V̇ (t)=− X̃(t)TQ0X̃(t)− b0X̂(t)TQ1X̂(t)− b1w(0, t)
2

+ 2b0X̂(t)TP1Bw(0, t)−2b0X̂(t)TP1LCX̃(t)

−b1‖w(t)‖2 + 2b1 (∂xw(1, t))
2 − b1 (∂xw(0, t))

2

− b1‖∂xw(t)‖2+2b1Ḋ(t)

1∫
0

(1+x)w(x, t)g(x, t)dx

+ 2b1

1∫
0

(1 + x)w(x, t)D(t)KeAD(t)xLCX̃(t)dx

+ 2b1Ḋ(t)

1∫
0

(1 + x)∂xw(x, t)∂xg(x, t)dx
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+ b1Ḋ(t)

1∫
0

(1 + x)
[
w(x, t)2 + (∂xw(x, t))

2
]
dx

+2b1

1∫
0

(1+x)∂xw(x, t)D(t)2KeAD(t)xALCX̃(t)dx.

(17)

To bound the remaining terms, one can introduce the inverse
transformation of (12)

v(x, t) = w(x, t) +D(t)K

x∫
0

e(A+BK)D(t)(x−y)Bw(y, t)dy

+Ke(A+BK)D(t)xX̃ (18)

and its spatial derivative to obtain, using Cauchy-Schwartz’s
and Young’s inequality, the existence of positive constants M1,
M2, M3 and M4 such that∣∣∣∣∣∣2

1∫
0

(1 + x)w(x, t)g(x, t)dx

∣∣∣∣∣∣
≤ M1

(∣∣∣X̂(t)
∣∣∣2 + ‖w(t)‖2 + ‖wx(t)‖2

)
(19)∣∣∣∣∣∣2

1∫
0

(1 + x)w(x, t)D(t)KeAD(t)xLCX̃(t)dx

∣∣∣∣∣∣
≤ M2

∣∣∣X̃(t)
∣∣∣2 + ‖w(t)‖2

2
(20)∣∣∣∣∣∣2

1∫
0

(1 + x)∂xw(x, t)∂xg(x, t)dx

∣∣∣∣∣∣
≤ M3

(∣∣∣X̂(t)
∣∣∣2 + ‖w(t)‖2 + ‖∂xw(t)‖2 + (∂xw(0, t))

2

)
(21)∣∣∣∣∣∣2

1∫
0

(1 + x)∂xw(x, t)D(t)2KeAD(t)xALCX̃(t)dx

∣∣∣∣∣∣
≤ M4

∣∣∣X̃(t)
∣∣∣2 + ‖∂xw(t)‖2

2
(22)

2 (∂xw(1, t))
2 ≤ M6

∣∣∣X̃(t)
∣∣∣2

+M5

∣∣∣Ḋ(t)
∣∣∣2(∣∣∣X̂(t)

∣∣∣2 + ‖w(t)‖2 + ‖∂xw(t)‖2
)
. (23)

Further, using Young’s inequality, we have that∣∣∣2b0X̂(t)TP1Bw(0, t)
∣∣∣

≤ b0λ(Q1)

4

∣∣∣X̂(t)
∣∣∣2 + 4b0

λ(Q1)
|P1B|2w(0, t)2 (24)∣∣∣2b0X̂(t)TP1LCX̃(t)

∣∣∣
≤ b0λ(Q1)

4

∣∣∣X̂(t)
∣∣∣2 + 4b0

λ(Q1)
|P1LC|2

∣∣∣X̃(t)
∣∣∣2 . (25)

Therefore, defining the intermediate functional V0 = |X̃(t)|2 +
|X̂(t)|2 + ‖w(t)‖2 + ‖∂xw(t)‖2, using (19)–(25) and regroup-
ing terms, it is straightforward to get

V̇ (t)≤−b0λ(Q1)

2

∣∣∣X̂(t)
∣∣∣2−(b1−4

b0
λ(Q1)

|P1B|2
)
w(0, t)2

−
(
λ(Q0)−4

b0
λ(Q1)

|P1LC|2−b1(M2+M6+M4)

)∣∣∣X̃(t)
∣∣∣2

− b1
2
‖w(t)‖2− b1

2
‖∂xw(t)‖2−b1

(
1−
∣∣∣Ḋ(t)

∣∣∣M3

)
(∂xw(0,t))

2

+
∣∣∣Ḋ(t)

∣∣∣ b1 (M1 +M5

∣∣∣Ḋ(t)
∣∣∣+M3 + 2

)
V0. (26)

Consequently, by choosing b1 = (8b0/λ(Q1))|P1B|2 and b0 =
(λ(Q0)λ(Q1)/8(|P1LC|2+2(M2 +M4 +M6)|P1B|2)), one
can define

η = min

{
λ(Q0)

2
,
b0λ(Q1)

2
,
b1
2

}
(27)

Δ∗(K) = min

{
1,

1

M3
,

η

b1(M1 +M5 +M3 + 2)

}
(28)

and obtain that, if |Ḋ(t)| < Δ∗(K), t ≥ 0 then there exists μ >
0 such that

V̇ (t) ≤ −μV0(t)

≤ − μ

max
{
λ(P0), b0λ(P1), 2b1D

}V (t)

= −μ1V (t) (29)

in which μ1 is a positive constant. Consequently

∀t ≥ 0, V (t) ≤ V (0)e−μ1t. (30)

Finally, one can reformulate this result in terms of the functional
Υ0. Indeed, using a simple change of variable, Υ0 can be
rewritten as

Υ0(t)= |X(t)|2+
∣∣∣X̃(t)

∣∣∣2+D(t) ‖v(t)‖2+D(t) ‖∂xv(t)‖2 .
(31)

Then, using (18) together with Young’s inequality, one can
establish the following inequalities:

‖v(t)‖2 ≤ r1

∣∣∣X̂(t)
∣∣∣2 + r2 ‖w(t)‖2 (32)

‖∂xv(t)‖2 ≤ r3

∣∣∣X̂(t)
∣∣∣2 + r4 ‖w(t)‖2 + r5 ‖∂xw(t)‖2 (33)

‖w(t)‖2 ≤ s1

∣∣∣X̂(t)
∣∣∣2 + s2 ‖v(t)‖2 (34)

‖∂xw(t)‖2 ≤ s3

∣∣∣X̂(t)
∣∣∣2 + s4 ‖v(t)‖2 + s5 ‖∂xv(t)‖2 (35)

where r1, r2, r3, r4, r5, s1, s2, s3, s4 and s5 are positive
constants. Therefore, using (32)–(35), one can obtain, for t ≥ 0

1

max
{
λ(P0) + b0λ(P1), 2b1

}V (t)

≤ Υ0(t) ≤
max

{
3, 2 +Dr1 + D̄r3, r2 + r4, r5

}
min {λ(P0), b0λ(P1), b1}

V (t).

(36)
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The existence of two positive constants ρ and R such that
(10) holds directly follows. This concludes the proof of the
Lemma. �

III. CONTROL DESIGN

In this section, we now establish a sufficient condition guar-
anteeing (9) when the delay varies according to the integral
relation (2). This new condition bears on the initial conditions
(accordingly to the choice of the control gain).

Theorem 1: Consider the closed-loop system

Ẋ(t) = AX(t) +Bϕ (t−D(t)) (37)

Y (t) = CX(t) (38)

˙̂
X(t) = AX̂(t) +Bϕ (t−D(t))− L

(
Y (t)− CX̂(t)

)
(39)

t∫
t−D(t)

ϕ(s)ds = 1 with ϕ(t) = Sat[u,+∞) (u(t)) (40)

u(t)=ur+K

⎡
⎢⎣eAD(t)X̂(t)+

t∫
t−D(t)

eA(t−s)Bϕ(s)ds−Xr

⎤
⎥⎦

(41)

where A and B are defined in (6), K is such that A+BK is
Hurwitz, L is such that A+ LC is Hurwitz and with distinct
eigenvalues, Xr is the state equilibrium corresponding to the
original equilibrium xr of plant (1) and ur is the corresponding
(constant) control reference. Consider the functionals

Θ(t)=
∣∣∣X(t)− X̂(t)

∣∣∣
+ max

s∈[t−D,t]

∣∣∣∣[u(s)− ur u̇(s) . . . u(n−1)(s)
]T ∣∣∣∣ (42)

Υ(t)= |X(t)−Xr|2+
∣∣∣X(t)−X̂(t)

∣∣∣2+ t∫
t−D(t)

(u(s)−ur)2 ds

+D(t)2
t∫

t−D(t)

u̇(s)2ds. (43)

Then, provided that u0 ∈ Cn([−D̄, 0],R), there exists θ :
R

n �→ R
∗
+ such that if Θ(0) < θ(K) condition (9) is fulfilled

and the plant exponentially converges in the sense that there
exist R, ρ > 0 such that

∀t ≥ 0,Υ(t) ≤ RΥ(0)e−ρt. (44)

This result has a relatively direct interpretation: the previ-
ously presented Lemma 1 requires the delay to vary sufficiently
slowly, while, on the other hand, here the delay variations
implicitly depend on the control input through the integral (2),
with variations which aggressiveness is scaled by the gain K.
Then, restricting the input variations by choosing the initial

conditions close enough to the desired equilibrium and in
compliance with the feedback gain magnitude seems like a
natural requirement.

The behavior of the function θ with respect to its argument
K could be investigated in future works but is not pursued here.
A constructive expression of this function is given through (27),
(84) and (90). From this expression, the study would involve to
analyze the solution of the Lyapunov equation and the behavior
of its eigenvalues with respect to K variations. One could
reasonably assume that θ(K) → 0 while K → −∞ (as r(K)
is expected in this case to tend to ∞). Therefore, for given
initial conditions, the magnitude of the feedback gain should
be chosen accordingly. For relatively large initial conditions,
this would imply to use a small feedback gain, as illustrated
below in Section IV. Therefore, this result can be interpreted as
a small-gain condition.

Also, one can note that the requirement u0 ∈ Cn([−D, 0],R)
implies that the control is continuous at t = 0, that is u[−D,0) is
consistent with the value u(0) imposed by the prediction-based
control law (41). Such a condition can seem demanding from an
application point of view, but, as emphasized in the illustration
section, is not necessary in practice. Future developments will
focus on the extension of this result to handle discontinuities
at t = 0.

Finally, we wish to compare our result to robustness ap-
proaches proposed, e.g, in [6], [20]. At first glance, it could
seem that Lemma 1 in which the proposed result is built on is
somehow restrictive in the sense that it requires the delay rate
to be sufficiently small. In the two provided references, a nom-
inal value of the delay is used and stabilization is guaranteed
provided less demanding assumption on the delay disturbances.
However, we would like to emphasize two points. First, for the
considered integral relation (2), recasting the input-dependency
as a delay perturbation does not seem like a natural move.
Second, even if one decides to pick the nominal value Dr =
1/ur, one cannot a priori check that the delay disturbance
δ(t) = D(t)−Dr will satisfy the conditions of [6]. The same
holds for the requirement on the size of the delay perturbation
established in [20] which may not be fulfilled. Guaranteeing
that one of these conditions holds for D(t)−Dr requires a
deeper analysis such as the one proposed in the sequel. Finally,
by using the exact current delay value D(t) in the prediction in
lieu of a nominal one (Dr for instance), we aim at improving
delay compensation and therefore transient performance. We
illustrate this point in simulations in Section IV.

We now detail the proof of Theorem 1.

A. Relating the Delay Variations to Input Variations

Taking a time-derivative of (40) and defining the error
variable

ε
Δ
= ϕ− ur (45)

one gets, using ϕ ≥ u∣∣∣Ḋ(t)
∣∣∣ = ∣∣∣∣1− ε(t) + ur

ε (t−D(t)) + ur

∣∣∣∣ ≤ 2max |εt|
u

. (46)
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As a result, condition (9) is satisfied if

∀t ≥ 0, max |εt| <
uΔ∗(K)

2
. (47)

This is the condition we now focus on. It yields to the analysis
of the dynamics of the variable ε. Before properly starting this
analysis, we recall and extend some well-known stability results
for DDE.

B. Preliminary Results: Extension of the Halanay Inequality
for Delay Differential Equations of Order n ≥ 1

We first recall the following result [15], [18]7 which was
generalized in recent works [23], [34].

Lemma 2 (Halanay Inequality): Consider a positive contin-
uous real-valued function x such that

ẋ(t) ≤ −ax(t) + bmaxxt, t ≥ 0 (48)

with a ≥ b ≥ 0. Then, there exists γ ≥ 0 such that

∀t ≥ 0, x(t) ≤ maxx0e
−γt. (49)

A straightforward extension of this lemma is stated in the
corollary below.

Corollary 1: Consider a positive continuous function such
that {

ẋ(t) ≤ −ax(t) + bh(t) + ce−γt, t ≥ 0
x0 = ψ ∈ C0

(
[−D, 0],R+

) (50)

where a ≥ b ≥ 0, γ > 0 and h is a continuous functional satis-
fying, for some ω > 0, the sup-norm relation

|h(t)| ≤ max |xt|, for max |xt| < ω. (51)

Then, if the initial condition is such that maxψ < ω, there
exists c∗ω > 0 (depending on ω) such that, if |c| < c�ω , then there
exists γ̃ ∈ [0, γ) (γ̃ = 0 if a = b and γ̃ > 0 otherwise) such that

∀t ≥ 0, x(t) ≤ max {maxx0, μ
� (|c|, γ, γ0)} e−γ̃t (52)

in which μ� is defined in terms of γ0, the unique non-negative
solution of the equation γ0 − a+ beγ0D = 0, as

μ� (|c|, γ, γ0)

= |c|

⎧⎪⎨
⎪⎩

0 if γ0 = 0

max
{

1

a−beγD−γ
,

1− γ
γ0

a−beγD−γ

}
≥ 0 if γ �= γ0

1

γ(1+bDeγD)
otherwise.

(53)

In the particular case ω = +∞, one can notice from the
elements of proof detailed below that c�ω = +∞, i.e., this
result holds for any value of c ∈ R, thanks to the global
inequality (51).

7More precisely, in [15], this result is stated for a > b > 0.

Proof: Consider x a non-trivial positive and continuous
solution8 of (50), with maxψ < ω. On a certain neighborhood
(at least) of the origin t = 0, from (51) and by continuity, it
satisfies the inequality

ẋ(t) ≤ −ax(t) + bmaxxt + |c|e−γt. (54)

Following the spirit of the original proof in [15], we first
consider a positive solution of the corresponding differential
equation

ẏ(t) = −ay(t) + bmax yt + |c|e−γt, t ≥ 0 (55)

with a given initial condition such that y(0) = μ > 0, where the
constant μ will be chosen adequately below. Defining γ0 as the
unique non-negative solution of the equation γ0 − a+ beγ0D =
0, some computations show that a suitable function y is

∀t ∈ R, y(t)

=

⎧⎨
⎩

|c|
a−beγD−γ

e−γt +
(
μ− |c|

a−beγD−γ

)
e−γ0t if γ �= γ0(

|c|
1+bDeγD

t+ μ
)
e−γt otherwise

(56)

which is positive and decreasing by choosing (if γ0 > 0) μ >
μ�(|c|, γ, γ0) where μ� is defined in (53).9 One can also show
that there exists γ̃ ∈ [0,min{γ, γ0}) such that

∀t ≥ 0, y(t) ≤ μe−γ̃t. (57)

Indeed, (i) when γ0 �= γ, this directly follows from the expres-
sion (56) and (ii) when γ0 = γ, γ̃ ≥ 0 exists as μ > μ�(|c|, γ).
In details, if γ0 > 0 (i.e., a > b), there exists γ̃ > 0 and γ̃ = 0
otherwise.

Now, define the difference z = y − x which is a continuous
function. We aim at choosing the initial condition of y such that
z(t) > 0 for t ∈ [−D, 0], i.e., μ > maxx0. Further, to take ad-
vantage of (51), we would like to guarantee that max y(t) < ω
for all t ≥ 0. Gathering all these conditions, this finally implies
to choose μ ∈ (0, ω) ∩ (max{maxx0, μ

�(c)},∞). Provided
μ�(|c|) < ω, this set is non-empty as maxx0 < ω. Let us now
discuss this assumption. For given parameters a, b and γ, μ� is
a linear function of |c|. Therefore, there exists c�ω > 0 such that,
for |c| < c∗ω , μ�(|c|) < ω and the choice of μ is valid.

We are now interested in the (potential) sign change of z. As
the function z is continuous, we consider

t1 = inf {t > 0|z(t) = 0} ∈ R. (58)

Assume that t1 is well-defined. From its definition, z(t) > 0 for
t ∈ [0, t1) and, from the analytical expression of y and as both

8The existence of such a continuous function is obtained by considering the
equality corresponding to (50) for which continuous (and even more) solutions
exist assuming the initial condition ψ smooth enough [2]. Such a solution is
then also a solution of the inequality (50).

9μ� is always positive for γ0 > 0. Indeed, if γ �= γ0, the second coefficient
involved in its definition through the max function is strictly positive. Specif-
ically, for γ < γ0, a− beγD̄ − γ > 0 and 1− γ/γ0 > 0 and, for γ > γ0,
a− beγD̄ − γ < 0 and 1− γ/γ0 < 0.
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x and y are continuous, x(t) < y(t) ≤ μ < ω for t ∈ [0, t1).
Hence, the following inequality holds:

∀t ∈ [0, t1), ż(t) + az(t) ≥ b (max yt −maxxt) . (59)

Then, ż(t1) ≥ max yt1 −maxxt1 > 0, by definition of t1. Yet,
one has

ż(t1) = lim
t→t−1

z(t)− z(t1)

t− t1
= lim

t→t−1

z(t)

t− t1
≤ 0 (60)

as z(t) ≥ 0 on [0, t1]. This contradiction allows us to conclude
that such an instant t1 does not exist and that, ∀t ≥ 0z(t) > 0.
Finally, using (57)

∀t ≥ t0 x(t) ≤ max {maxxt0 , μ
� (|c|, γ, γ0)} e−γ̃t (61)

which is the desired result. �
Lemma 3 (Stability of a nth Order DDE): Let x be a solution

of the nth order DDE⎧⎪⎨
⎪⎩

x(n) + αn−1x
(n−1) + . . .+ α0x =

β1�1(t, xt, . . . x
(n−1)
t ) + β2�2(t), for t ≥ 0[

x . . . x(n−1)
]T
0
=ψ∈C0

(
[−D, 0],Rn

)
with max |ψ|<ω

(62)

where the left-hand side of the differential equation defines a
polynomial function the roots of which have strictly negative
real part, ω > 0, β1 ≥ 0, β2 is a scalar constant and �1 and
�2 are continuous functionals. There exist β1

max > 0, β2
max > 0

and r� > 0 (β1
max = α0, β2

max = ∞ and r� = 1 if n = 1) such
that, if

1) 0 ≤ β1 < β1
max and |β2| < β2

max;
2) there exists γ > 0 such that |�2(t)| ≤ e−γt for t ≥ 0;

3) �1 satisfies the following sup-norm relation, with X
Δ
=

[x ẋ . . . x(n−1)]T

∀t ≥ t0,
∣∣∣�1 (t, xt, . . . , x

(n−1)
t

)∣∣∣ ≤ max |Xt| (63)

for t ≥ 0, max |Xt| < rω with r ≥ r�

then, there exists γ̃ ∈ (0, γ) and R > 0 such that

∀t ≥ 0, |X(t)| ≤ max {r� max |X0|, Rβ2} e−γ̃t. (64)

Proof: The idea is to use the scalar result of Corollary 1.

Define the scalar-valued function m(t)
Δ
= X(t)TPX(t) where

P is, as defined in the statement of the Lemma, the symmetric
positive definite matrix solution of the Lyapunov equation
AT

0 P + PA0 = −Q, for some given symmetric positive defi-
nite matrix Q, and A0 is the companion matrix

A0 =

⎛
⎜⎜⎝

0 1
...

. . .
0 1

−α0 −α1 . . . −αn−1

⎞
⎟⎟⎠ . (65)

Define a
Δ
= (λ(Q)/2λ(P )), b

Δ
= 2β1(λ(P )/λ(P )) and c =

(2β2
2λ(P )2/λ(Q)). Taking a time-derivative of m and, classi-

cally, applying Young’s inequality, one can obtain

ṁ(t) ≤ −am(t) + bh(t) + ce−2γt (66)

with

h(t) =
λ(P )

β1λ(P )
X(t)TP

⎛
⎜⎜⎝

0
...
0

β1�1(.)

⎞
⎟⎟⎠

≤
√
λ(P )

√
m(t)

∣∣∣�1 (t, xt, . . . , x
(n−1)
t

)∣∣∣ (67)

which satisfies, for max |Xt| < rω (and therefore, in particular,
for maxmt < r2ω2λ(P ))

|h(t)| ≤
√
m(t)max

√
mt ≤ maxmt. (68)

Define the condition

maxm0 < r2ω2λ(P ). (69)

If (69) holds, then one concludes, applying Corollary 1, that
there exists c�ω > 0 such that, if |c| < c�ω and a > b, then there
exists γ̃ ∈ (0, γ) such that

∀t ≥ 0, m(t) ≤ max {max |mt0 |, μ∗} e−2γ̃t (70)

in which μ∗ is defined in (53). Yet, a sufficient condi-
tion for maxm0 < r2ω2λ(P ) to hold is that max |X0|2 <
r2ω2(λ(P )/λ(P )). By assumption, max |X0| < ω. Hence, to

guarantee that (69) holds, one simply has to pick r ≥ r�
Δ
=√

λ(P )/λ(P ). Finally, the condition a > b can be reformulated

as β1 < (λ(P )λ(Q)/4λ(P )2)
Δ
= β1

max, the condition |c| < c�ω

as |β2| <
√

c∗ωλ(Q)/2λ(P )2)
Δ
= β2

max and one obtains

∀t ≥ t0, |X(t)| ≤ max

⎧⎨
⎩
√

λ(P )

λ(P )
max |X0|,

√
μ∗

λ(P )

⎫⎬
⎭ e−γ̃t

(71)
which concludes the proof. �

C. Proof of Theorem 1—Application of Halanay-Like
Inequality to Dynamical Equation of the Input Error Variable ε

To obtain a sufficient condition guaranteeing (47), we first
focus on the DDE governing ε, which is given in the following
lemma.

Lemma 4: Consider t0 ∈ R and assume that the function ϕ
is unsaturated for t ≤ t0 (or equivalently that u(t) ≥ u, t ≤ t0).
Provided that u0 ∈ Cn([−D̄, 0],R), the error variable ε = u−
ur with u defined in (41) is n times continuously differentiable
for t ≥ t0 and satisfies the following differential equation for
t ≥ t0

ε(n) + (an−1 + b0kn−1)ε
(n−1) + . . .+ (a0 + b0k0)ε

= π1

(
Ḋ, . . . , D(n), εt, . . . , ε

(n−1)
t , X̃,

1

1 + Ḋ

)

+Kπ2

(
Ḋ, . . . , D(n)

)
X̃(t) (72)
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where the constants ki (i ∈ {1, . . . , n− 1}) are such that

[−k0 . . .− kn−1]
Δ
= K, π1 and π2 are polynomial functions

and π1 is at least quadratic in the variables Ḋ, . . . , D(n),

εt, . . . , ε
(n−1)
t , X̃ .

Proof: For sake of clarity, the proof of this theorem is
given in Appendix. �

Now that we are equipped with this last lemma, it is possible
to use Lemma 3 to guarantee that the stability condition (47)
holds.

Lemma 5: Consider the functional Θ defined in (42). Pro-
vided that u0 ∈ Cn([−D̄, 0],R), there exists θ : Rn �→ R

∗
+ such

that, if Θ(0) < θ(K), then

∀t ≥ 0, |ε(t)| ≤ min

{
uΔ�(K)

2
, ur − u

}
(73)

which implies that condition (47) is fulfilled.
Proof: Assume for a moment that the function ϕ is not

saturated for t ≤ 0. Then, dynamics (72) holds and is compliant
with the assumptions of Lemma 3.

In details, first, the left-hand side of (72) is asymptotically
stable, as it represents the last line of the Hurwitz companion
matrix A+BK. Second, by observing that

Ḋ =
ε(t−D)− ε(t)

ε(t−D) + ur
(74)

one can obtain by induction that, for m ≥ 1, D(m) is a
polynomial function in εt, . . . , ε

(m−1)
t , 1/ε(t−D) + ur with-

out any term of order 0 or 1. Therefore, π1 is directly a
polynomial function of the variables εt, . . . , ε

(n−1)
t , X̃, (1/1 +

Ḋ), (1/ε(t−D) + ur), which is at least quadratic in the
variables εt, . . . , ε

(n−1)
t , X̃ and π2 is a polynomial function in

εt, . . . , ε
(n−1)
t , (1/ε(t−D) + ur).

Now, we distinguish some of the terms in π1 and π2. First,
consider c2,0 the constant term of π2 and c2,1 the term of first
order in π2 involving 1/ε(t−D) + ur. Further, consider c1,2
the terms in π1 involving X̃ at power 1 and only one of the
variables εt, . . . , ε

(n−1)
t and at power 1. This term can be written

as follows:

c1,2 = π3

(
εt, . . . , ε

n−1
t ,

1

1 + Ḋ
,

1

ε(t−D) + ur

)
X̃ (75)

in which π3 is a (vectorial) polynomial function the terms of
which involve exactly one of the variables εt, . . . , ε

n−1
t . Now,

applying Young’s inequality, one can obtain

|c1,2|≤
1

2

∣∣∣∣π3

(
εt, . . . , ε

n−1
t ,

1

1+Ḋ
,

1

ε(t−D)+ur

)∣∣∣∣2+ |X̃(t)|2
2
(76)

in which |π3|2 is now a polynomial function at least quadratic
in εt, . . . , ε

n−1
t .

We are now ready to define the functionals �1 and �2 consid-
ered in Lemma 3. Provided that the initial state estimate X̃(0)
is not equal to zero, define

β2 = |K|
(
|c2,0|+

∣∣∣∣c2,1
(
1

u

)∣∣∣∣
) ∣∣∣X̃(0)

∣∣∣+
∣∣∣X̃(0)

∣∣∣2
2

(77)

�2(t)=
1

β2

⎡
⎢⎣K(c2,0+c2,1

(
1

ε(t−D)+ur

))
X̃(t)+

∣∣∣X̃(t)
∣∣∣2

2

⎤
⎥⎦

(78)

β1�1(.) =
1

2

∣∣∣∣π3

(
εt, . . . , ε

(n−1)
t ,

1

1 + Ḋ
,

1

ε(t−D) + ur

)∣∣∣∣2
+ (π1 − c1,2)

(
εt, . . . , ε

(n−1)
t

)
+K

[
π2

(
εt, . . . , ε

(n−1)
t , X̃,

1

1+Ḋ
,

1

ε(t−D)+ur

)
−c2,0

−c2,1

(
1

ε(t−D) + ur

)]
X̃(t). (79)

Alternatively, if |X̃(0)| = 0, one can define β2 = 0 and �2 = 0.
We now prove that conditions 1) to 3) of Lemma 3 hold.

Indeed, from the error equation of X̃ given in (95), one can
actually obtain that

∀t ≥ 0,
∣∣∣X̃(t)

∣∣∣ ≤ ∣∣∣X̃(0)
∣∣∣ eλ(A+LC)t (80)

if L is chosen such that the eigenvalues of A+ LC are distinct
and in which λ(A+ LC) < 0. From the previous definitions,
using now the fact that |(1/ε(t−D) + ur)| ≤ (1/u), one can
get that |�2(t)| ≤ eλ(A+LC)t for t ≥ 0. Further, one can observe

|β1�1| ≤
1

2
|π3|2 + |π1 − c1,2|+ |K||π2 − c2,0 − c2,1

∣∣∣X̃(0)
∣∣∣

(81)

in which |π3|2, |π1 − c1,2| and |π2 − c2,0 − c2,1| are polyno-

mial functions at least quadratic in εt, . . . , ε
(n−1)
t . Now, from

the previous observation on |(1/ε(t−D) + ur)|, and observ-
ing that

1

1 + Ḋ
=

ε(t−D) + ur

2ε(t−D)− ε(t) + ur
(82)

it is possible to properly define a neighborhood of the origin

Ω
Δ
= (−ω(K), ω(K)) in which β1�1 satisfies the sup-norm

|β1�1(·)| ≤ β1
max max |Et| (83)

in which E
Δ
= [εε̇ . . . ε(n−1)]T . Note that this neighborhood

depends both on the functional �1 and on the constant β1
max

and therefore on the feedback gain K. Finally, one obtains that
|β2| < β2

max if∣∣∣X̃(0)
∣∣∣ < min

{
1, κ(K)β2

max

} Δ
= ρ� (K,ω(K)) (84)

κ(K)
Δ
=

1

|K|
(
|c2,0|+

∣∣∣c2,1 ( 1
u

)∣∣∣)+ 1
2

(85)
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in which β2
max, and therefore ρ∗, depend on ω(K). Therefore,

for maxE0([−D, 0]) < ω(K) and |X̃(0)| < ρ�(K,ω(K)),
Lemma 3 guarantees the existence of r(K) > 0, R(K) > 0 and
γ̃ > 0 such that

∀t ≥ 0, |E(t)| ≤ max {rmax |E0|, Rβ2} e−γ̃t (86)

as long as the actuator ϕ is not saturated and because (72)
applies. Consequently, if X̃(0) satisfies the more restrictive
condition∣∣∣X̃(0)

∣∣∣<min

{
ρ∗ (K,ω(K)) , κ(K)

r(K)

R(K)
max |E0|

}
(87)

then, one obtains

∀t ≥ 0, |E(t)| ≤ r(K)max |E0| e−γ̃t (88)

as long as the actuator ϕ is not saturated. Yet, one can observe
that a sufficient condition to guarantee that the actuator is not
saturated is |ε(t)| ≤ ur − u, t ≥ 0. Therefore, by choosing

max |E0| ≤
1

r(K)
min

{
uΔ∗(K)

2
, ur − u, ω(K)

}
(89)

one can ensure together that this condition is fulfilled for any
t ≥ 0, that the initial condition lies in the neighborhood Ω and
that |E(t)| ≤ (uΔ∗(K)/2), t ≥ 0. In particular, the condition
(47) is also fulfilled.

Finally, the two choices bearing on max |E0| and |X̃(0)| can
be expressed in terms of Θ by defining

θ(K)
Δ
=

1

r(K)
min

{
uΔ∗(K)

2
, ur − u, ω(K)

}

+min

{
ρ∗(K,ω(K)),

κ(K)

R(K)
min

{
uΔ∗(K)

2
, ur−u, ω(K)

}}
.

(90)

This gives the conclusion. �
The proof of Theorem 1 directly follows from Lemma 5.

IV. ILLUSTRATIVE EXAMPLE

In this section, for illustration purposes, we consider the
following simple unstable second-order plant{

ẍ− ẋ+ x = ϕ (t−D(t))∫ t

t−D(t) ϕ(s)ds = 1, ϕ(t) = Sat[0.01,+∞) (u(t)) .
(91)

Following the proposed methodology, we introduce the
matrices

A =

(
0 1
−1 1

)
, B =

(
0
1

)
(92)

and implement the control law defined through (40), (41).
One can note that the chosen initial condition u0([−D, 0),R)

is not consistent with the value u(0) imposed by the prediction-
based control law, resulting into a discontinuity for t = 0.

Fig. 3. Simulation results for the same feedback gain (K = −[1 2]) and two
sets of initial conditions, respectively X̂(0) = [0.8 0]T and X̂(0) = [0.5 0]T .
(a) x(t); (b) ẋ(t); (c) Saturated control law; (d) Delay variations.

Hence, strictly speaking, the smoothness requirement of the
Theorem 1 is not satisfied. However, this does not prevent the
conclusion of Theorem 1 to hold, as detailed below. Further,
it is worth noting that this condition could still be satisfied by
employing an additive input filter.

Simulation results for two different sets of initial conditions,
respectively X̂(0) = [0.8 0]T and X̂(0) = [0.5 0]T for X(0) =
[1 0]T , are pictured in Fig. 3. Initial control values are similar in
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Fig. 4. Simulation results for the same initial conditions (X̂(0) = [0.5 0]T )
and two values of the feedback gain respectively K = −[0.5 1] and K =
−[1 2]. (a) x(t); (b) ẋ(t).

both cases u(t) = 1, t ∈ [−D, 0], resulting into an initial delay
D(0) = 1 the effects of which can be noticed on the beginning
of the state response. The control aims at stabilizing the plant at
the target equilibrium xr = 1.5 and (stabilizing) feedback gain
has been chosen as K = −[1 2]. Observer gain is similar in the
two cases L = −[10 12].

Obviously, one can observe that stabilization is achieved
for the first set of initial conditions, while, for the second
set, the initial estimation error is too important. These results
emphasize the local nature of Theorem 1 and can be reasonably
related to the delay variations pictured in Fig. 3.10 Indeed, the
goal of Theorem 1 is to ensure that Condition (9) in Lemma 1,
which restricts the delay variations, is satisfied. Here, for the
second set of initial conditions, the initial state estimation error
implies more important control fluctuations and therefore delay
variations which are too important to be handled.

Nevertheless, for this set of initial conditions, it is still possi-
ble to change the magnitude of the feedback gain to increase
the stabilization region defined through θ(K) in Theorem 1
so that it contains Θ(0). This is what is looked for in the
simulations reported in Fig. 4 in which the initial conditions
are similar to the second set previously considered (X̂(0) =
[0.5 0]T with the rest of the setting unchanged) and two
different feedback gains are used, respectively K = −[0.5 1]
(detuned controller) and K = −[1 2] (both yielding a Hurwitz
matrix A+BK). Intuitively, pursuing the consideration pre-

10Alternatively, simulations were performed keeping the same initial state
estimate but changing the state reference and lead to the same conclusions.

Fig. 5. Simulation results for the proposed prediction-based controller and
one employing a nominal delay value Dr = 1/ur as prediction horizon. The
initial conditions are the same (X̂(0) = [0.5 0]T ) and the feedback gain is
chosen as K = −[1 2]. (a) x(t); (b) ẋ(t).

sented earlier in Section III, the stabilization region could
increase while decreasing K. Indeed, this is what is observed
in simulation, as stabilization is obtained for K = −[0.5 1]
while not for K = −[1 2], as before. Therefore, for given initial
condition, restricting the feedback gain magnitude may enable
stabilization: the statement of Theorem 1 can be understood as
a small-gain result.

Finally, to stress the interest of the proposed method com-
pared to approaches recasting the delay input-variations as a
disturbance, we also compare the performance of our controller
with a prediction-based controller employing a nominal delay
value Dr = 1/ur as prediction horizon. Simulation results
are depicted in Fig. 5. One could reasonably expect that, by
employing the current delay in lieu of its asymptotic value, the
control law would consequently better compensate the input
delay. Indeed, this is what could be observed in Fig. 5: both
controllers achieve stabilization but the one proposed in this
paper achieves smoother and better performance compared to
the (relatively slight) oscillatory behavior of the second one.
This gain is modest but one could reasonably hope to improve
it by carefully tuning the controller gain.

V. CONCLUSION

In this paper, the problem of robust delay compensation
of a linear system driven by a delayed input by means of
output feedback has been addressed for a particular class of
input-dependent delay defined through an integral relation.
The proposed approach is based on a two-steps methodology,
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which, first, requires the delay variations to be bounded and, in
turn, relates these variations to input fluctuations. The obtained
sufficient conditions yield local asymptotic stability by putting
limits on initial conditions depending on the feedback gain.

A natural extension of this work would be to study more
complex integral-type delay defining equations, in which the
integral kernel depends less directly on the input. A second
interesting step would be to investigate the compliance of
the considered prediction framework with other input-varying
delay models, e.g., models of variable time lag appearing in
combustion instability studies [17], [27].

APPENDIX

PROOF OF LEMMA 4

Before starting the actual proof, we establish preliminary
results. In the following, we note Z = X̂ −Xr the estimate
state tracking error which satisfies, following (37) and (41)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ż(t) = AZ(t) +Bε (t−D(t))− LCX̃(t) (93)

ε(t) = K

[
eAD(t)Z(t) +

t∫
t−D(t)

eA(t−s)Bε(s)ds

]
(94)

˙̃X(t) = (A+ LC)X̃(t) (95)

when the actuator is not saturated over the whole time interval
[t−D(t), t].

A. Preliminary Results

Lemma 6: If the actuator is unsaturated over the interval [t−
D(t), t] and if u0 ∈ Cn([−D̄, 0],R), the control variable stated
in (41) is n times continuously differentiable and satisfies the
following differential equations

for 1 ≤ m ≤ n, ε(m) −
m∑
l=1

KAl−1Bε(m−l)

= fm
Z (t) + fm

ε (t) + fm
X̃
(t) + (1 + Ḋ)mKeADAmZ

+K

t∫
t−D

AmeA(t−s)Bε(s)ds (96)

with{
f1
Z(t) = 0 and for 2 ≤ m ≤ n

fm
Z (t) =

d[(1+Ḋ)m−1]
dt KeADAm−1Z + d

dt

(
fm−1
Z (t)

) (97)

⎧⎪⎨
⎪⎩

f1
ε (t) = ḊKeADBε(t−D) and for 2 ≤ m ≤ n
fm
ε (t) = d

dt

(
fm−1
ε (t)

)
+
[
(1 + Ḋ)m−1 − (1− Ḋ)

]
ε(t−D)KeADAm−1B

(98){
f1
X̃
(t) = −KeADLCX̃(t) and for 2 ≤ m ≤ n

fm
X̃
(t)= d

dt

(
fm−1
X̃

(t)
)
−(1+Ḋ)m−1KeADAm−1LCX̃(t).

(99)

Proof: The result is constructively obtained by induction
and successive substitutions.

Initial step: one directly gets, taking a time-derivative of the
control law (94) and using (93)

ε̇(t) = KBε(t) + (1 + Ḋ)KeADAZ +

=f1
ε (t)︷ ︸︸ ︷

ḊKeADBε(t−D)

+

=0︷ ︸︸ ︷
f1
Z(t)

=f1

X̃
(t)︷ ︸︸ ︷

−KeADLCX̃(t)+K

t∫
t−D

AeA(t−s)Bε(s)ds (100)

which gives (96) for m = 1. Further, as u0 ∈ Cn([−D̄, 0],R),
therefore ε0 ∈ Cn([−D̄, 0],R). Further, ε is continuous for t ≥
0 according to the control law (94) and, following the expres-
sion of Ḋ given in (46), Ḋ is continuous. Therefore, one obtains
that ε is continuously differentiable for t ≥ 0. This implies in
particular that Ḋ is continuously differentiable according to
(46) and, therefore, that f1

ε also is as u0 ∈ C1([−D̄, 0],R).
Induction: assume that the property is true for a given m ≥

1. We now show that it also holds for m+ 1. Taking a time-
derivative of (96) for some m ≥ 1 yields

ε(m+1) −
m∑
l=1

KAl−1Bε(m+1−l) =
d

dt
(fm

ε (t))

+
d

dt
(fm

Z (t)) +
d(1 + Ḋ)m

dt
KeADAmZ︸ ︷︷ ︸

=fm+1
Z

(t)

+KAmBε(t)

+ Ḋ(1 + Ḋ)mKeADAm+1Z + (1 + Ḋ)mKeADAm[AZ

+Bε(t−D)]−(1+Ḋ)mKeADAmLCX̃(t)+
d

dt

(
fm
X̃
(t)
)

︸ ︷︷ ︸
=fm+1

X̃
(t)

−(1−Ḋ)KeADAmBε(t−D)+K

t∫
t−D

Am+1eA(t−s)Bε(s)ds.

(101)

Rearranging terms, one obtains (96) for m+ 1. Similar consid-
erations as those previously used yield that ε is m+ 1 times
continuously differentiable. The same holds for D and one can
show that fm+1

ε is continuously differentiable. This gives the
conclusion. �

Further, the sequences (fm
ε ), (fm

Z ), and (fm
X̃
) satisfy the

following properties.
Lemma 7: For 2 ≤ m ≤ n, the function fm

ε introduced in
(98) in Lemma 6 is a polynomial function at least quadratic in
εt, . . . , ε

(m−1)
t , Ḋ, . . . , D(m).

Proof: The proof is straightforwardly obtained using the
definition of (fm

ε ) in Lemma 6 together with the fact that

(1 + Ḋ)m−1 − (1− Ḋ) =

m−1∑
l=1

(
n

l

)
Ḋl + Ḋ (102)

which contains no degree 0 terms. �
Lemma 8: For 1 ≤ m ≤ n, the function fm

X̃
introduced in

(99) in Lemma 6 is in the following form:

fm
X̃

= Kπ̃
(
Ḋ, . . . , D(m−1)

)
X̃(t) (103)

with π̃ a polynomial function with values in Mn(R)
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Proof: This property directly follows from the definition
of (fm

X̃
) and (95). �

Lemma 9: Assume that 1 + Ḋ > 0. For 2 ≤ m ≤ n, the
function fm

Z introduced in (97) in Lemma 6 is a polynomial

function in εt, . . . , ε
(m−1)
t , X̃ , Ḋ, . . . D(m) and 1/1 + Ḋ, at

least quadratic in the variables εt, . . . , ε
(m−1)
t , X̃ , Ḋ, . . . D(m).

Proof: Again, we reason by induction.
Induction: we assume that the property is true for a given

m ≥ 2. Then, using (96) for m, one obtains

fm+1
Z (t) =

d
[
(1 + Ḋ)m

]
dt

KeADAmZ +
d

dt
(fm

Z (t))

=
mD̈

1 + Ḋ

[
ε(m) −

m∑
l=1

KAl−1ε(m−l) − fm
Z (t)− fm

ε (t)

−fm
X̃
−K

t∫
t−D

AmeA(t−s)Bε(s)ds

⎤
⎦+ d

dt
(fm

Z (t)) .

(104)

Then, using the induction assumption jointly with the two
previous lemmas, one can conclude that fm+1

Z is a polyno-

mial function in X̃, εt, . . . , ε
(m)
t , Ḋ, . . . , D(m+1), (1/1 + Ḋ),

at least quadratic in X̃ , εt, . . . , ε
(m)
t , Ḋ, . . . , D(m+1).

Initial step: the same arguments as above apply for m = 2. �

B. Design of (72) Based on Lemma 6, 7, 9, and 8

As the dynamics matrix that we consider in (6) is of compan-
ion type, Cayley–Hamilton theorem gives

An = −
n−1∑
m=0

amAm. (105)

Therefore, for m = n (96) simply gives

ε(n) −
n∑

l=1

KAl−1Bε(n−l) = fn
Z(t) + fn

ε (t) + fn
X̃
(t)

−
n−1∑
m=0

am

⎡
⎣(1+Ḋ)nKeADAmZ+K

t∫
t−D

AmeA(t−s)Bε(s)ds

⎤
⎦

(106)

or again, using now (96) for m ranging from 1 to n− 1

ε(n) −
n∑

l=1

KAl−1Bε(n−l) = fn
Z(t) + fn

ε (t) + fn
X̃
(t)

−
n−1∑
m=1

am(1 + Ḋ)n−m

[
ε(m) −

m∑
l=1

KAl−1Bε(m−l)

−fm
Z (t)− fm

ε (t)− fm
X̃
(t)−K

t∫
t−D

AmeA(t−s)Bε(s)ds

⎤
⎦

−
n−1∑
m=1

amK

t∫
t−D

AmeA(t−s)Bε(s)ds

−a0

⎡
⎣(1+Ḋ)nKeADZ+K

t∫
t−D

eA(t−s)Bε(s)ds

⎤
⎦ . (107)

Besides, using the Leibniz formula

(1 + Ḋ)n−m = 1 +

n−m∑
l=1

(
n−m

l

)
Ḋl (108)

and the expression of (94), one can define

π1(Ḋ, . . . , D(n), εt, . . . , ε
(n−1)
t )

Δ
= fn

Z(t) + fn
ε (t) + fn

X̃
(t)

+

n−1∑
m=0

am(1 + Ḋ)n−m
(
fm
Z (t) + fm

ε (t) + fn
X̃
(t)
)

−
n−1∑
m=1

am

[
n−m∑
l=1

(
n−m

l

)
Ḋl

][
ε(m)−

m∑
l=1

KAl−1Bε(m−l)

−K

t∫
t−D

AmeA(t−s)Bε(s)ds

⎤
⎦− a0

n∑
l=1

(
n

l

)
Ḋl [ε(t)

−K

t∫
t−D

eA(t−s)Bε(s)ds

⎤
⎦ . (109)

From there, one can obtain the dynamic (72) by observing that
n∑

l=1

KAl−1Bε(n−l) +

n−1∑
m=1

m∑
l=1

amKAl−1Bε(m−l)

= −
n∑

l=1

b0kn−lε
(n−l) (110)

which is proven in the next section and using Lemma 8 applied
to the range n to obtain the existence of a suitable function π2.
Further, from (109), using Lemma 7 and 9, π1 is a polynomial in
the variables εt, . . . , ε

(n−1)
t , Ḋ, . . . , D(n), X̃ and 1/1 + Ḋ, at

least quadratic in the variables εt, . . . , ε
(n−1)
t , X̃, Ḋ, . . . , D(n).

C. Proof of (110) Using Companion Matrix Properties

One can reformulate the term under consideration in (110) as
follows:

n∑
l=1

KAl−1Bε(n−l) +

n−1∑
m=1

m∑
l=1

amKAl−1Bε(m−l)

=

n∑
l=1

KAl−1Bε(n−l)

+

n∑
p=2

n−1∑
m=n−1−p

amKAp−n+m−1Bε(n−p)

= KBε(n−1)

+
n∑

l=2

[
KAl−1B+

n−1∑
m=n−1−l

amKAl−n+m−1B

]
ε(n−l).

(111)
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To study the second term in (111), consider mi
j the jth coeffi-

cient of AiB. As A is a companion-type matrix, one gets

mi
j =

⎧⎨
⎩

0 if j ≤ n− i− 1
mi−1

j+1 if n− i ≤ j ≤ n− 1

−
∑n

l=n−i+1 aj−1m
i−1
j if j = n

(112)

and that

for i ∈ N, 1 ≤ j ≤ n and 1− j ≤ p ≤ max{i, n− j}
mj

i = mi−p
j+p. (113)

Then, the coefficient of the (n− p)th derivative can be rewrit-
ten as follows:

KAl−1B +

n−1∑
m=n−1−p

amKAp−n+m−1B

= KAl−1B +
l−1∑
i=1

an+i−lKAi−1B

= −kn−lm
l−1
n−l+1

−
n∑

j=n−l+2

kj−1

⎡
⎣ml−1

j +

l−1∑
i=n−j+1

an+i−lm
i−1
j

⎤
⎦. (114)

We now prove by induction that, for l ≥ 0 and for n− l + 2 ≤
j ≤ n, ml−1

j = −
∑l−1

i=n−j+1 an+i−lm
i−1
j .

For l = 2 and j = n, the proposition is indeed true as
ml−1

j =−an−1b0 and −
∑l−1

i=n−j+1 an+i−lm
i−1
j =−an−1m

0
n.

Now, assume that the property is true for a given l ≥ 2 and for
all integer j n− l + 2 ≤ j ≤ n. Consider j such that n− l +
2 ≤ j ≤ n− 1, then

l∑
i=n−j+1

an+i−l−1m
i−1
j =

l−1∑
i=n−j

an+i−lm
i
j

=
l−1∑

i=n−j

an+i−lm
i−1
j+1

= −ml−1
j+1 = −ml

j (115)

using (112) and the induction assumption. This gives the de-
sired result for n− l + 2 ≤ j ≤ n− 1. For j = n, one gets
using successively (113) and (112)

l∑
i=1

an+i−l−1m
i−1
n =

l∑
i=1

an+i−l−1m
n−1
i

=
n∑

i=n+1−l

aj−1m
l−1
j = −ml

n (116)

which gives the conclusion. Therefore, for 2 ≤ l ≤ n

KAl−1B+

n−1∑
m=n−1−p

amKAp−n+m−1B=−kn−lm
l−1
n−l+1

=−kn−lm
0
n=−kn−lb0

(117)

and KB = −kn−1b0. This concludes the proof of (110).
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