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Abstract— We consider a model of a microfluidic process
under Zweifach-Fung effect, which gives rise to a second-order
nonlinear, non-affine system with control input that affects
the plant both without delay and with an input-dependent
delay defined implicitly through an integral of the past input
values (that arises from a transport process with transport
speed being the control input itself). We construct a predictor-
feedback control law that exponentially stabilizes the output to
a desired reference point. This is the first time that a predictor-
feedback design is constructed that achieves complete input
delay compensation for such a type of input delay and despite
that control input affects the plant also without delay. This is
attributed to the particular structure of the nonlinear system
considered, which allows to deriving an implementable formula
for the predictor state at the proper prediction horizon.

I. INTRODUCTION

Microfluidic processes are ubiquitous in lab-on-a-chip
applications, see, for example, [13], [18]. An important phe-
nomenon evident in such processes is the so-called Zweifach-
Fung effect, which appears in microfluidic systems that
involve separation of particles within a fluid at a bifurcation
point, with a separation volume ratio that depends on the
flow rates at the two daughter branches of the main channel.
Fig. 1 illustrates such a setup example. This phenomenon976 Nicolas Petit  et al. / IFAC PapersOnLine 55-7 (2022) 975–980
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Fig. 1. Separation process using the Zweifach-Fung effect. A fluid containing particles flows from the inlet reservoir
through a microfluidic device within which it reaches a bifurcation and finally flows to the outlet reservoirs. The
flowrates Q0, Q1, Q2 are controlled by the pressures P0, P1, P2 in the reservoirs.
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Fig. 2. Two examples of possible functions bifurcation laws
f . Blue: (adapted from Doyeux et al. (2011). Red:
(sinusoidal) simplified version.

In Section 5, we discuss closed-loop stabilization. Some
conclusions and perspectives are given in Section 6.

2. MODEL OF THE DYNAMICS

Consider the system pictured in Fig. 1. Note Q0, Q1, Q2
the (volume) flowrates in the input, and two daughter (out-
put) channels (1 and 2). The fluid (suspension) contained
in the reservoir consists of a solvent and particles. Using
pressure controllers, it can be considered that the ratio

u =
Q1

Q0
∈ [0, 1]

is a control variable while Q0 is kept constant. Conser-
vation of volume implies that Q2 = Q0 − Q1. When u
is changed, then the volume fraction after the bifurcation
point is altered. Define f(u) the volume fraction in chan-
nel 1 (right after the bifurcation). Its graph is of the form
presented in Fig. 2 (adapted from Doyeux et al. (2011)).
Because the daughter channels have similar geometries,
the function f is symmetric.

The outlet of channel 1 flows in an incompressible man-
ner, with no back mixing, into a reservoir. The reservoir
contains a volume v of particles which dynamics is

v̇ = f(u(t − D(t))) Q0 u (1)

where D is a hydraulic delay corresponding to the volume
V0 of channel 1 (from the bifurcation to the reservoir,
thought the capillary tubing). As for many systems in-
volving transportation of material, see e.g. Bresch-Pietri
and Petit (2016); Chèbre et al. (2010), a delay appears in
the dynamics which is defined through an implicit integral
equation 1 . Such delays are referred to as hydraulic delays.
In Eq. (1), this delay is visible on the volume fraction
as it propagates without being altered in the channel
(there is no back mixing), but not to the flowrate which
is uniform in the channel due to incompressibility. The
implicit equation is

∫ t

t−D(t)

u(τ)dτ = Γ ! V0

Q0
> 0 (2)

The output of interest is the volume fraction in the
reservoir. Assuming it is empty at t = 0, one has

y(t) =
1

Q0

v∫ t

0
u(τ)dτ

=

∫ t

0
f(u(τ − D(τ))u(τ)dτ

∫ t

0
u(τ)dτ

In practice, y can be measured. A cytometer is located
at the outlet of channel 1, after the hydraulic delay. These
notations allow us to formulate a first problem of practical
interest for this microfluidic separation system.

Problem 1. Consider the two states systems ẋ1(t) =
f(u(t − D(t))u(t), ẋ2(t) = u(t), with single output y(t) =
x1(t)/x2(t) and single input u(t) ∈ [0, 1], find a closed
loop controller able to asymptotically stabilize any feasible
setpoint.

3. OPEN LOOP BEHAVIOR

The system described in Problem 1 has a surprisingly
complex behavior. For example, its transient responses to
a positive step and to a negative step vastly differ (param-
eter Γ was set to 1). These differences are illustrated in
Figs. 3 and 4 using square inputs signals. Short durations

1 This equation stems from an exact resolution of the transport
partial differential equation with variable velocity, (Bresch-Pietri and
Petit, 2016, Lemma 1.1).
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Fig. 4. Long-duration square signals showing a non sym-
metric responses to step signals (top: input signals,
bottom: right-hand sides of the first state differential
equation).
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Fig. 3. Short-duration square signals showing a non sym-
metric responses to step signals (top: input signals,
bottom: right-hand sides of the first state differential
equation).

are below the typical settling time of 5 s for this system
setup. The figures report the right-hand sides of the first
state differential equation in response to various square
signals. The two culprits of the observed dissimilarities
are the nonlinearity f (generating an expected nonlinear

asymptotic gain, visible in Fig. 4) and the time-varying
delay depending on the input whose effects include the
possible appearance of a strong peak when the delay is
reduced (see Fig. 3). These simulation results are obtained
using a method discussed below.

Numerical simulation of the dynamics

To obtain reliable simulation results of the input-dependent
varying delay dynamics, special care is required on the
numerical side. As noted in Clerget (2017), delays require
specific tools in their numerical simulation. A rich body
of literature has long studied the numerical simulation of
delay-differential algebraic equations (DDAE). Useful ref-
erences can be found in Banks and Kappel (1979), Karoui
and Vaillancourt (1994) or Ascher and Petzold (1995).

A classic idea is to replace it with the underlying transport
equation governing the system (e.g. Shi et al. (2016)).
Formally, this change of representation does not generate
any approximation (equation (2) is the exact solution of
the PDE, see Bresch-Pietri (2012)).

In turn this requires the discretization of the transport
PDE. It is well-known that good numerical schemes can
be obtained for transport phenomena using finite volumes
methods (see Leveque (2004)). Classically, space is divided
into a set of cells over which averaged properties are
defined.

The approach described in Agarwal (2010) based on the
use of the Method of Lines (MOL) by discretizing the PDE
only with respect to space into a set of ordinary differential
equations can be used. It is a second-order accurate scheme
defined over a regular mesh.

Comparable results can be obtained using a full discretiza-
tion approach (both w.r.t. time and space) using the fol-
lowing a second order accurate scheme. To obtain reliable
results, it should be remembered that this type of finite
volumes numerical schemes is stable only if the Courant-
Friedrichs-Lewy (see e.g. Allaire (2007)) condition is ver-
ified (bearing on ∆t the step size and ∆x the spatial
resolution). This condition is instrumental in setting up
the numerical scheme.

4. OPTIMIZATION BASED-CONTROL

Considering the relative simplicity (more precisely the
conciseness) of the formulation of Problem 1, it is tempting
to try to solve it with a classic Model Predictive Control
methodology, see for example Sbarciog et al. (2008) for
a typical application to a related problem. Even if the
discussion about the non symmetric nature of the system
behavior near equilibrium presented in Section 3 might
stress some possible difficulty, a main obstruction has not
been discussed yet.

The system controllability remains to be established al-
though the first part of the dynamics has already been
studied and be shown to be controllable in a very gen-
eral sense. This point is discussed below in Section 4.1.
However, a more hidden pitfall is that any general optimal
control problem formulated for the dynamics of problem 1
is (most likely) non smooth and will therefore reveal par-
ticularly troublesome for numerical solvers in its present
form. This point is covered in Section 4.3.

4.1 Motion planning

The dynamics under consideration is actually close to
the dynamics of blending (or dilution dynamics) studied

Fig. 1. An example of a microfluidic process. Particles within a fluid are
separated in the bifurcation point at a volume ratio that depends on the flow
rates Q1 and Q2 at each daughter branch, which in turn can be manipulated
via the respective pressures P1 and P2 in the reservoirs. The flow rate and
pressure in the main channel are denoted by Q0 and P0, respectively.

can be utilized for applications, such as, for example, blood
purification [20], while it is studied within the framework
of analysis of microcirculation dynamics, see, for example,
[7], [10], [11]. Regulating the volume fraction of particles in
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one of the daughter channels is crucial for applications that
involve, e.g., filtering or enrichment of particles in a fluid.

A control-oriented model of such a phenomenon is pre-
sented in [14]. The main features of this model are the
following. The control input is the flow ratio (with respect
to total flow) at the reservoir of the first channel, while the
output is the volume fraction of particles in the first reservoir.
Owing to the transport of particles from the bifurcation point
to the first reservoir there is a delay of hydraulic type (i.e.,
defined implicitly through an integral of past values of flow
ratio), because the transport speed depends explicitly on the
flow ratio itself. In addition, the Zweifach-Fung effect at the
bifurcation point, results in a nonlinear term in the dynamic
equation for the volume ratio, which depends on the flow
ratio at the delay time. Moreover, the flow ratio also affects
directly the volume ratio of particles in the first reservoir,
which gives rise to a term that depends on an undelayed form
of the flow ratio. Despite the practical importance of control
of such processes and existence of a control-oriented model
there is no attempt to design a delay-compensating feedback
law. As a result, the related literature for this problem can be
categorized into results dealing with modeling and analysis
of such processes; see, for example, [7], [10], [11], [14],
[20], and into results dealing with predictor-based control of
systems with input-dependent input delays; see, for example,
[1], [2], [4], [5], [6], [8], [15], [17], and of systems with
distributed input delay; see, e.g., [1], [12], [16], [19], [21].

In this paper, we develop a predictor-feedback control law
for a nonlinear model of a microfluidic process under the
Zweifach-Fung effect, which achieves exponential stabiliza-
tion of a desired reference point. The design relies on two
ingredients-the construction of an exact predictor state and
the design of a nominal feedback law. Despite that the delay
is defined implicitly through an integral of the control input
(over an interval from the delay time to the current time)
and despite that the control input enters the plant both in
delayed and undelayed form, the construction of the predictor
state is made possible owing to the particular structure of
the nonlinear system considered and its specific dependence
on the input variable (in fact, the predictor state is given
in explicit formulae). The nominal feedback law is designed
based on a particular delay-free system, which is not obtained
in an obvious manner (for example, considering that the input
only appears in undelayed form in the right-hand side of the
respective system’s dynamic equations). It is rather derived
constructing a stabilizing feedback law for the system in a
new time variable, which allows, in fact, to recasting the
problem of design of the nominal feedback law as a problem
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of design of a feedback law for a delay-free, time-varying,
nonlinear non-affine system.

For guaranteeing the delay properties required for design
of a predictor state and for well-posedness of the system
a feasibility condition that the control input is lower and
upper bounded by positive constants needs to be satisfied.
This imposes derivation of a local stability result in the
supremum norm of the delayed, actuator state. The proof
of exponential stability of the closed-loop system under
the constructed predictor-feedback law relies on deriving
estimates on solutions and on relating the norm of the overall
infinite-dimensional system to the norm of the predictor state.
An alternative formulation of the plant and the respective
predictor-feedback law using transport Partial Differential
Equation (PDE) representation of the delayed actuator state
is also provided. We also present simulation results of a mi-
crofluidic process with a sinusoidal nonlinearity, describing
the Zweifach-Fung effect, see, for example, [9], [14], which
confirms the performance improvement of the closed-loop
system under predictor feedback, as compared, for instance,
to employment of an open-loop control strategy.

II. MODEL OF THE PROCESS AND OPEN-LOOP
BEHAVIOR

A. Model of the Process

We consider the system

Ẏ (t) =
f (U (t−D(t)))− Y (t)

X(t)
U(t) (1)

Ẋ(t) = U(t) (2)∫ t

t−D(t)

U(s)ds = L, (3)

where Y > 0 denotes the ratio of particles volume in the first
channel with respect to total volume, X > 0 is total volume,
U > 0 is flow ratio between flow in the first channel and
total flow, which is the manipulated variable, L > 0 is the
ratio between total volume and total flow, and t ≥ 0 is time
variable. The goal is to regulate Y to a desired reference
value. To guarantee well-posedness of system (1)–(3) and
for system (1)–(3) to be a realistic model of the process the
following feasibility condition has to be satisfied

0 < c1 ≤ U(θ) ≤ c2 < 1, for all θ ≥ −D(0), (4)

for some positive constants c1, c2. In fact, condition (4)
guarantees that the delay D, defined implicitly via (3),
satisfies all requirements of time-varying input delays that
imply a uniquely defined delay that is positive and upper
bounded, as well as that its rate is less than one and lower
bounded, see, for example, [4]. These requirements also
allow to guarantee well-posedness of a predictor state design,
see, for example, [3], [4]. We impose the following realistic
(see, for example, [14]) assumption on f .

Assumption 1: The function f : [c1, c2] → [d1, d2], with
0 < d1 < d2 < 1, is Lipschitz with constant L1, strictly
increasing, and its inverse f−1 : [d1, d2] → [c1, c2] is
Lipschitz with constant L2.

B. Open-Loop Behavior

Lemma 1: Consider system (1), (2) with initial condi-
tions Y (0) = Y0 > 0, X(0) = X0 > 0, and U0 ∈
Lip ([−D(0), 0], (c1, c2)) with U0(0) = c for some c1 <
c < c2, under a reference input U(t) = c, t ≥ 0. Then the
following holds1

Y (t)=
Y0X0

ct+X0
+
c
∫ t
0
f (U0 (s−D(s))) ds

ct+X0
,

0 ≤ t ≤ L

c
(5)

Y (t)− f(c)=

(
Y

(
L

c

)
− f(c)

)
L+X0

ct+X0
, t >

L

c
. (6)

Proof: The proof can be found in Appendix A.
Lemma 1 implies that the equilibrium point Ȳ = f(c) is
asymptotically stable for a constant, reference input U(t) =
Ū = c, t ≥ 0 (in fact, the statement of Lemma 1 holds for
f that is only continuous on [c1, c2]). However, to improve
performance (such as, for example, the convergence rate)
and robustness of the open-loop system, we design next a
predictor-feedback control law.

III. PREDICTOR-FEEDBACK CONTROL DESIGN

A. Nominal Control Design

Under Assumption 1 as long as the feasibility condition (4)
is satisfied we can construct a nominal feedback law, which
stabilizes a particular system. This is a typical requirement
of predictor feedback in order to guarantee availability of a
nominal, delay-free stabilizing feedback law. We choose the
following nominal feedback law function

κ (τ,H) = f−1 (H − kτ (H − f(c))) , (7)

with some k > 0 and c1 < c < c2, which renders the
equilibrium H̄ = f(c) of system

dH (τ)

dτ
=

1

τ
(f (κ (τ,H(τ)))−H (τ)) , (8)

asymptotically stable. The requirement that the nominal
feedback law is chosen such that it stabilizes system (8) it
may not be obvious and is explained as follows. With the
change of variables

τ = X(t), (9)

(with X(0) = X0 > 0) for the time variable t, under (4)
(implying that the change of variables is invertible) we get
from (1)–(3), using the fact that t−D(t) = X−1 (X(t)− L)
for t−D(t) ≥ 0

dH (τ)

dτ
=

1

τ
(f (W (τ − L))−H (τ)) (10)

dZ (τ)

dτ
= 1, (11)

1Throughout the paper it is assumed that f satisfies Assumption 1. We do
not, however, explicitly state this in Lemma 1 because its statement holds
for f that is only continuous on [c1, c2] (and takes values in [d1, d2] to
guarantee positivity of Y ).
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for τ ≥ L, where

H (τ) = Y
(
X−1 (τ)

)
(12)

Z (τ) = τ (13)
W (τ) = U

(
X−1 (τ)

)
. (14)

System (10) is a time-varying nonlinear system with a
constant input delay. If there is a feedback law κ (τ,H(τ))
that stabilizes H to a desired reference point, say H̄ = f(c),
then we can employ a predictor-feedback control law to
stabilize (10).

Even though in order to achieve the desired convergence
rate in the original time variable t one should attentively
choose a feedback law κ (τ,H(τ)) in τ , the alternative
representation (10), (11) reveals that X could be viewed
more as time variable (rather than as state), and thus, as
regards a nominal, delay-free design, one could seek a
feedback law of the form κ (X,Y ) that stabilizes (10), (11),
which is simpler than (1). Moreover, the construction of the
predictor state could be even performed for a system with a
constant, rather than an input-dependent, delay.

B. Predictor-Feedback Design

Given a nominal, stabilizing feedback law κ, we construct
the following predictor-feedback law

U(t) = κ (X(t) + L,P (t)) (15)

P (t) =
Y (t)X(t)

X(t) + L
+

∫ t
φ(t)

f (U(s))U(s)ds

X(t) + L
. (16)

Note that P is the predictor state of Y at the proper,
for complete input delay compensation, prediction horizon,
whereas X + L is the predictor state of X . Both of these
facts are explained as follows. Denoting the delay time as
φ(t) = t − D(t) and the prediction time as σ(t) = φ−1(t)
(that exists as long as (4) is satisfied) we get that for t ≥ 0

∫ σ(t)

t

U(s)ds = L. (17)

Therefore, using (2) we get that

X (σ(t)) = X(t) + L, (18)

which shows that the predictor state of X , i.e., X (σ) is
X +L. Moreover, the prediction horizon needed is given by

σ(t) = X−1 (X(t) + L) . (19)

To find the predictor state of Y we substitute t = σ(θ), for
φ(t) ≤ θ ≤ t, in (1) to obtain

dY (σ(θ))

dθ
=
dσ(θ)

dθ

f (U(θ))− Y (σ(θ))

X (σ(θ))
U (σ(θ)) , (20)

and thus, defining Y (σ(θ)) = P (θ) and using the fact that
U (σ(θ)) dσ(θ)dθ = U(θ) (that follows differentiating (17) with
respect to the time variable) we get

d (P (θ)X (σ(θ)))

dθ
= f (U(θ))U (θ) . (21)

Integrating (21) from θ = φ(t) to θ = t and using (18) we get
(16). Note that, according to (20), the Ordinary Differential
Equation (ODE) satisfied by the predictor state is

Ṗ (t) =
f (U(t))− P (t)

X(t) + L
U(t). (22)

IV. STABILITY ANALYSIS

Theorem 1: Consider the closed-loop system consisting
of the plant (1), (2) and the control law (15), (16) with
(7). Under Assumption 1 there exists a strictly decreasing
function ε ∈ C ((0,+∞), (0,+∞)) such that for all initial
conditions Y (0) = Y0 > 0, X(0) = X0 > 0, U0 ∈
Lip ([−D(0), 0], (c1, c2)), which satisfy

Ω0 < ε (X0) (23)
Ω0 = |Y0 − f(c)|+ sup

−D(0)≤θ≤0
|U0(θ)− c| , (24)

and U0(0) = κ

(
X0 + L, Y0X0

X0+L
+

∫ 0
−D(0)

f(U0(s))U0(s)ds

X0+L

)
,

there exists a unique solution such that Y (t) ∈ C1[0,+∞),
X(t) ∈ C1[0,+∞), U(t) being locally Lipschitz on
[0,+∞), and the following hold for t ≥ 0

|Y (t)− f(c)| ≤ Ω0ekL (1 + 2L1) e−kc1t (25)
sup

t−D(t)≤θ≤t
|U(θ)− c| ≤ Ω0(1 + L1)(L2 + 1)ekLe−kc1t

× (1 + kL+ kX0 + kc2t) . (26)

Moreover, the feasibility condition (4) is satisfied.
Proof: The proof can be found in Appendix B.

V. TRANSPORT PDE ALTERNATIVE

A. Model of the Process

An alternative representation of the process using transport
PDE actuator state instead of delayed actuator state is given
by

Ẏ (t) =
f (u(0, t))− Y (t)

X(t)
U(t) (27)

Ẋ(t) = U(t) (28)
ut(x, t) = U(t)ux(x, t) (29)
u (L, t) = U(t), (30)

where x ∈ [0, L] is spatial variable and u > 0 denotes trans-
port PDE state due to transportation of particles. To guarantee
well-posedness of system (27)–(30) in the sense of guar-
anteeing a transport speed that is positive and lower/upper
bounded (and for system (27)–(30) to be a realistic model
of the process) one has to establish that (4) is satisfied.

B. Predictor-Feedback Control Design

The predictor state aims at compensating the delay due
to the transport effect of the transport process given in (29).
We keep here the PDE formulation as the original process
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is a transport process. Given a nominal, stabilizing feedback
law, we construct the following predictor-feedback law

U(t)=κ (X(t) + L, p (L, t)) (31)

p (x, t)=Y (t)
X(t)

X(t) + x

+
1

X(t) + x

∫ x

0

f (u(y, t)) dy, x ∈ [0, L].(32)

The fact that p is the predictor state could be explained as
follows. In view of (29) the predictor state should satisfy

p(0, t) = Y (t) (33)
pt(x, t) = U(t)px(x, t), (34)

which implies that relation p(x, t) = Y
(
X−1 (X(t) + x)

)

holds (provided that U remains positive, and thus, that X is
strictly increasing). It can be shown taking time and spatial
derivatives of (32) and using (27)–(30) that (34) holds.

VI. SIMULATION EXAMPLE

We consider the example from [14] in which f :
(
1
4 ,

3
4

)
→(

1
4 ,

3
4

)
with f(U) = 1

2 − 1
4 sin (2πU) and f−1(U) =

π−arcsin(2−4U)
2π . We show in Fig. 2 both functions f and f−1.

We choose the desired reference point as Ȳ = f(c) = 3
5 with

U
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Fig. 2. The function f modeling the Zweifach-Fung effect and its inverse
f−1 employed in the nominal feedback law (7).

Ū = c = 0.566 and a control gain k = 1.5. In Fig. 3 we
compare the responses in the cases of the open-loop system
and for the closed-loop system under the proposed predictor-
feedback law. One can observe that the predictor-feedback
law stabilizes the desired equilibrium faster than the open-
loop controller. In Fig. 4 we show the respective control
efforts. Note that because the initial conditions for Y and
u are at an equilibrium (although not at the desired one),
there is a time interval in which Y remains constant. (This
is consistent with equation (B.13); see also Lemma 1.)

VII. CONCLUSIONS

We constructed a predictor-feedback law for a second-
order, nonlinear non-affine system with input-dependent in-
put delay of hydraulic type arising in control of microfluidic
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Fig. 3. Solid: Output Y (t) of system (27) for two different initial
conditions, namely, u0 ≡ 1

2
, Y0 = f

(
1
2

)
= 1

2
and u0 ≡ 0.65,

Y0 = f (0.65) = 0.7, with X0 = 1
2

, under the predictor-feedback control
law (31), (32) with (7). Dashed: Output Y (t) of system (27) for two different
initial conditions, namely, u0 ≡ 1

2
, Y0 = f

(
1
2

)
= 1

2
and u0 ≡ 0.65,

Y0 = f (0.65) = 0.7, with X0 = 1
2

, under the open-loop control law
U(t) = Ū , for all t ≥ 0.
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Fig. 4. Solid: Control input U(t) given by (31), (32) with (7), for two
different initial conditions, namely, u0 ≡ 1

2
, Y0 = f

(
1
2

)
= 1

2
and u0 ≡

0.65, Y0 = f (0.65) = 0.7, with X0 = 1
2

. Dashed: Control input U(t) =

Ū , for all t ≥ 0, for two different initial conditions, namely, u0 ≡ 1
2

,
Y0 = f

(
1
2

)
= 1

2
and u0 ≡ 0.65, Y0 = f (0.65) = 0.7, with X0 = 1

2
.

processes under the Zweifach-Fung effect. We proved expo-
nential stability of the reference point in closed loop utilizing
estimates on solutions. The simulation results provided con-
firm the performance improvement of the closed-loop system
under the developed control design.

Even though we impose the assumption on invertibility
of the nonlinearity due to the Zweifach-Fung effect, this is
not restrictive. The reason is that, in certain applications,
the operation region of interest lies in medium flow ratios.
However, to operate over the whole spectrum of potential
flow ratios, where f may not be increasing, one has to
remove such an assumption. This is an issue that we currently
investigate.
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APPENDIX A
Proof of Lemma 1

Denote as t1 the time instant at which φ (t1) = 0. This
time instant always exists since φ is increasing and for 0 ≤
t ≤ t1 it holds from (3) that

∫ 0

φ(t)
U0(s)ds = L− ct. Hence,

it should be the case that
∫ 0

φ(t1)
U0(s)ds = 0, where t1 = L

c ,
since U0 is continuous and strictly positive (by assumption).
Thus, for t ≥ L

c system (1), (2) evolves according to

Ẏ (t) =
f (c)− Y (t)

X(t)
c (A.1)

Ẋ(t) = c. (A.2)

Solving (A.1) we get that Y (t)X(t) − Y
(
L
c

)
X
(
L
c

)
=

cf(c)
(
t− L

c

)
and X(t) = ct+X0, for t ≥ L

c , from which
we obtain (6) for t ≥ L

c . For 0 ≤ t ≤ L
c we get from (1),

(2) that

Ẏ (t) =
f (U0 (t−D(t)))− Y (t)

ct+X0
c. (A.3)

Solving (A.3) we obtain (6) for 0 ≤ t ≤ L
c .

APPENDIX B
Proof of Theorem 1

The feasibility condition (4) is satisfied for −D(0) ≤ θ ≤
0 by the assumption on the initial condition for U . In order to
guarantee that the feasibility condition is satisfied for t ≥ 0
we need to establish that the following holds for t ≥ 0

f(c1) ≤ P (t)− k (X(t) + L) (P (t)− f(c)) ≤ f(c2), (B.1)

which can be satisfied provided that the following holds∣∣∣P̃ (t)
∣∣∣ |1− k (X(t) + L)| < δ, t ≥ 0, (B.2)

where P̃ = P − f(c) and δ =
min {f(c2)− f(c), f(c)− f(c1)}. As long as U satisfies
inequality (4), from (7), (15), (22) it follows that the
predictor state P satisfies ˙̃P (t) = −kP̃ (t)Ẋ(t), and thus,

P̃ (t) = P̃ (0)e−k(X(t)−X0). (B.3)

Furthermore, as long as U satisfies inequality (4), it holds
that c1t+X0 ≤ X(t) ≤ c2t+X0. Therefore,

∣∣∣P̃ (t)
∣∣∣ |1− k (X(t) + L)| ≤

∣∣∣P̃ (0)
∣∣∣ e−kc1t (1 + kL

+kX0 + kc2t) . (B.4)

From (16) for t = 0 it follows using (3) that
∣∣∣P̃ (0)

∣∣∣ ≤ |Y0 − f(c)|X0

X0 + L

+

∫ 0

φ(0)
|f (U0 (s))− f(c)|U0(s)ds

X0 + L
. (B.5)

Under Assumption 1 (f being Lipschitz) we get from (B.5)
using (3) that

∣∣∣P̃ (0)
∣∣∣ ≤ |Y0 − f(c)|X0

X0 + L

+
LL1 sup−D(0)≤s≤0 |U0 (s)− c|

X0 + L
, (B.6)

and thus (since X0 > 0 by assumption),
∣∣∣P̃ (0)

∣∣∣ ≤ |Y0 − f(c)|+ L1 sup
−D(0)≤s≤0

|U0 (s)− c|. (B.7)

Using (B.4), it follows that (B.2) is satisfied provided that
∣∣∣P̃ (0)

∣∣∣ (1 + kL+ kX0 + kc2t) e−kc1t < δ, t ≥ 0, (B.8)

which is satisfied whenever
∣∣∣P̃ (0)

∣∣∣ < δ

M (X0)
(B.9)

M (X0) = max {1 + kL+ kX0,

c2
c1

e−1+
c1
c2

(kL+1+kX0)

}
. (B.10)

Using (B.7) we obtain that condition (B.9), and hence, also
(B.2), is satisfied whenever (23) holds with

ε (X0) =
δ

max {1, L1}M (X0)
. (B.11)

In order to derive stability estimates (25) and (26) we start
noting that, since under (4) the state X remains an increasing
function of time, there exists a finite time instant σ(0) ≥ 0
such that X (σ(0)) = X0 + L (in fact, from (15), (17) it
follows that σ(0) ≤ L

c1
), and hence, φ (σ(0)) = 0. For all

0 ≤ t ≤ σ(0) we then obtain from (1), (2) that

d (Y (t)X(t))

dt
= f (U0 (t−D(t)))U(t), (B.12)

and hence,

Y (t)− f(c)=

∫ t
0

(f (U0 (s−D(s)))− f(c))U(s)ds

X(t)

+
(Y0 − f(c))X0

X(t)
, 0 ≤ t ≤ σ(0). (B.13)

Under Assumption 1 (f being Lipschitz) and the assumption
on U0 we get from (B.13) that

|Y (t)− f(c)|≤L1 sup0≤s≤t |U0 (s−D(s))− c|
∫ t
0
U(s)ds

X(t)

+
|Y0 − f(c)|X0

X(t)
. (B.14)

Since X(t) ≥ c1t+X0 (under (4)), using (2) we obtain from
(B.14) that for 0 ≤ t ≤ σ(0) it holds that

|Y (t)− f(c)|≤|Y0 − f(c)|
+2L1 sup

−D(0)≤s≤0
|U0 (s)− c| . (B.15)

For t ≥ σ(0), which implies that t−D(t) ≥ 0, as X (σ(t)) =
X(t) + L and P (t) = Y (σ(t)), we obtain from (15) that

Ẏ (t) =
f (κ (X(t), Y (t)))− Y (t)

X(t)
Ẋ(t), (B.16)

and hence, from (7) we get that

Ẏ (t) = −k (Y (t)− f(c)) Ẋ(t). (B.17)
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Thus, we get by explicitly solving (B.17) and using (18) that

Y (t) = f(c) + e−k(X(t)−X0−L)

× (Y (σ(0))− f(c)) , (B.18)

and hence,

|Y (t)− f(c)| ≤ e−kc1tekL |Y (σ(0))− f(c)| . (B.19)

Using (B.15) and the fact that for t ≤ σ(0) it holds that
X(t) ≤ X0+L (since X is increasing), we obtain (25). Since
(B.1) holds and since f−1 is Lipschitz (by assumption), it
follows from (7), (15) that for t ≥ 0

|U(t)− c| ≤ L2

∣∣∣P̃ (t)
∣∣∣ |(1− k (X(t) + L))| , (B.20)

and hence, using (B.4) it follows that

|U(t)− c| ≤ L2

∣∣∣P̃ (0)
∣∣∣ (1 + kL+ kX0 + kc2t)

×e−kc1t, t ≥ 0. (B.21)

Using (B.7) we obtain from (B.21) that

|U(t)− c| ≤ (1 + L1)L2Ω0 (1 + kL+ kX0 + kc2t)

×e−kc1t, t ≥ 0. (B.22)

Thus, for t ≥ σ(0) we obtain from (B.22) that

sup
t−D(t)≤θ≤t

|U(θ)− c|≤Ω0(1 + L1)L2ekLe−kc1t

× (1 + kL+ kX0 + kc2t) ,(B.23)

where we used the fact that D(t) ≤ L
c1

, t ≥ 0, which follows
from (3), (4). Using the fact that supt−D(t)≤θ≤t |U(θ)− c| ≤(

sup−D(0)≤θ≤0 |U0(θ)− c|+ sup0≤θ≤t |U(θ)− c|
)

×e−kc1(t−σ(0)), 0 ≤ t ≤ σ(0), we obtain using (B.22) that

sup
t−D(t)≤θ≤t

|U(θ)− c|≤Ω0(1 + L1)(L2 + 1)ekc1σ(0)e−kc1t

× (1 + kL+ kX0 + kc2t) , (B.24)

for 0 ≤ t ≤ σ(0). Using (4), (17) it follows that σ(0) ≤ L
c1

,
and hence, using (B.23), (B.24) we obtain (26).

To study the regularity properties of the closed-loop sys-
tem we first note that from (2), (15), (22) it follows that

Ṗ (t) = −k (P (t)− f(c))κ (X(t) + L,P (t)) (B.25)
Ẋ(t) = κ (X(t) + L,P (t)) , (B.26)

and thus, since the right-hand side of the above ODE in
(P,X) is locally Lipschitz in (P,X) we get (with (B.3) and
c1t + X0 ≤ X(t) ≤ c2t + X0) existence and uniqueness
of a solution (P (t), X(t)) ∈ C1 [0,+∞). Therefore, from
(7), (15), it follows from Assumption 1 (and the assumption
on U0) that U(t) is locally Lipschitz on [0,+∞). Moreover,
since φ′(t) = U(t)

U(φ(t)) with U being locally Lipschitz, we
obtain (with t− L

c1
≤ φ(t) ≤ t− L

c2
, which follows from (3),

(4)) that there exists a unique solution φ(t) ∈ C1 [0,+∞).
Thus, from (B.12) it follows (with (25)) that there exists a
unique solution Y (t) ∈ C1 [0, σ(0)). Similarly, from (B.17)
it follows (with (25)) that there exists a unique solution
Y (t) ∈ C1 (σ(0),+∞). Compatibility of U0 with the feed-
back law guarantees that Y is continuously differentiable also
at t = σ(0).
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