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Abstract: This paper exposes a formal result showing that a set of two coupled hyperbolic
equations governing the thermal exchanges between a gas passing by a solid is actually close, in
a detailed mathematical sense, to a single convection/diffusion equation. Exhaust gas passing
by a solid catalyst is a typical example of such a situation. This result, the key derivation steps
of which are given here, bridges the gap between the two formulations, which have received
distinct types of contributions by the control community in the recent years.
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1. INTRODUCTION

With the advent of control methodologies designed for
partial differential equations (PDEs), there is a rising
interest in addressing numerous classic control systems
with new tools. Among these systems are many unit oper-
ations in chemical plants that include transport processes
and can best be described by PDEs (see Christofides
(2012), Dochain (2003), Winkin et al. (2000), Aksikas et al.
(2009) and references therein among other sources).

Amid those chemical systems, a class of problems we
put a focus on in this article consists on fixed-bed ad-
sorbers. This class is effectively quite large as it ranges
from bioreactors to tubular reactors of various sizes and
technologies. One of the first works stressing the relevance
of hyperbolic PDEs to model these systems is the work
by Bastin and Dochain (1991). Generally, their dynam-
ics is well described as follows. In fixed-bed bioreactors,
the biomass are entrapped or fixed on a support and
other components flow through the reactor (see Dochain
et al. (1992)). Interestingly, very similar formulations and
physical descriptions can be found in models of auto-
motive after-treatment systems (see Depcik and Assanis
(2005) Lepreux et al. (2012)), where exhaust gas travel
past a solid catalyst and get partially adsorbed. This last
example is closely related to other systems such as tubular
reactors treating medium that are not homogeneous, e.g.
plug flow reactors using a ion-exchange resin as catalyst
(see Weber and Chakravorti (1974)), and other systems
found in separation and reaction engineering. These are
typical of fixed-bed adsorbers, the interaction of the fluid
phase with a distributed adsorption along the absorbent
pellets being described in the work by Weber and Chakra-
vorti (1974).

All these systems have in common that their modeling
invokes two distinct coupled first-principles equations with
very different transport speeds (see Loureiro and Ro-

drigues (1991)). These equations are of hyperbolic type.
The ratio of the transport velocities can be zero (as in the
case of the bioreactor or the automotive catalyst), or very
small as in other instances of tubular reactors 1 . Chemical
species travel at very different speeds depending on the
strength of the adsorption or their catalyst or support.

The contribution of this paper is to show that such a
system of coupled hyperbolic linear partial differential
equations with one transport velocity set to 0 can be
well represented by a single convection-diffusion equation.
Hopefully, this work will help connecting the communi-
ties which focus on (diffusion-free) hyperbolic PDEs and
diffusion equations, respectively.

The fact that we highlight will not be very surprising to
modeling experts who have long had diffusion models in
their toolboxes. For example, diffusion is an important fac-
tor for mathematical modeling of flow of a fluid transport-
ing reacting species in geometrically complicated media
(see e.g. Hornung and Jäger (1991) for porous media used
for filtration or phase separation). The resulting models
are always of the form of the convection-diffusion reaction.
Their coefficients are often determined by experimental
identification using empirical parameters which cannot be
derived from molecular thermodynamics and dynamics
coefficients (see Galarneau et al. (2016) Lee et al. (2016)).
However, it is widely acknowledged that there is a general
lack of a rigorous bottom up model of adsorption and
transport in multi-scale porous materials (see Coasne et al.
(2013)). With respect to this lack, some mathematical
analysis could be of help.

Our approach here is relatively mathematical. Our result
is rather formal, limited to a simple but real example
stemming from long periods of experimental tests (see Lep-

1 It is well documented that inside fixed-bed reactor the reactant
waves propagates with a significantly larger speed than the heat wave
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reux et al. (2011, 2012)). As will appear, the elements of
derivation are relatively intricate and thus worth detailing.

The paper is organized as follows. We present the coupled
hyperbolic PDEs under consideration in Section 2 and
detail preliminaries properties of the solution along with
a reformulation of the dynamics into slow/fast variables.
After approximating the inverse of this transformation in
Section 3, we formulate our main result in Section 4 which
states in which sense the approximation is valid.

Notations

Classically, < ., . > is the scalar product in Rn (n ∈ N),
O(.) and o(.) are Landau big-O and little-0, respectively.
L∞ is the vector space of essentially bounded measurable
functions and Hk is the Sobolev space of order k.

2. PROBLEM STATEMENT AND
TRANSFORMATION OF THE DYNAMICS

Consider the following coupled transport PDEs

∂T

∂t
(z, t) + v

∂T

∂z
(z, t) = k1 (TS(z, t)− T (z, t)) (1)

∂TS
∂t

(z, t) = k2 (T (z, t)− TS(z, t)) (2)

T (0, t) = Tint(t) (3)

T (z, 0) = g1(z) , TS(z, 0) = g2(z) (4)

over the one-dimensional spatial domain z ∈ [0, 1] with
some positive parameters v, k1, k2 such that

k1 >> k2, v << k1 + k2
The initial and boundary conditions are defined by
(g1, g2) ∈ L∞([0, 1],R)2 and Tin ∈ L∞(R,R).

In details, this model (1)–(4) embodies the temperature
dynamics of a gas flow passing an unmoving medium
body, such as a solid, with a low velocity v. The two
transport equations, with a zero velocity for the solid,
involve coupling terms accounting for thermal convection.
As exposed in Lepreux (2009), such equations govern the
dynamics of a Diesel Oxidation Catalyst (see Figure 1(a)-
(c)). Experimental tests have clearly demonstrated that
a relevant alternative model is the convection/diffusion

dynamics ∂T
∂t + k2

k1
v ∂T

∂z −
k2

k2
1
v2 ∂2T

∂z2 = 0. Indeed, as is

reported in Figure 1(b), the response of the system is
kindly reproduced by a convection/diffusion model.

Reducing the coupled dynamics above to the sought-
after convection/diffusion model involves several steps of
change of variables, using classic linear algebra and the
partial derivatives operator, and substitutions to express
two equations each bearing on a single unknown, at the
exception of additional high orders terms. Here, high order
means both small (in terms of ratios of the parameters v,
k1, k2) and high derivatives of the variables, which are
shown to be well-defined and small (in the usual sense) in
the following results.

2.1 Existence and boundedness

For sake of determining the approximation of the equations
above, we now state some results concerning their solu-
tions. The proofs of these results are omitted for brevity.

They rely on classic elements of functional analysis in
relevant functional spaces, namely L∞, and Hk.

Lemma 1. Provided that Tin, g1 and g2 are k times differ-
entiable and bounded, the kth order spatial-derivatives of
T and Ts are well-posed in L∞([0, 1],R) and satisfy the
following equations

∂k+1T

∂t∂zk
+ v

∂k+1T

∂zk+1
= k1

(
∂kTS
∂zk

− ∂kT

∂zk

)
(5)

∂k+1TS
∂t∂zk

= k2

(
∂kT

∂zk
− ∂kTS

∂zk

)
(6)

∂kT

∂zk
(0, t) = ϕk(t, Tin, . . . , T

(k)
in , g2(0), . . . , g

(k−1)
2 (0)) (7)

∂kT

∂zk
(z, 0) = g

(k)
1 (z) ,

∂kTS
∂zk

(z, 0) = g
(k)
2 (z) (8)

in which ϕk is an infinitely continuously differentiable
function of its arguments.

Lemma 2. Under the assumptions of Lemma 1, the kth

order spatial-derivatives of T and Ts are bounded in the
following sense

‖(T, TS)(·, t)‖Hk
≤ 1√

v
(O(1) +O(v)) , t ≥ Tc (9)

for some Tc = Tc (v, k1, k2, ‖(T, TS)(·, 0)‖Hk
).

2.2 Preliminary reformulation into slow/fast dynamics

We introduce the following variables

W (z, t) =

[
T,
∂T

∂z
,
∂2T

∂z2
, TS ,

∂TS
∂z

,
∂2TS
∂z2

]
(z, t)

Y (z, t) =< W (z, t),
[
α1, β1v, γ1v

2, α2, β2v, γ2v
2
]
> (10)

Z(z, t) =< W (z, t),
[
α̃1, β̃1v, γ̃1v

2, α̃2, β̃2v, γ̃2v
2
]
> (11)

in which

α1 =
k2

k1 + k2
, α̃1 = −α1 (12)

β1 =− (k1 − k2)k2
(k1 + k2)3

, β̃1 = −β1 (13)

γ1 =
k2(k1 − k2)2 − 2k1k

2
2

(k1 + k2)5
, γ̃1 = −γ1 (14)

α2 =
k1

k1 + k2
, α̃2 = α1 (15)

β2 =
2k1k2

(k1 + k2)3
, β̃2 = −β2 (16)

γ2 =
3k1k2(k2 − k1)

(k1 + k2)5
, γ̃2 = −γ2 (17)

As will appear in the sequel, Y stands for the slow variable
while Z accounts for the fast component of the dynamics.

Lemma 3. The variables Y and Z satisfy the following
dynamics

∂Y

∂t
=− k2

k2 + k1
v
∂Y

∂z
+

k1k2
(k1 + k2)3

v2
∂2Y

∂z2

+ v3fY

(
∂3T

∂z3
,
∂4T

∂z4
∂3TS
∂z3

,
∂4TS
∂z4

) (18)

Y (0, t) = hY (t, g2(0), g′2(0), g′′2 (0), Tin, Ṫin, T̈in) (19)
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(a) (b)

(c)

Fig. 1. The Diesel Oxidation Catalyst studied in the works by Lepreux (2009); Petit (2010). (a): multichannel automotive
Diesel oxidation catalyst , (b): comparisons of experimental measurements against the convection/diffusion model
(after model fitting), (c): schematic view of the slow exhaust gas flow passing the solid catalyst (in one channel).
Picture courtesy of IPFen.

∂Z

∂t
=− (k1 + k2)Z − k1

k1 + k2
v
∂Z

∂z
− k1k2

(k1 + k2)3
v2
∂2Z

∂z2

+ v3fZ

(
∂3T

∂z3
,
∂4T

∂z4
∂3TS
∂z3

,
∂4TS
∂z4

)
(20)

Z(0, t) = hZ(t, g2(0), g′2(0), g′′2 (0), Tin, Ṫin, T̈in) (21)

in which (fY , fZ) ∈ O(1)2 are linear combinations of
their arguments and hY and hZ are infinitely continuously
differentiable functions of their arguments.

Remark 1. From (18) and (20), one can infer the reason
why we referred to Y and Z respectively as slow and fast
variables. Indeed, in a nutshell, as v << k1 + k2, the
dynamics of Y is dominated by a transport term, while
the one of Z behaves similarly to a weakly coupled asymp-
totically stable Ordinary Differential Equation (ODE) in
time, with a strong contractive factor k1 + k2.

We now provide the proof of this lemma, which highlights
the slow-fast nature of the decomposition of variables.

Proof. We start with the dynamics corresponding to Y .
Taking a time-derivative of (10) and using (5)–(6) for
k = 0, 1, 2, one obtains

∂Y

∂t
=(α1k1 − α2k2)(TS − T )− (α1 + β1k1 − β2k2)v

∂T

∂z

− (β1 + γ1k1 − γ2k2)v2
∂2T

∂z2
+ (β1k1 − β2k2)v

∂TS
∂z

+ (γ1k1 − γ2k2)v2
∂2TS
∂z2

− γ1v3
∂3T

∂z3
(22)

Consequently, using

α1k1 − α2k2 = 0

α1 + β1k1 − β2k2 = α2
1

taking the spatial derivative of (10) and regrouping the
common terms in (22) gives

∂Y

∂t
=− k2

k2 + k1
v
∂Y

∂z
+ α1

k1k2
(k1 + k2)3

v2
∂2T

∂z2

+

(
β1k1 − β2k2 +

k2
k2 + k1

α2

)
v
∂TS
∂z

+

(
γ1k1 − γ2k2 +

k2
k1 + k2

β2

)
v2
∂2TS
∂z2

+ v3
(
− k1
k1 + k2

γ1
∂3T

∂z3
+

k2
k1 + k2

γ2
∂3TS
∂z3

)
(23)

where we have used the fact that
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β1 + γ1k1 − γ2k2 −
k2

k2 + k1
β1 =− α1

k1k2
(k1 + k2)3

Thus, adding and subtracting terms again, and noting that

β1k1 − β2k2 +
k2

k2 + k1
α2 = 0

γ1k1 − γ2k2 +
k2

k1 + k2
β2 −

k1k2
(k1 + k2)3

α2 = 0

one gets

∂Y

∂t
= − k2

k2 + k1
v
∂Y

∂z
+

k1k2
(k1 + k2)3

v2
∂2Y

∂z2

+ v3 <
∂2

∂z2
W,w > (24)

with

w =
[
0, −α2γ1 −

1

2
β1β2, −

1

2
β2γ1v, ...

0, α1γ2 −
1

2
β2
2 , −

1

2
β2γ2v

]
which directly gives fY in (18) as the final term (scalar
product) in (24).

The dynamics of Z is obtained following the exact same
steps. Taking a time-derivative of (11) and using (5)–(6)
for k = 0, 1, 2, with

α̃1 − (β̃1 + β̃2)k2 =
k1

k1 + k2
α̃1

β̃1 − (γ̃1 + γ̃2)k2 −
k1

k1 + k2
β̃1 =

k1k2
(k1 + k2)3

α̃1

k1
k1 + k2

α̃2 + (β̃1 + β̃2)k1 = 0

k1
k1 + k2

β̃2 + (γ̃1 + γ̃2)k1 +
k1k2

(k1 + k2)3
α̃2 = 0

one obtains, after a few steps,

∂Z

∂t
=− (k1 + k2)Z − k1

k1 + k2
v
∂Z

∂z
− k1k2

(k1 + k2)3
ṽ2
∂2Z

∂z2

+ v3 <
∂2

∂z2
W,ω > (25)

with

ω =
[
0, α2γ̃1 −

1

2
β̃1β̃2 − γ̃1, −

1

2
β̃2γ̃1v, ...

0, α2γ̃2 −
1

2
β̃2
2 , −

1

2
β̃2γ̃2v

]
Thus, this gives (20) and the expression of fZ .

The corresponding boundary conditions (19) and (21) are
obtained from (10)–(11) using (7) for k = 0, 1, 2.

3. APPROXIMATION OF THE TRANSFORMED
AND INVERSE DYNAMICS

Based on the two time-scales exhibited in (18)–(21), we
propose to approximate the fast dynamics in a sense clar-
ified in the sequel. This is a second step of the model
reduction, usually known in finite dimension as center
manifold reduction (see e.g. Guckenheimer and Holmes
(1983); Arnol’d (2013)). In this step, the variables them-
selves are simplified.

Lemma 4. (Approximation of the fast variable Z).
There exists TZ

c > 0 depending on k1, k2, v such that

‖∂
kZ

∂zk
(·, t)‖L∞ ≤ ◦

(
v2 +

k2
k1

)
, t ≥ TZ

c (26)

‖∂
k+1Z

∂t∂zk
(·, t)‖L∞ ≤ ◦

(
v2 +

k2
k1

)
, t ≥ TZ

c (27)

Then, we are looking for an approximation of the mapping
(Y, Z) 7→ (T, TS) to define the approximate dynamics of
T and TS from those of Y and Z given in (18)–(21).
From (10)–(17), a few lines of computation yield

T =Y − k1
k2
Z +Av

∂Z

∂z
−Bv2 ∂

2Z

∂z2
− Cv∂Y

∂z
+Dv2

∂2Y

∂z2

− v3f̃Y
(
∂3T

∂z3
,
∂4T

∂z4
,
∂3TS
∂z3

,
∂4TS
∂z4

)
(28)

TS =Y + Z (29)

in which f̃Y is a linear function of its arguments and

A =

(
β1 −

k1
k2
β̃1

)
k1
k2
− β2 +

k1
k2
β̃2 (30)

B =

(
β1 −

k1
k2
β̃1

)(
β̃1
k1
k2
− β̃2

)
1

α̃1
−
(
γ1 −

k1
k2
γ̃1

)
k1
k2

+ γ2 −
k1
k2
γ̃2 (31)

C =β1 −
k1
k2
β̃1 + β2 −

k1
k2
β̃2 (32)

D =

(
β1 −

k1
k2
β̃1

)(
β̃1 + β̃2

) 1

α̃1
− γ1 +

k1
k2
γ̃1 − γ2 +

k1
k2
γ̃2

(33)

4. MAIN RESULT: APPROXIMATION OF THE
ORIGINAL DYNAMICS (1)–(4)

We are now ready to formulate the main result of this
article, stressing that the convection/diffusion equation
∂T
∂t + k2

k1
v ∂T

∂z −
k2

k2
1
v2 ∂2T

∂z2 = 0 is a good approximation of

the coupled transport PDEs (1)–(2)

Theorem 1. Consider T, TS solution of (1)–(4). Then,
there exists T 0

c > 0 depending on k1, k2, v such that∥∥∥∥∂T∂t +
k2
k1
v
∂T

∂z
− k2
k21
v2
∂2T

∂z2

∥∥∥∥
L2

≤ ◦
(
v2 +

k2
k1

)
, (34)

t ≥ T 0
c (k1, k2, v)∥∥∥∥∂TS∂t +

k2
k1
v
∂TS
∂z
− k2
k21
v2
∂2TS
∂z2

∥∥∥∥
L2

≤ ◦
(
v2 +

k2
k1

)
, (35)

t ≥ T 0
c (k1, k2, v)

Proof. Taking the time-derivative (28) and using the

linearity of f̃Y , one obtains

∂T

∂t
=
∂Y

∂t
− k1
k2

∂Z

∂t
+Av

∂2Z

∂t∂z
−Bv2 ∂3Z

∂t∂z2
− Cv ∂

2Y

∂t∂z
(36)

+Dv2
∂3Y

∂t∂z2
+ v3f̃Y

(
∂4T

∂t∂z3
,
∂4T

∂t∂z4
,
∂4TS
∂t∂z3

,
∂5TS
∂t∂z4

)
Using (18) and its space-derivative, it follows that
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∂T

∂t
=− k2

k1 + k2
v
∂Y

∂z
+

k1k2
(k1 + k2)3

v2
∂2Y

∂z2

+ v3fY

(
∂3T

∂z3
,
∂4T

∂z4
,
∂3TS
∂z3

,
∂4TS
∂z4

)
− k1
k2

∂Z

∂t
+Av

∂2Z

∂t∂z
−Bv2 ∂3Z

∂t∂z2

− Cv
(
− k2
k1 + k2

v
∂2Y

∂z2
+

k1k2
(k1 + k2)3

v2
∂3Y

∂z3

+v3
∂fY
∂z

(
∂3T

∂z3
,
∂4T

∂z4
,
∂3TS
∂z3

,
∂4TS
∂z4

))
+Dv2

(
− k2
k1 + k2

v
∂3Y

∂z3
+

k1k2
(k1 + k2)3

v2
∂4Y

∂z4

+v3
∂2fY
∂z2

(
∂3T

∂z3
,
∂4T

∂z4
,
∂3TS
∂z3

,
∂4TS
∂z4

))
+ v3f̃Y

(
∂3T

∂t∂z3
,
∂4T

∂t∂z4
,
∂4TS
∂t∂z3

,
∂5TS
∂t∂z4

)
(37)

or, equivalently, using (5)–(6) and the space-derivatives
of (10),

∂T

∂t
= − k2

k1 + k2
v
∂Y

∂z
+

(
k1k2

(k1 + k2)3
+ C

k2
k1 + k2

)
v2
∂2Y

∂z2

+ v3`Y

(
∂3T

∂z3
,
∂4T

∂z4
,
∂5T

∂z5
,
∂6T

∂z6
,
∂3TS
∂z3

,
∂4TS
∂z4

,
∂5TS
∂z5

,
∂6TS
∂z6

)
+ ˜̀

Y

(
∂Z

∂t
,
∂2Z

∂t∂z
,
∂3Z

∂t∂z2

)
(38)

in which `Y and ˜̀
Y are linear functions. Finally, using (28),

it follows that
∂T

∂t
= − k2

k1 + k2
v
∂T

∂z
+

k1k2
(k1 + k2)3

v2
∂2T

∂z2

+ v3`0Y

(
∂3T

∂z3
,
∂4T

∂z4
,
∂5T

∂z5
,
∂6T

∂z6
,
∂3TS
∂z3

,
∂4TS
∂z4

,
∂5TS
∂z5

,
∂6TS
∂z6

)
+ ˜̀0

Y

(
∂Z

∂t
,
∂Z

∂z
,
∂2Z

∂t∂z
,
∂2Z

∂z2
,
∂3Z

∂t∂z2
,
∂3Z

∂z3
,
∂4Z

∂z4

)
(39)

in which `0Y and ˜̀0
Y are again linear functions. The desired

result follows from there with Lemmas 2 and 4.

Similarly, one obtains

∂TS
∂t

= − k2
k2 + k1

v
∂TS
∂z

+
k1k2

(k1 + k2)3
v2
∂2TS
∂z2

+ v3fY

(
∂3T

∂z3
,
∂4T

∂z4
∂3TS
∂z3

,
∂4TS
∂z4

)
+
∂Z

∂t
+

k2
k2 + k1

v
∂Z

∂z
− k1k2

(k1 + k2)3
v2
∂2Z

∂z2
(40)

The desired result follows using again Lemmas 2 and 4,
after a further algebraic simplification.

REFERENCES

Aksikas, I., Fuxman, A., Fraser Forbes, J., and Winkin, J.
(2009). LQ control design of a class of hyperbolic PDE
systems: Application to fixed-bed reactor. Automatica,
45(6), 1542–1548.

Arnol’d, V. (2013). Mathematical Methods of Classical
Mechanics. Graduate Texts in Mathematics. Springer
New York.

Bastin, G. and Dochain, D. (1991). On-line estimation
and adaptive control of bioreactors, volume 1. Elsevier.

Christofides, P. (2012). Nonlinear and robust control of
PDE systems: Methods and applications to transport-
reaction processes. Springer Science & Business Media.

Coasne, B., Galarneau, A., Gerardin, C., Fajula, F., and
Villemot, F. (2013). Molecular simulation of adsorption
and transport in hierarchical porous materials. Lang-
muir, 29(25), 7864–7875.

Depcik, C. and Assanis, D. (2005). One-dimensional
automotive catalyst modeling. Progress in energy and
combustion science, 31(4), 308–369.

Dochain, D. (2003). State and parameter estimation in
chemical and biochemical processes: a tutorial. Journal
of process control, 13(8), 801–818.

Dochain, D., Babary, J.P., and Tali-Maamar, N. (1992).
Modelling and adaptive control of nonlinear distributed
parameter bioreactors via orthogonal collocation. Auto-
matica, 28(5), 873–883.

Galarneau, A., Guenneau, F., Gedeon, A., Mereib,
D., Rodriguez, J., Fajula, F., and Coasne, B.
(2016). Probing interconnectivity in hierarchical mi-
croporous/mesoporous materials using adsorption and
nuclear magnetic resonance diffusion. The Journal of
Physical Chemistry C, 120(3), 1562–1569.

Guckenheimer, J. and Holmes, P. (1983). Nonlinear
Oscillations, Dynamical Systems and Bifurcations of
Vector Fields. Springer, New York.
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